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Abstract
A unitary divisor c of a positive integer n is a positive divisor of

n that is relatively prime to
n

c
. For any integer k, the function σ∗

k

is a multiplicative arithmetic function defined so that σ∗
k(n) is the

sum of the kth powers of the unitary divisors of n. We provide ana-
logues of the functions σ∗

k in imaginary quadratic rings that are unique
factorization domains. We then explore properties of what we call n-
powerfully unitarily t-perfect numbers, analogues of the unitary mul-
tiperfect numbers that have been defined and studied in the integers.
We end with a list of several opportunities for further research.

1 Introduction

We convene to let N and P denote the set of positive integers and the set of
(integer) prime numbers, respectively.

The arithmetic functions σk are defined, for every integer k, by

σk(n) =
∑
c|n
c>0

ck. The unitary divisor functions σ∗
k are defined by

σ∗
k(n) =

∑
0<c|n

gcd(c, n
c
)=1

ck. In other words, σ∗
k(n) is the sum of the kth powers of the
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unitary divisors of n, where a unitary divisor of n is simply a positive divisor

c of n such that c and
n

c
are relatively prime. The author has invented and

investigated analogues of the divisor functions in imaginary quadratic integer
rings that are unique factorization domains [2]. Here, we seek to investigate
analogues of the unitary divisor functions in these rings.

For any square-free integer d, let OQ(
√

d) be the quadratic integer ring
given by

OQ(
√

d) =

{
Z[1+

√
d

2
], if d ≡ 1 (mod 4);

Z[
√

d], if d ≡ 2, 3 (mod 4).

Throughout the remainder of this paper, we will work in the rings OQ(
√

d)

for different specific or arbitrary values of d. We will use the symbol “|” to
mean “divides” in the ring OQ(

√
d) in which we are working. Whenever we are

working in a ring other than Z, we will make sure to emphasize when we wish
to state that one integer divides another in Z. For example, if we are working
in Z[i], the ring of Gaussian integers, we might say that 1+ i|1 + 3i and that
2|6 in Z. We will also refer to primes in OQ(

√
d) as “primes,” whereas we

will refer to (positive) primes in Z as “integer primes.” For an integer prime
p and a nonzero integer n, we will let υp(n) denote the largest integer k
such that pk|n in Z. For a prime π and a nonzero number x ∈ OQ(

√
d), we

will let ρπ(x) denote the largest integer k such that πk|x. Furthermore, we
will henceforth focus exclusively on values of d for which OQ(

√
d) is a unique

factorization domain and d < 0. In other words, d ∈ K, where we will define
K to be the set {−163,−67,−43,−19,−11,−7,−3,−2,−1}. The set K is
known to be the complete set of negative values of d for which OQ(

√
d) is a

unique factorization domain [3].
For an element a+b

√
d ∈ OQ(

√
d) with a, b ∈ Q, we define the conjugate by

a + b
√

d = a−b
√

d. The norm and absolute value of an element z are defined,
respectively, by N(z) = zz and |z| =

√
N(z). We assume familiarity with

the properties of these object, which are treated in Keith Conrad’s online
notes [1]. For x, y ∈ OQ(

√
d), we say that x and y are associated, denoted

x ∼ y, if and only if x = uy for some unit u in the ring OQ(
√

d). Furthermore,
we will make repeated use of the following well-known facts.

Fact 1.1. Let d ∈ K. If p is an integer prime, then exactly one of the
following is true.

• p is also a prime in OQ(
√

d). In this case, we say that p is inert in
OQ(

√
d).
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• p ∼ π2 and π ∼ π for some prime π ∈ OQ(
√

d). In this case, we say p
ramifies (or p is ramified) in OQ(

√
d).

• p = ππ and π �∼ π for some prime π ∈ OQ(
√

d). In this case, we say p
splits (or p is split) in OQ(

√
d).

Fact 1.2. Let d ∈ K. If π ∈ OQ(
√

d) is a prime, then exactly one of the
following is true.

• π ∼ q and N(π) = q2 for some inert integer prime q.

• π ∼ π and N(π) = p for some ramified integer prime p.

• π �∼ π and N(π) = N(π) = p for some split integer prime p.

Fact 1.3. Let p be an odd integer prime. Then p ramifies in OQ(
√

d) if and
only if p|d in Z. If p � d in Z, then p splits in OQ(

√
d) if and only if d is a

quadratic residue modulo p. Note that this implies that p is inert in OQ(
√

d)

if and only if p � d in Z and d is a quadratic nonresidue modulo p. Also, the
integer prime 2 ramifies in OQ(

√−1) and OQ(
√−2), splits in OQ(

√−7), and is
inert in OQ(

√
d) for all d ∈ K\{−1,−2,−7}.

Fact 1.4. Let O∗
Q(

√
d)

be the set of units in the ring OQ(
√

d). Then O∗
Q(

√−1)
=

{±1,±i}, O∗
Q(

√−3) =

{
±1,±1 +

√−3

2
,±1 −√−3

2

}
, and O∗

Q(
√

d)
= {±1}

whenever d ∈ K\{−1,−3}.
For a nonzero complex number z, let arg(z) denote the argument, or

angle, of z. We convene to write arg(z) ∈ [0, 2π) for all nonzero z ∈ C. For
each d ∈ K, we define the set A(d) by

A(d) =

⎧⎪⎨
⎪⎩
{z ∈ OQ(

√
d)\{0} : 0 ≤ arg(z) < π

2
}, if d = −1;

{z ∈ OQ(
√

d)\{0} : 0 ≤ arg(z) < π
3
}, if d = −3;

{z ∈ OQ(
√

d)\{0} : 0 ≤ arg(z) < π}, otherwise.

Thus, every nonzero element of OQ(
√

d) can be written uniquely as a unit
times a product of primes in A(d). Also, every z ∈ OQ(

√
d)\{0} is associated

to a unique element of A(d). For nonzero elements x, z ∈ OQ(
√

d), we will

write x♦z if and only if x ∈ A(d), x|z, and x is relatively prime to
z

x
(meaning

x and
z

x
have no nonunit common divisors).
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Definition 1.1. Let d ∈ K, and let n ∈ Z. Define the function
δ∗n : OQ(

√
d)\{0} → [1,∞) by

δ∗n(z) =
∑
x♦z

|x|n.

Remark 1.2. We note that, for each x in the summation in the above defi-
nition, we may cavalierly replace x with one of its associates. This is because
associated numbers have the same absolute value. In other words, the only
reason for the criterion x∈A(d) in the summation that appears in Definition
1.1 (which is implied by the relation x♦z) is to forbid us from counting asso-
ciated divisors as distinct terms in the summation, but we may choose to use
any of the associated divisors as long as we only choose one. This should not
be confused with how we count conjugate divisors (we treat 2 + i and 2 − i
as distinct divisors of 5 in Z[i] because 2 + i �∼ 2 − i). Also, note that the
functions δ∗n depend on the ring in which we are working (this is also true of
the function I∗

n, which we will soon define).

We will say that a function f : OQ(
√

d)\{0}→R is multiplicative if f(xy) =
f(x)f(y) whenever x and y are relatively prime.

Theorem 1.3. Let us work in a ring OQ(
√

d) with d ∈ K. For any n ∈ Z,
the function δ∗n is multiplicative.

Proof. Let z1 and z2 be relatively prime elements of OQ(
√

d)\{0} for some
d ∈ K. First note that if x♦z1z2, then x ∼ x1x2, where x1♦z1 and x2♦z2.
Furthermore, the numbers x1 and x2 are unique because of the requirement
x1, x2 ∈ A(d) inherent in the relations x1♦z1 and x2♦z2. On the other hand,
if x1♦z1 and x2♦z2, then x1x2 is associated to a unique number x such that
x♦z1z2. Therefore,

δ∗n(z1z2) =
∑

x♦z1z2

|x|n =
∑

x1♦z1
x2♦z2

|x1x2|n =
∑

x1♦z1

|x1|n
∑

x2♦z2

|x2|n = δ∗n(z1)δ
∗
n(z2).

Definition 1.4. For d ∈ K, define the function I∗
n : OQ(

√
d)\{0} → [1,∞),

for each n ∈ Z, by I∗
n(z) =

δ∗n(z)

|z|n . For a positive integer t ≥ 2, we say

that a number z ∈ OQ(
√

d)\{0} is n-powerfully unitarily t-perfect in OQ(
√

d) if
I∗
n(z) = t, and, if t = 2, we simply say that z is n-powerfully unitarily perfect

in OQ(
√

d). If n = 1, we will omit the adjective “1-powerfully.”
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Theorem 1.5. Let k, n ∈ N, d ∈ K, and z ∈ OQ(
√

d)\{0}. Then, if we are
working in the ring OQ(

√
d), the following statements are true.

(a) The range of I∗
n is a subset of the interval [1,∞), and I∗

n(z) = 1 if and
only if z is a unit in OQ(

√
d).

(b) I∗
n is multiplicative.

(c) I∗
n(z) = δ∗−n(z).

Proof. Part (a) is fairly trivial. To prove part (b), let z1 and z2 be relatively
prime elements of OQ(

√
d). We may use Theorem 1.3 to write

I∗
n(z1z2) =

δ∗n(z1z2)

|z1z2|n =
δ∗n(z1)δ

∗
n(z2)

|z1|n|z2|n = I∗
n(z1)I

∗
n(z2).

To prove part (c), it suffices, due to the truth of part (b), to show that
I∗
n(πα) = δ∗−n(πα) for an arbitrary prime π and positive integer α. We have

I∗
n(πα) =

δ∗n(πα)

|πα|n = |π|−αn
∑
x♦πα

|x|n = |π|−αn(1 + |πα|n)

= 1 + |πα|−n =
∑
x♦πα

|x|−n = δ∗−n(πα).

Remark 1.6. Let d ∈ K, and let z ∈ OQ(
√

d)\{0} satisfy z ∼
r∏

j=1

π
αj

j , where,

for all distinct j, � ∈ {1, 2, . . . , r}, πj is a prime, αj is a positive integer, and
πj �∼ π�. Combining parts (b) and (c) of Theorem 1.5, we see that, for any

positive integer n, we may calculate I∗
n(z) as I∗

n(z) =
r∏

j=1

(1 + |πj|−αjn).

As an example, let us calculate I∗
2 (30) in OQ(

√−1). We have

30 ∼ (1 + i)2 · 3(2 + i)(2 − i),

so
I∗
2 (30) = I∗

2

(
(1 + i)2

)
I∗
2 (3)I∗

2 (2 + i)I∗
2 (2 − i)

=

(
1 +

1

N(1 + i)2

) (
1 +

1

N(3)

)(
1 +

1

N(2 + i)

)(
1 +

1

N(2 − i)

)
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=
5

4
· 10

9
· 6

5
· 6

5
= 2.

Thus, 30 is 2-powerfully unitarily perfect in OQ(
√−1).

Now that we have established the foundations that we will need, we may
study the properties of some n-powerfully unitarily t-perfect numbers.

2 Investigating n-powerfully Unitarily

t-perfect Numbers

Theorem 2.1. Let d ∈ K, and let z ∈ OQ(
√

d)\{0}. For any integer n ≥ 4,
I∗
n(z) < 2. Furthermore, if I∗

3 (z) is rational, then I∗
3 (z) < 2.

Proof. Let Ψ(z) be the set of all primes in A(d) that divide z, and let Φ be
the set of all primes in A(d). Then, for any integer n ≥ 3,

I∗
n(z) =

∏
π∈Ψ(z)

(1 + |π|−ρπ(z)n) <
∏

π∈Ψ(z)

(1 + |π|−n) <
∏
π∈Φ

(1 + |π|−n)

=
∏
π∈Φ
|π|∈N

(1 + |π|−n)
∏
π∈Φ
|π|�∈N
π∼π

(1 + |π|−n)
∏
π∈Φ
|π|�∈N
π �∼π

(1 + |π|−n)

=
∏
q∈P

q is inert

(1 + q−n)
∏
p∈P

p ramifies

(1 +
√

p−n)
∏
p∈P

p splits

(1 +
√

p−n)2.

If n ≥ 5, then we have

I∗
n(z) <

∏
q∈P

q is inert

(1 + q−n)
∏
p∈P

p ramifies

(1 +
√

p−n)
∏
p∈P

p splits

(1 +
√

p−n)2

<
∏
q∈P

q is inert

(1 +
√

q−n)2
∏
p∈P

p ramifies

(1 +
√

p−n)2
∏
p∈P

p splits

(1 +
√

p−n)2

=
∏
p∈P

(1 +
√

p−n)2 ≤
∏
p∈P

(
1 +

√
p−5

)2

=
∏
p∈P

(
1 − p−5

1 −√
p−5

)2

=

(
ζ(5/2)

ζ(5)

)2

< 2,
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where ζ denotes the Riemann zeta function.
Next, suppose n = 4. Let us assume that d �= −7 so that 2 does not split

in OQ(
√

d). Then

I∗
4 (z) <

∏
q∈P

q is inert

(
1 + q−4

) ∏
p∈P

p ramifies

(
1 +

√
p−4

) ∏
p∈P

p splits

(
1 +

√
p−4

)2

<
∏
p∈P

p does
not split

(
1 +

√
p−4

) ∏
p∈P

p splits

(
1 +

√
p−4

)2

=
(
1 +

√
2
−4

) ∏
p∈P\{2}
p does

not split

(
1 +

√
p−4

) ∏
p∈P

p splits

(
1 +

√
p−4

)2

<
(
1 +

√
2
−4

) ∏
p∈P\{2}

(
1 +

√
p−4

)2

=
(
1 +

√
2
−4

)−1 ∏
p∈P

(
1 +

√
p−4

)2

=
4

5

∏
p∈P

(
1 + p−2

)2
=

4

5

∏
p∈P

(
1 − p−4

1 − p−2

)2

=
4

5

(
ζ(2)

ζ(4)

)2

< 2.

Now, assume that d = −7 so that 3 is inert. We then have

I∗
4 (z) <

∏
q∈P

q is inert

(
1 + q−4

) ∏
p∈P

p ramifies

(
1 +

√
p−4

) ∏
p∈P

p splits

(
1 +

√
p−4

)2

<
(
1 + 3−4

) ∏
p∈P\{3}

(
1 +

√
p−4

)2

=
1 + 3−4(

1 +
√

3
−4

)2

∏
p∈P

(
1 +

√
p−4

)2

=
41

50

∏
p∈P

(
1 − p−4

1 − p−2

)2

=
41

50

(
ζ(2)

ζ(4)

)2

< 2.

Finally, suppose n = 3 and I∗
3 (z) is rational. If π is a prime and |π| =

√
p

for some integer prime p, then it is easy to see that ρπ(z) must be even in
order for I∗

3 (z) to be rational. Therefore,

I∗
3 (z) =

∏
π∈Ψ(z)

(
1 + |π|−3ρπ(z)

)
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<
∏
q∈P

q is inert

(
1 + q−3

) ∏
p∈P

p ramifies

(
1 +

√
p−6

) ∏
p∈P

p splits

(
1 +

√
p−6

)2

<
∏
p∈P

(
1 + p−3

)2
=

∏
p∈P

(
1 − p−6

1 − p−3

)2

=

(
ζ(3)

ζ(6)

)2

< 2.

Corollary 2.2. If n ≥ 3 and t ≥ 2 are integers, then there are no n-
powerfully unitarily t-perfect numbers in any ring OQ(

√
d) with d ∈ K.

Theorem 2.3. Let us work in a ring OQ(
√

d) with d ∈ K. Suppose z ∈ OQ(
√

d)

satisfies I∗
n(z) = t for some n ∈ {1, 2} and t ∈ N\{1}. Then N(z) is even.

Proof. Assume, for the sake of finding a contradiction, that N(z) is odd.

Write z ∼
r∏

i=1

π
αj

j , where, for all distinct j, � ∈ {1, 2, . . . , r}, πj is a prime,

αj is a positive integer, and πj �∼ π�. Suppose that n = 1. If N(πj) is
an integer prime for some j ∈ {1, 2, . . . , r}, then it is easy to see that

αj must be even in order for I∗
1 (z) =

r∏
i=1

(1 + |πj|−αj) to be an integer (or

even a rational number). This means that |πj|αj is an integer for each

j ∈ {1, 2, . . . , r}, so δ∗1(z) =
r∏

i=1

(1 + |πj|αj) and |z| =
r∏

i=1

|πj|αj are positive

integers. Furthermore, |πj|αj must be odd for each j ∈ {1, 2, . . . , r}, so
2r|δ∗1(z) in Z. As δ∗1(z) = t|z| and |z| is odd, we see that 2r|t in Z. However,

t = I∗
1 (z) =

r∏
i=1

(1 + |πj|−αj) ≤
r∏

i=1

(
1 +

1

3

)
=

(
4

3

)r

, which a contradiction.

Now, suppose n = 2. Then δ∗2(z) and N(z) are positive integers. Because

δ∗2(z) =
r∏

i=1

(1 + N(πj)
αj) and N(πj)

αj is odd for each j ∈ {1, 2, . . . , r}, we

see that 2r|δ∗2(z) in Z. Again, 2r|t in Z, which is a contradiction because

t = I∗
2 (z) =

r∏
i=1

(1 + N(πj)
−αj) ≤

r∏
i=1

(
1 +

1

3

)
=

(
4

3

)r

.

The rings OQ(
√−1) and OQ(

√−3) are two of the most heavily-studied
quadratic rings, so it is not surprising that they prove to be particularly inter-
esting for our purposes. We proceed to prove a theorem about 2-powerfully
t-perfect numbers in each of these rings.
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Theorem 2.4. Suppose z is 2-powerfully unitarily t-perfect in OQ(
√−1) for

some integer t ≥ 2. Then we may write z = (1 + i)γx, where x ∈ OQ(
√−1)

and N(x) is odd. Also, x has γ + υ2(t) nonassociated prime divisors.

Proof. Let us write x ∼
r∏

j=1

π
αj

j , where, for all distinct j, � ∈ {1, 2, . . . , r},
πj is a prime, αj is a positive integer, and πj �∼ π�. From Fact 1.3, we
know that an integer prime is inert in OQ(

√−1) if and only if it is congruent
to 3 modulo 4. Therefore, if we choose any j ∈ {1, 2, . . . , r}, then either
N(πj) = q2 for some integer prime q that is congruent to 3 modulo 4 or
N(πj) = p for some integer prime p that is congruent to 1 modulo 4. Either

way, N(πj) ≡ 1 (mod 4), so υ2(δ
∗
2(x)) = υ2

(
r∏

i=1

(1 + N(πj)
αj)

)
= r. Then

the desired result follows from the equation (2γ +1)δ∗2(x) = 2γtN(x) and the
fact that υ2(N(x)) = υ2(2

γ + 1) = 0.

Theorem 2.5. Let us work in the ring OQ(
√−3). If a and b are relatively

prime positive integers and 3|a in Z, then
a

b
is not in the range of the function

I∗
2 .

Proof. For the sake of finding a contradiction, suppose I∗
2 (z) =

a

b
for some

z ∈ OQ(
√−3). Then bδ∗2(z) = aN(z), which implies that 3|δ∗2(z) in Z. This

means that there must be some prime π0 such that N(π0)
ρπ0 (z) ≡ 2 (mod 3).

Fact 1.3 tells us that an integer prime is inert in OQ(
√−3) if and only if it is

congruent to 2 modulo 3. If N(π0) = q2 for some inert integer prime q, then
N(π0)

ρπ0(z) = q2ρπ0 (z) ≡ 1 (mod 3), which is a contradiction. Clearly π0 �∼ 3,
so N(π0) must be a split integer prime. However, this means that N(π0) ≡ 1
(mod 3), so N(π0)

ρπ0 (z) ≡ 1 (mod 3), which is a contradiction.

Corollary 2.6. If t is a positive integer multiple of 3, then there are no
2-powerfully unitarily t-perfect numbers in OQ(

√−3).

Now, let us work in rings OQ(
√

d) with d ∈ K\{−7} so that 2 does not
split. Then there is a unique prime ξ(d) ∈ OQ(

√
d) ∩ A(d) of minimal even

norm. Namely,

ξ(d) =

⎧⎪⎨
⎪⎩

1 + i, if d = −1;√−2, if d = −2;

2, if d ∈ K\{−1,−2,−7}.
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Suppose z is a 2-powerfully unitarily t-perfect number in OQ(
√

d) for d ∈
K\{−7} and t ∈ N\{1}. By Theorem 2.1, we see that we may write z ∼
(ξ(d))μx0, where μ ∈ N, x0 ∈ OQ(

√
d), and 2 � N(x0) in Z. Furthermore, if

d ∈ {−1,−2}, then we have 2μ + 1 = δ∗2((ξ(d))μ)|δ∗2(z) = tN(z). Hence, if
we assume that 3 � N(z) in Z, then μ must be even. Therefore, under the
assumption that 3 � N(z) in Z, we may write

γ =

{
1
2
μ, if d ∈ {−1,−2};

μ, if d ∈ K\{−1,−2,−7}

so that z ∼ 2γx0. Then z = 2γx, where x is an associate of x0.
When M. V. Subbarao and L. J. Warren studied unitary perfect numbers,

which are positive integers n that satisfy σ∗(n) = 2n, they noticed that all
known unitary perfect numbers are multiples of 3. They then gave four
conditions that any unitary perfect numbers not divisible by 3 would need to
satisfy [4]. Using the information discussed in the preceding paragraph, we
will find analogues of the conditions that Subbarao and Warren established.

Theorem 2.7. Let d ∈ K\{−7}. Suppose z is 2-powerfully perfect in OQ(
√

d)

and 3 � N(z) in Z. Then we may write z = 2γx, where γ ∈ N, x ∈ OQ(
√

d),

and N(x) is odd. For any prime π, we have N(π)ρπ(x) ≡ 1 (mod 6). Fur-
thermore, there exists a prime divisor π0 of x such that N(π0) ≡ 5 (mod 6),
and x has an even number of nonassociated prime factors.

Proof. We already established that we may write z = 2γx for γ ∈ N. As
δ∗2(2

γ) = 22γ + 1 and N(2γ) = 22γ , we see that (22γ + 1)δ∗2(x) = 22γ+1N(x).
Now, let π be a prime. We wish to show that N(π)ρπ(x) ≡ 1 (mod 6). The
result is clear if ρπ(x) = 0, and if ρπ(x) > 0, the result is still quite trivial
when we consider that 1 + N(π)ρπ(x)|δ∗2(x) in Z. The fact that there exists
some prime divisor π0 of x such that N(π0) ≡ 5 (mod 6) follows from the
fact that 22γ +1 ≡ 5 (mod 6). Finally, to show that x has an even number of
nonassociated prime divisors, we use the fact that N(π)ρπ(x) ≡ 1 (mod 6) for
all primes π. This implies that N(x) ≡ 1 (mod 3). As 22γ+1 ≡ 22γ + 1 ≡ 2

(mod 3), we see that δ∗2(x) ≡ 1 (mod 3). Let us write x ∼
r∏

j=1

π
αj

j , where,

for all distinct j, � ∈ {1, 2, . . . , r}, πj is a prime, αj is a positive integer, and

πj �∼ π�. Then δ∗2(x) =
r∏

j=1

(1 + N(πj)
αj) ≡

r∏
j=1

(2) (mod 3), so r must be

even.
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We pause to mention that we may easily establish results analogous to
those given in Theorem 2.7 in the ring OQ(

√−7). In this ring, 2 splits as

2 = εε, where ε =
1 +

√−7

2
. Suppose that z is 2-powerfully unitarily perfect

in OQ(
√−7) and that 3 � N(z) in Z. Then we may write z = εγ1εγ2x, where

x ∈ OQ(
√−7) and N(x) is odd. If γ1 �= 0 and γ2 �= 0, then (2γ1 + 1)(2γ2 +

1)δ∗2(x) = 2γ1+γ2+1N(x). On the other hand, if γ1 = 0 or γ2 = 0 (γ1 and γ2

cannot both be 0 by Theorem 2.1), then we may write γ = γ1 + γ2 to get
(2γ + 1)δ∗2(x) = 2γ+1N(x). Because 3 � N(x) in Z, we know that γ1 and γ2

must be even and that N(π)ρπ(x) ≡ 1 (mod 6) for all primes π. Furthermore,
because 2γ1 + 1 ≡ 2γ2 + 1 ≡ 5 (mod 6), we see that x must have some prime
divisor whose norm is congruent to 5 modulo 6. Finally, if γ1 �= 0 and γ2 �= 0,
then (2γ1 + 1)(2γ2 + 1) ≡ 1 (mod 3) and 2γ1+γ2+1N(x) ≡ 2 (mod 3), so x
must have an odd number of nonassociated prime divisors. If γ1 = 0 or
γ2 = 0, then x must have an even number of nonassociated prime divisors
because 2γ + 1 ≡ 2γ+1N(x) ≡ 2 (mod 3).

We end with a note about unitarily t-perfect numbers. If d ∈ K and
t ≥ 2 is an integer, then we can find a unitarily t-perfect number in OQ(

√
d)

for every unitary t-perfect number in Z. We formalize and generalize this
notion in the following theorem.

Theorem 2.8. Let b > 1 be a rational number, and let d ∈ K. Let U(b) =
{n ∈ N : σ∗(n) = bn}, and let Vd(b) = {z ∈ A(d) : I∗

1 (z) = b}. Then there
exists an injective function g : U(b) → Vd(b).

Proof. If p is an integer prime that does not split in OQ(
√

d), let g(p) = p. If
p is an integer prime that splits in OQ(

√
d) as p = ππ, where π ∈ A(d), let

g(p) be the associate of π2 in A(d). Now, for any positive integer n ∈ U(b)

with canonical prime factorization n =
r∏

j=1

p
αj

j , let g(n) be the associate of

r∏
j=1

g(pj)
αj that lies in A(d). It is easy to see, using the fact that OQ(

√
d) is a

unique factorization domain, that g is an injection. To show that the range
of g is a subset of Vd(b), note that |g(p)| = p for all primes p. Therefore, with
n as before, we have

I∗
1 (g(n)) = I∗

1

(
r∏

j=1

g(pj)
αj

)
=

r∏
j=1

(
1 + |g(pj)|−αj

)
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=
r∏

j=1

(
1 + p

−αj

j

)
=

σ∗(n)

n
= b.

3 Ideas for Further Research

With Theorem 1.5 as evidence, we see that the functions δ∗n and I∗
n have some

fairly nice properties that we may exploit for further research. We pose some
ideas here.

First, we note that we could generalize the ideas presented in this paper
to other quadratic rings. However, if we choose to continue working with
imaginary quadratic rings that are unique factorization domains, we could
still look at analogues of many other objects defined in the integers. For ex-
ample, one might wish to investigate analogues of superperfect numbers and
unitary superperfect numbers. One could also look at analogues of biunitary
or even infinitary divisor functions in quadratic rings.

There are also plenty of questions left open related to the ideas discussed
in this paper. For example, the author has made no attempt to actually find
n-powerfully unitarily t-perfect numbers, so it is likely that many could be
quite easy to discover. One question of particular interest is the following.
For a given d ∈ K, what are the rational numbers b > 1 for which the
function g : U(b) → Vd(b) defined in the proof of Theorem 2.8 is bijective?
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