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Abstract

In recency rank encoding, a source letter s is replaced by a code
word uj , where j is the number of different source letters that have
appeared since the last occurrence of s in the source text. Let m be
the number of source letters and suppose that the source is perfectly
zeroth order, meaning that the source letters enter the text indepen-
dently with fixed probabilities f1, . . . , fm. For k ∈ {0, . . . , m − 1}, let
gk = gk(f1, . . . , fm) be the probability that, if a source letter is chosen
independently from the source text, exactly k different letters other
than that letter have appeared since the last appearance of that letter.
The conjectures of the title are:

(1) g0 ≥ . . . ≥ gm−1 with equality at any point (gj = gj+1) if and
only if f1 = . . . = fm = 1

m ;
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(2) if the code words u0, . . . , um−1 for recency rank encoding are
obtained by applying Huffman’s algorithm to the probabilities
g0, . . . , gm−1, and the code words w1, . . . , wm are obtained by ap-
plying Huffman’s algorithm to the probabilities f1, . . . , fm then
m∑

j=1
fj · lgth(wj) ≤

m−1∑
j=0

gj · lgth(uj).

1 Recency rank vs. simple replacement en-

coding

Let S = {s1, . . . , sm} and A = {a1, . . . , an}, m,n ≥ 2, be, respectively, a
source alphabet and a code alphabet. In the modern problem of encoding,
we wish to represent words “over” S by words over A in such a way that
every source word is recoverable from its code representative. Subordinate
to this requirement of unique decodability are various optimization goals:
efficiency of encoding, efficiency of decoding, compression, error detection
and correction. See [2] and [3]. The goal of compression is to minimize the
average number of code letters per source letter in the encoding; we might
call this average the compression index.

In simple replacement encoding, each source letter sj is assigned a code
word wj, and the encoding proceeds by replacing each occurrence of sj in the
source text by wj. Thus, the code representative of source text si1si2 . . . siN

will be the concatenation wi1wi2 . . . wiN . For unique and efficient decodability,
the list w1, . . . , wm of code words is prefix-free (see [2]). For compression,
common sense whispers that the wj should be as short as possible, given the
requirement that the list of wj be prefix-free. If nothing is known about the
source text, we may as well make the wj as nearly equal in length and as short
as possible, so that lgth(wj) ∈ {�logn m� , �logn m�} for each j = 1, . . . ,m.
If the relative frequencies in the source text of s1, . . . , sm are known – let’s
call them f1, . . . , fm (fj is the probability that a letter plucked at random
from the source text will be sj) – then one can apply Huffman’s algorithm [2]
to the relative frequencies to obtain a prefix-free list w1, . . . , wm for simple

replacement encoding which minimizes the compression index
m∑

j=1

fj ·lgth(wj).
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In recency rank encoding, introduced by Elias [1] in 1987 (although he
credits others for independently having the idea), we use a prefix-free list
u0, . . . , um−1 of code words; an occurrence of s ∈ S is replaced by uk when
exactly k elements of S \ {s} have appeared in the source text since the last
occurrence of s. (In theory, the source text has no beginning. In practice,
every actual chunk of source text has a beginning, so there will have to be
some convention for getting started, in actual application of recency rank
encoding.) Decoding is unique and not terribly hard, although it is a lit-
tle more time-consuming than simply recognizing code words, as in simple
replacement.

Recency rank encoding was touted as an effective “on-line” method, re-
quiring no knowledge of the statistics of the source text, but only the number
of source letters. However, it does require user agreement on the code words
u0, . . . , um−1 and, if nothing is known about the source text, it seems sensible
to make the uj all of length around logn m. What, then, is the advantage
of recency rank encoding over simple replacement of the source letters sj

with code words wj, of the lengths also around logn m, especially in view of
the fact that decoding of simple replacement code is noticeably easier than
recency rank decoding?

Perhaps because of such considerations, recency rank coding has not sur-
vived as a practical method in digital communication. However, as a source
of interesting mathematical questions, recency rank coding is a rich, hitherto
untapped (so far as we know) resource. Our aim here is to pose a couple
of mathematical questions about recency rank coding, in the form of conjec-
tures, and to confirm part of one of these conjectures.

Let the source be perfectly zeroth order; this means that letters enter
the source text independently, as though they were drawn with replacement
from an urn, in which s1, . . . , sm occur in proportions f1, . . . , fm, respectively.
(But note that the fj are not required to be rational.) For text from such a
source, if a block of k consecutive letters is chosen from the source text at
random, then for any i1, . . . , ik ∈ {1, . . . ,m}, the probability that the block

chosen will be si1 . . . sik is the product
k∏

j=1

fij .

Text from such a source is the same, statistically, whether read for-
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ward or backwards. Therefore, we can define the probabilities of interest
in analyzing recency rank coding as follows. For k ∈ {0, 1, . . . , m − 1}, let
gk = gk(f1, . . . , fm) be the probability that, if a letter s is selected at random
from the source text, exactly k different letters of S \ {s} will appear in the
source text (reading forward) before the next occurrence of s. Thus,

g0 =
m∑

i=1

f
2

i

g1 =
m∑

i=1

m∑
j=1
j �=i

∞∑
t=1

fif
t

j fi =
m∑

i=1

f
2

i

m∑
j=1
j �=i

fj

1 − fj

and the expressions for g2, . . . , gm−1 as formulas in f1, . . . , fm are a bit more
complicated. For instance:

g2 =
m∑

i=1

fi

⎡
⎢⎢⎣ ∑

1≤j1<j2≤m
j1 �=i�=j2

[ ∞∑
k=2

(fj1 + fj2)
k −

∞∑
k=2

f
k

j1
−

∞∑
k=2

f
k

j2

]⎤
⎥⎥⎦ fi

=
m∑

i=1

∑
1≤j1<j2≤m

j1 �=i�=j2

f
2

i

[
(fj1 + fj2)

2

1 − fj1 − fj2

− f
2

j1

1 − fj1

− f
2

j2

1 − fj2

]

In general, for 2 ≤ k ≤ m − 1, the formula for gk is

gk =
m∑

i=1

f
2

i

⎡
⎢⎢⎢⎢⎣

∑
Q⊆{1,...,m}\{i}

|Q|=k

⎡
⎢⎢⎢⎢⎣

( ∑
j∈Q

fj

)k

1 −
∑
j∈Q

fj

+
k−1∑
t=1

(−1)k−t
∑
S⊆Q
|S|=t

( ∑
j∈S

fj

)k

1 −
∑
j∈S

fj

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦
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Conjecture 1.1. If m ≥ 2, f1, . . . , fm > 0, and
m∑

i=1

fi = 1, then for all

k ∈ {1, . . . ,m − 1}, gk−1(f1, . . . , fm) ≥ gk(f1, . . . , fm), with equality if and
only if f1 = . . . = fm = 1

m

Conjecture 1.2. Suppose f1, . . . , fm are as in Conjecture 1 and that gk =
gk(f1, . . . , fm), k = 0, . . . ,m − 1. Suppose that the application of Huffman’s
algorithm to f1, . . . , fm results in code words w1, . . . , wm, and an application
of Huffman’s algorithm to g0, . . . , gm−1 results in code words u0, . . . , um−1.

Then
m∑

i=1

fi · lgth(wi) ≤
m−1∑
k=0

gk · lgth(uk)

In Conjecture 1.2, “lgth” stands for length, meaning the number of code
letters in the word. The conjecture is that for a zeroth order source, the
best possible compression index achievable by recency rank encoding, by a
shrewd choice of code words, is no better (smaller) than the best possible
compression index achievable by simple replacement.

We do not have a good guess about conditions for equality in Conjecture
1.2, although, if Conjecture 1.1 holds, then f1 = . . . = fm = 1

m
implies

g0 = . . . = gm−1 = 1
m

(because the gi must sum to 1), which implies equality
in Conjecture 1.2.

It is straightforward to see that g0(
1
m

, . . . , 1
m

) = 1
m

. Therefore, if the
inequalities g0 ≥ . . . ≥ gm−1 hold for all f1, . . . , fm, then f1 = . . . = fm = 1

m

implies that g0 = . . . = gm−1 = 1
m

.
We do not have strong reasons for these conjectures. They have withstood

testing for small values of m. In section 3, we will prove that g0 ≥ g1 with
equality if and only if f1 = . . . = fm = 1

m
. In section 2, we will develop the

analysis to be used in the proof in section 3; some may find this analysis of
interest in itself.

2 Useful inequalities

Lemma 2.1. If α, β, γ, δ ∈ R, α ≥ β and γ ≥ δ, then αγ + βδ ≥ αδ + βγ
with equality if and only if either α = β or γ = δ.
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Proof. The proposed inequality is equivalent to (α − β)(γ − δ) ≥ 0, which
obviously follows from the hypotheses. The sufficiency and necessity of the
conditions for equality also follow from this equivalence.

Theorem 2.2. Suppose that m ≥ 2, a1 ≥ . . . ≥ am > 0, and b1 ≥ . . . ≥

bm > 0. Then the function h defined by h(x) =

(
m∑

i=1

ax
i

)−1( m∑
j=1

ax
j bj

)
is

strictly increasing on [0,∞), unless either a1 = . . . = am or b1 = . . . = bm.
Clearly, if either a1 = . . . = am or b1 = . . . = bm, then h is constant.

Proof. Suppose that y > x ≥ 0. We aim to show that h(y) ≥ h(x) and that
equality implies that either a1 = . . . = am or b1 = . . . = bm.

Each of the following after the first is clearly equivalent to the inequality
preceding:

(1) h(y) ≥ h(x);

(2)

(
m∑

i=1

ax
i

)(
m∑

j=1

ay
j bj

)
≥

(
m∑

i=1

ay
i

)(
m∑

j=1

ax
j bj

)
;

(3)
m∑

i=1

ax+y
i bi +

∑
1≤i,j≤m

i�=j

ax
i a

y
j bj ≥

m∑
i=1

ax+y
i bi +

∑
1≤i,j≤m

i�=j

ay
i a

x
j bj;

(4)
∑

1≤i<j≤m

(
ax

i a
y
j bj + ax

j a
y
i bi

)
≥

∑
1≤i<j≤m

(
ay

i a
x
j bj + ay

ja
x
i bi

)
;

(5)
∑

1≤i<j≤m

(
aiaj

)x[
ay−x

j bj+ay−x
i bi

]
≥

∑
1≤i<j≤m

(
aiaj

)x[
ay−x

i bj+ay−x
j bi

]
.

Now, y − x > 0 and ai ≥ aj for 1 ≤ i < j ≤ m implies that ay−x
i ≥ ay−x

j .

Therefore, by Lemma 2.1, with α = ay−x
i , β = ay−x

j , γ = bi, δ = bj, for

each pair i, j such that 1 ≤ i < j ≤ m, ay−x
i bi + ay−x

j bj ≥ ay−x
i bj + ay−x

j bi,
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with equality if and only if either ay−x
i = ay−x

j ( ⇐⇒ ai = aj) or bi = bj.
Therefore, inequality (5) holds because each term on the left is greater than
or equal to the corresponding term (indexed by (i, j)) on the right. Therefore,
equality holds if and only if it holds for each term; consequently, if equality
holds, then for each pair (i, j), 1 ≤ i < j ≤ m, either ai = aj or bi = bj. This
implies that, if equality holds in (1), and thus in (5), then either a1 = . . . = am

or b1 = . . . = bm. For (assuming equality holds) if the ai are not all equal,
then a1 > am, which implies b1 = bm, whence b1 = . . . = bm.

Although we will make no use of it here, it would be churlish of us not to
point out the following corollary.

Corollary 2.3. Suppose that k,m ≥ 2 and that A = [aij] is a k×m matrix of
positive real numbers such that each row is non-constant and non-increasing.
Then the function H :

{
(x1, . . . , xk) ∈ R

k|xi > 0, i = 1, . . . , k
} → (0,∞)

defined by

H(x1, . . . , xk) =

[
k∏

i=1

(
m∑

j=1

axi
ij

)]−1 [
m∑

j=1

(
k∏

i=1

axi
ij

)]

is strictly increasing in each variable xi, i = 1, . . . , n.

Proof. If k − 1 of the variables – without loss of generality, say x2, . . . , xk –
are fixed, then the resulting function of the remaining variable, x1, is

p(x1) = c

(
m∑

j=1

ax1
1j

)−1 (
m∑

j=1

ax1
1j bj

)
,

where c =
k∏

i=2

(
m∑

j=1

axi
ij

)−1

and bj =
k∏

i=2

axi
ij , j = 1, . . . ,m. Since a11 ≥

. . . ≥ a1m and b1 ≥ . . . ≥ bm, and neither finite sequence is constant by
assumptions about A, we have p(x1) = c · h(x1), with h being of the form
given in Theorem 2.2, strictly increasing, and c > 0.
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Both Theorem 2.2 and Corollary 2.3 have generalizations to arbitrary fi-
nite, positive measure spaces. We will give, without proof, the generalization
of Theorem 2.2.

Theorem 2.4. Suppose that (M,μ) is a positive measure space, 0 < μ(M) <
∞ and a, b : M → (0,∞) are measurable functions such that for all s, t ∈ M ,
a(s) ≥ a(t) if and only if b(s) ≥ b(t). Then h : [0,∞) → (0,∞), defined by

h(x) =

(∫
M

a(t)xdμ(t)

)−1 (∫
M

a(t)xb(t)dμ(t)

)

is strictly increasing on [0,∞) unless one of a, b is essentially constant.

Theorem 2.2 is the special case of Theorem 2.4 in which M = {1, . . . ,m}
and μ is the counting measure.

3 g0 ≥ g1, and a necessary and sufficient con-

dition for equality

Theorem 3.1. Suppose that m ≥ 2, f1, . . . , fm > 0, and
m∑

j=1

fj = 1. Then

g0(f1, . . . , fm) ≥ g1(f1, . . . , fm), with equality if and only if f1 = . . . = fm =
1
m

.

Proof. We may as well suppose that 1 > f1 ≥ . . . ≥ fm > 0, which implies

that 1
1−f1

≥ . . . ≥ 1
1−fm

> 0. From Section 1, g0(f1, . . . , fm) =
m∑

i=1

f
2

i and
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g1(f1, . . . , fm) =
m∑

i=1

f
2

i

(
m∑

j=1
j �=i

fj

1 − fj

)

=
m∑

i=1

f
2

i

[(
m∑

j=1

fj

1 − fj

)
− fi

1 − fi

]

=

(
m∑

i=1

f
2

i

)
m∑

j=1

fj

1 − fj

−
m∑

i=1

f
2

i

fi

1 − fi

.

Therefore, the inequality g0 ≥ g1 is equivalent to

m∑
i=1

f
2

i

1

1 − fi

≥
(

m∑
i=1

f
2

i

)
m∑

j=1

fj
1

1 − fj

or

(
m∑

i=1

f
2

i

)−1 m∑
j=1

f
2

j

1

1 − fj

≥
m∑

j=1

fj
1

1 − fj

=

(
m∑

i=1

fi

)−1 m∑
j=1

fj
1

1 − fj

, since
m∑

i=1

fi = 1.

Setting fi = ai and 1
1−fi

= bi and referring to Theorem 2.2, the left-hand

side of the inequality above is h(2), and the right-hand side is h(1). By
Theorem 2.2, therefore, we have g0 ≥ g1, with equality only if (and also if)
either a1 = . . . = am or b1 = . . . = bm; each is equivalent to f1 = . . . = fm =
1
m

.
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