
International Journal of Mathematics and
Computer Science, 11(2016), no. 1, 33–42

� �

M
CS

Edge Grundy Numbers of P3�Pn and P3�Cn

Loren Anderson

Department of Mathematics
North Dakota State University

Fargo, ND 58102, USA

email: loren.james.anderson@ndsu.edu

(Received October 22, 2015 Accepted November 8, 2015)

Abstract

In [1], the quantities Γ
′
(Pn�Pn) and Γ

′
(Pn�Cn) were determined

except for Γ′(P3�Pn), n ∈ {5, 6, 7} and Γ
′
(P3�Cn), n ∈ {4, 5, 6}. Here,

we state these numbers and explain the computer algorithm coded in
Haskell used to find them.

1 Grundy Colorings

The graphs we study in this paper are finite simple graphs, meaning they
have a finite number of vertices and edges with no multiple edges or loops. A
proper coloring of a graph G is a coloring of the vertices such that adjacent
vertices of G are colored differently. Here, we are concerned with Grundy
colorings, proper colorings of the vertices of G with positive integers such
that if v ∈ V (G), is colored with c > 1, then all colors 1, ..., c − 1 appear on
neighbors of v. We denote the Grundy number of G, the greatest number
of colors appearing in a Grundy coloring of G, as Γ(G). An edge Grundy
coloring of a graph G is a Grundy coloring of the line graph of G, L(G). We
denote the edge Grundy number of G as Γ(G); Γ′(G) = Γ(L(G)). Let Pn

denote the path on n vertices and Cn the cycle on n vertices. The Cartesian
product will be denoted as �. Here, Pn�Pm is the n by m grid, and Pn�Cm is
the n by m cylindrical grid. In [1], the values of Γ′(Pn�Pm) are determined

Key words and phrases: Proper coloring, Grundy coloring, Grundy
number, line graph, path, cycle, grid, Cartesian product of graphs, Haskell
code.
AMS (MOS) Subject Classifications: 05C15, 68R10.
ISSN 1814-0432, 2016, http://ijmcs.future-in-tech.net
This research was supported by NSF grant no. 1262930.

34 L. Anderson

for all values of n ≤ m except for (n,m) ∈ {(3,m)|5 ≤ m ≤ 7}, and the
values of Γ′(Pn�Cm) are determined for all values of n and m except for
(n,m) ∈ {(3,m)|4 ≤ m ≤ 6}. The aim of this paper is to fill these gaps left
in [1]. Computer search will be employed; the following, from [1], together
with some other observations, to be given later, permit simplification and
shortening of the search.

A full partial Grundy coloring of G is an assignment of positive integers
to some of the vertices of G so that adjacent vertices are assigned different
integers, and if v ∈ V (G) is assigned c > 1, then 1, ..., c − 1 appear on
neighbors of v. The following is well known (see [1]).

Lemma 1.1. Every full partial Grundy coloring of a graph G can be extended
to a Grundy coloring of G.

Corollary 1.1. If H is an induced subgraph of G, then Γ(H) ≤ Γ(G).

Corollary 1.2. If Γ′(G) ≤ m and a full partial Grundy coloring of G is
found which uses m colors, then Γ′(G) = m.

2 Main Results

In [1], the following was shown:

6 ≤ Γ
′
(P3�Pm) ≤ 7,m ∈ {5, 6, 7}

6 ≤ Γ
′
(P3�Cm) ≤ 7,m ∈ {4, 5, 6}.

Using computer aid, we determined that the graphs G among the P3�H,
above, such that Γ′(G) = 7 are as follows:

G Number of edge Grundy colorings using 7 colors
P3�P5 0
P3�P6 0
P3�P7 1280
P3�C4 0
P3�C5 320
P3�C6 5100

Edge Grundy Numbers of P3�Pn and P3�Cn 35

Take note that the number of graphs is not reduced by automorphisms.
We start by assigning numbers to vertices of the line graph and then cycle
through all possible colorings of the vertices to determine when Γ′(G) = 7.
In this fashion, each distinct graph counted in the table has unique set of
vertex number/color pairs. For each line graph L(G), we determined that
only a single vertex is able to be colored 7 in order to achieve a Grundy
coloring of L(G).

Theorem 2.1.

Γ
′
(P3�P5) = Γ

′
(P3�P6) = Γ

′
(P3�C4) = 6

Theorem 2.2.

Γ
′
(P3�P7) = Γ

′
(P3�C5) = Γ

′
(P3�C6) = 7

3 P3�P7, P3�C5, P3�C6

In this section, we display examples of colorings that prove Theorem 2.2:

FIGURE 1. P3�P7

FIGURE 2. P3�C5

36 L. Anderson

FIGURE 3. P3�C6

4 Algorithm for P3�P5, P3�P6, P3�C4

In this section, we describe the computer algorithm used to establish Theo-
rem 2.1. The hurdle of even using a computer algorithm is that we simply
cannot examine all the possibilities of colorings and then eliminate those that
do not satisfy the prescribed conditions. To yield a Grundy coloring, each
vertex must have color less than or equal to its degree plus one. The graph
L(P3�P5) below illustrates the degree of each vertex. The number on each
edge is the degree of the corresponding vertex in L(P3�P5). Multiplying to-
gether all possibilities for the color of each vertex yields: 48 ·54 ·68 ·72 ≥ 1015

possible colorings, which is too many to check - even for one of our smallest
graphs. This mandates a more sophisticated approach.

FIGURE 4. P3�P5

We start with a line graph that has one vertex colored 7; the choice of
this vertex is determined by the symmetry of the graph. Then, we choose a
set of uncolored vertices and assign all possible permutations of colorings to

Edge Grundy Numbers of P3�Pn and P3�Cn 37

the vertices. This yields a set of partially colored graphs. Then we throw out
all graphs whose colorings are not proper. Next, we determine which newly
colored vertices have all of their neighbors also colored. If all neighbors of any
newly colored vertex are colored, we check the Grundy condition on the newly
colored vertex. This allows us to throw out the graphs that are not Grundy
(and hence will never be Grundy under coloring the remaining vertices). We
then choose another set of uncolored vertices and start the whole process
over with our set of partially colored graphs until all vertices are colored. If
there is a graph remaining at the end of the program, its coloring must be a
proper Grundy coloring, and we conclude that the edge Grundy number is 7
(because we starting with a graph having one vertex colored 7). The careful
choice of sets of vertices is the main aspect of reducing the time complexity
of this program.

Next, we explain the algorithm. First, define S(v) as the set of uncolored
neighbors of a vertex v and T (v) as the set of colored neighbors. Furthermore,
let c(T (v)) be the set of colors of the colored neighbors of v. We define p1 and
p2, the respective proper coloring and Grundy conditions on a single vertex.
For v ∈ V (G) to satisfy p1, either v must be uncolored, or each neighbor of
v must have a different color from the color of v. For v ∈ V (G) to satisfy p2,
where v is colored c, the following must be true:

|S(v)| ≥ |{1, 2, ..., c − 1} − c(T (v))|.

This condition is stating that the number of uncolored neighbors of v is at
least the number of missing colors on neighbors of v needed for v to sat-
isfy the Grundy condition. We present the algorithm generating all Grundy
graphs with one vertex colored 7 below.

ALGORITHM
- color one vertex 7
- WHILE there exists an uncolored vertex v
- FOR ALL colors c at most one more than the degree of v
- color v c
- IF v satisfies p1 and p2
- IF colored neighbors of v satisfy p2

38 L. Anderson

We now present a short proof of the validity of this algorithm by induc-
tion. When the first vertex is colored 7, it trivially satisfies p1 because there
are no other colored vertices. Also, this vertex satisfies p2 if and only if the
colored vertex has degree 6 or greater; otherwise it cannot be adjacent to
vertices colored from 1 through 6. Next, assume that there are n vertices
currently colored, all satisfying p1 and p2. Choose an uncolored vertex v and
color it c. It suffices to check that only v satisfies p1 to be certain that all
other n colored vertices will satisfy p1; v was the only new vertex colored.
If v satisfies p2, it suffices to check the colored neighbors of v to see if they
satisfy p2. This is because the set c(T (u)) for only neighbors u of v may
change when v is colored. When all vertices of the graph are colored, each
vertex must satisfy p1 and p2. Each vertex satisfying p1 is equivalent to the
coloring being a proper coloring, and each vertex satisfying p2 along with p1
is equivalent to the coloring being a Grundy coloring.

All that is left to discuss is the strategy of choosing the vertex coloring
order. This varies based on which graph we are analyzing. The order was
chosen to check p2 often, as it seemed to be the more restrictive of the two
conditions for these graphs after some trial and error while coding.

5 P3�C4

The main feature of P3�C4 is its symmetry. This cylindrical graph ‘wraps
around’ itself and has symmetry of a cylinder. The only possible edge that
can be colored 7 is one on the middle row, or one labeled 1, 4, 5, or 20 in figure
5. Therefore, we can assume a single edge on this row is colored 7 by the
symmetry; here, we assume that the edge 1 is colored 7. Upon inplementing
the computer program with respect to this graph, we determined that there
were 0 possible Grundy colorings, so Γ′(P3�C4) = 6.

Edge Grundy Numbers of P3�Pn and P3�Cn 39

FIGURE 5. P3�C4

6 P3�P5 and P3�P6

The graph P3�P6 does not exhibit the same type of symmetry, but we can
reduce the problem down to the two cases shown below where edge 1 is
colored 7 in each case.

FIGURE 6. P3�P6 FIGURE 7. P3�P6

In either case, the computer program determined that there were 0 Grundy
graphs. We conclude that Γ′(P3�P6) = 6. The L(P3�P5) graph is an in-
duced subgraph of L(P3�P6). Therefore, Γ′(P3�P5) ≤ Γ′(P3�P6) = 6 by
Corollary 1.1. However, we know that 6 ≤ Γ′(P3�P5) by the work of [1].
Therefore, Γ′(P3�P5) = 6.

40 L. Anderson

7 Code

Below is the Haskell code used to implement the algorithm described in
section 4. We display how it checks the graph L(P3�C4) as described in
section 5.

import qualified Data.Map as Map

import Data.List

type Node = (Int,([Int],Int))

type Graph = Map.Map Int ([Int],Int)

--gets degree of a vertex

degree :: Int -> Graph -> Int

degree x g = case Map.lookup x g of

Just v -> length (fst v)

Nothing -> 0

--gets color of a vertex

color :: Int -> Graph -> Int

color x g = case Map.lookup x g of

Just v -> (snd v)

Nothing -> error "Not good"

--determines if a vertex is colored

isColored :: Int-> Graph -> Bool

isColored x g = case Map.lookup x g of

Just v -> if (snd v)==0 then False else True

Nothing -> error "Not good"

--checks if vertex is colored differently from each member of set of vertices

checkProperColor :: Int -> [Int] -> Graph -> Bool

checkProperColor _ [] _ = True

checkProperColor y (x:xs) g = ((color y g) /= (color x g))

&& checkProperColor y xs g

--changes color of vertex to specified new color

changeColor :: Int -> Int -> Graph -> Graph

changeColor y c g= Map.insertWith addColor y ([],c) g

--helper function for changeColor

addColor :: ([Int],Int) -> ([Int],Int) -> ([Int],Int)

Edge Grundy Numbers of P3�Pn and P3�Cn 41

addColor (xs,d) (zs,y) = (zs,d)

--gets neighbors of a certain vertex

getNeighbs :: Int -> Graph -> [Int]

getNeighbs x g = case Map.lookup x g of

Just v -> (fst v)

Nothing -> error "Not good"

--determines if a set of vertices satisfies the Grundy condition

checkGrundyColor :: [Int] -> Graph -> Bool

checkGrundyColor [] _ = True

checkGrundyColor (y:ys) g | isColored y g =

checkGrundy (getNeighbs y g) (color y g) g && checkGrundyColor ys g

| otherwise = checkGrundyColor ys g

--determines if a single vertex satisfies the Grundy condition

checkGrundy :: [Int] -> Int-> Graph -> Bool

checkGrundy xs c g = (notColored xs g) >=

((c-1)-(length(delete 0 (filter (<c) (nub (isOne xs g))))))

--determines the set of colors of vertices to which a single vertex is adjacent

isOne :: [Int] -> Graph -> [Int]

isOne [] g = []

isOne (x:xs) g =(color x g):(isOne xs g)

--determines how many vertices in a set are not colored yet

notColored ::[Int] -> Graph -> Int

notColored [] _ = 0

notColored (x:xs) g | not (isColored x g) = 1 + (notColored xs g)

| otherwise = notColored xs g

--Checks if a graph is a proper coloring and a Grundy coloring

goodGraph :: [Int] -> Graph -> Bool

goodGraph (y:ys) g = checkGrundyColor (y:zs) g && checkProperColor y zs g

where zs = getNeighbs y g

--START HERE: input graph

grundy7 :: Graph -> Int

grundy7 g = cycleColors xs ((degree (head xs) g)+1) g

where xs = Map.keys g

--cycles through colors of a new vertex

42 L. Anderson

cycleColors :: [Int] -> Int -> Graph -> Int

cycleColors _ 0 _ = 0

cycleColors [] _ _ = 0

cycleColors (y:ys) d g | y==1 = checkEverything (y:ys) (changeColor 1 7 g)

| otherwise = (checkEverything (y:ys) (changeColor y d g))

+ (cycleColors (y:ys) (d-1) g)

--Checks if a graph is proper, Grundy, and then if it is fully colored

checkEverything :: [Int] -> Graph -> Int

checkEverything (y:ys) g | goodGraph (y:ys) g = if (ys == []) then 1 else

cycleColors ys ((degree (head ys) g)+1) g

| otherwise = 0

p3c4Node :: [Node]

p3c4Node = [(1,([2,3,4,5,6,7],0)),(2,([1,4,6,8,9],0)),(3,([1,5,7,9,10],0)),

(4,([1,2,6,14,17,20],0)),(5,([1,3,7,16,18,20],0)),(6,([1,2,4,11,12],0)),

(7,([1,3,5,12,13],0)),(8,([2,9,14,15],0)),(9,([2,3,8,10],0)),

(10,([3,9,15,16],0)),(11,([4,6,17,19],0)),(12,([6,7,11,13],0)),

(13,([7,12,18,19],0)),(14,([4,8,15,17,20],0)),(15,([8,10,14,16],0)),

(16,([5,10,15,18,20],0)),(17,([4,11,14,19,20],0)),(18,([5,13,16,19,20],0)),

(19,([11,13,17,18],0)),(20,([4,5,14,16,17,18],0))]

p3c4 :: Graph

p3c4 = Map.fromList p3c4Node

Acknowledgements. The author would like to thank Kei Davis for as-
sistance in learning Haskell and suggestions for implementing the code. Also,
the author would like to thank Dr. Peter Johnson of Auburn University for
his suggestions and help throughout and after the 2013 Auburn Mathematics
REU.

References

[1] Loren Anderson, Matthew DeVilbiss, Sarah Holliday, Peter Johnson,
Anna Kite, Ryan Matzke, and Jessica McDonald, The edge Grundy
numbers of some graphs, submitted to Utilitas Mathematica.

