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Abstract

Let G be a forest with n edges. El-Zanati conjectures that G

necessarily decomposes every 2n-regular graph and every n-regular

bipartite graph. We confirm these conjectures in the case when G

consists of two stars.

1 Introduction

For integers a and b with a ≤ b, let [a, b] = {a, a + 1, . . . , b}. For a positive
integer n, let Zn denote the group of integers modulo n. For a graph G with
vertex set V (G) and edge set E(G), the order of G is |V (G)| and the size of
G is |E(G)|. The graph K1,k is known as a k-star and is denoted by Sk. A
double-star is a tree with exactly two vertices of degree greater than 1. The
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two vertices of degree greater than 1 are called the centers of the double-star
and the edge joining them is called the central-edge. If T is a double-star
where the two centers have degrees k1 + 1 and k2 + 1, then T is denoted by
Sk1,k2. Note that Sk1,k2 has k1 + k2 +1 edges and is isomorphic to Sk2,k1. For
a graph G and a positive integer t, let tG denote the vertex disjoint union of
t copies of G.

Let H and G be graphs with G a subgraph of H . A G-decomposition of H
is a set ∆ = {G1, G2, . . . , Gt} of subgraphs of H each of which is isomorphic
to G and such that each edge of H appears in exactly one Gi. If there exists
a G-decomposition of H , then we say G decomposes H .

A large amount of research has been done on the topic of graph decom-
positions over the last five decades (see [2] and [3] for surveys). Much inves-
tigation has been motivated by a conjecture of Ringel [15] on decomposing
complete graphs into trees.

Conjecture 1.1. Every tree T with n edges decomposes the complete graph

K2n+1.

A folklore conjecture similar to Ringel’s relates to decomposing complete
bipartite graphs into trees.

Conjecture 1.2. Every tree T with n edges decomposes the complete bipartite

graph Kn,n.

Both of the above conjectures are special cases of conjectures due to
Graham and Häggkvist (see [9]).

Conjecture 1.3. Every tree T with n edges decomposes every 2n-regular
graph H.

Conjecture 1.4. Every tree T with n edges decomposes every n-regular bi-

partite graph H.

Despite persistent attacks over the last 40 years, Ringel’s conjecture and
variations thereof, such as the Graceful Tree Conjecture (see [8]), still stand
today. Much less work has been done on the Graham and Häggkvist conjec-
tures.

Results confirming Conjecture 1.3, in certain cases, can be found in [9] by
Häggkvist, in [4], and in Snevily’s Ph.D. thesis [17]. Some recent extensions
of Snevily’s results can be found in a paper by Jao, Kostochka, and West
[14]. In [13], Jacobson, Truszczyński, and Tuza confirm Conjecture 1.4 for
double-stars and for the path with 4 edges. Fink [7] confirms Conjecture
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1.4 when H is the n-cube. Also, it is easy to see that Sn decomposes every
2n-regular graph as well as every n-regular bipartite graph.

El-Zanati proposes that the conjectures by Graham and Häggkvist hold
for forests with n edges.

Conjecture 1.5. Every forest G with n edges decomposes every 2n-regular
graph H.

Conjecture 1.6. Every forest G with n edges decomposes every n-regular
bipartite graph H.

In this note, we provide some evidence in support of Conjectures 1.5 and
1.6. In particular, we show that the conjectures hold when G is the vertex-
disjoint union of two stars.

2 Known Results

We begin by defining three graph labelings introduced by Rosa [16] as means
for attacking problems like Ringel’s Conjecture. Let G be a graph with
n edges and let f : V (G) → [0, 2n] and g : V (G) → [0, n] be one-to-one
functions. Then f is a σ-labeling of G if {|f(v)− f(u)| : {u, v} ∈ E(G)} =
[1, n] and g is a β-labeling if {|g(v) − g(u)| : {u, v} ∈ E(G)} = [1, n]. If in
addition G is bipartite with vertex bipartition {A,B}, then a β-labeling g
of G is an α-labeling if max{g(u) : u ∈ A} < min{g(v) : v ∈ B}. Thus an
α-labeling of G is also a β-labeling which is also a σ-labeling of G. We have
the following results (see [16] and [5]).

Theorem 2.1. Let G be a graph with n edges. If G admits a σ-labeling,
then there exists a G-decomposition of K2n+1 and of K2n+2 − I, where I is

a 1-factor. If in addition, G is bipartite and G admits an α-labeling, then
there also exists a G-decomposition of Kn,n.

It is known that paths, stars, and all caterpillars in general admit α-
labelings (see [16]). It is also known that trees with up to 35 edges admit
β-labelings (see [8]). We also have the following result from [10].

Theorem 2.2. The disjoint union of a graph with a β-labeling, together with
a collection of graphs with α-labelings, has a σ-labeling.

An example of a σ-labeling of a star forest with 7 components and 15
edges is given in Figure 1.
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Figure 1: A σ-labeling of a star forest.

In the context of providing evidence in support of Conjecture 1.5, we have
the following corollary to Theorem 2.2.

Corollary 2.3. Let G be a forest with n edges. If one component of G is a

tree on up to 36 vertices and all other components are caterpillars, then G
decomposes K2n+1 and K2n+2 − I, where I is a 1-factor.

As for Conjecture 1.6, a consequence of a result by Horak, Širáň, and
Wallis [11] ensures that every forest with n edges decomposes the n-cube.

Also, Conjectures 1.5 and 1.6 hold when G = nK2 as a consequence of a
result by Alon [1].

Lemma 2.4. For every graph G and every t ≥ 1, tK2 decomposes G if and

only if t divides |E(G)| and χ′(G) ≤ |E(G)|/t.

Corollary 2.5. Let G = nK2 and suppose H is either n-regular and bipartite

or 2n-regular. Then G decomposes H.

3 Main Results

We give some additional definitions before proceeding with our main results.
An orientation of a graph H is an assignment of directions to the edges of
H . An Eulerian orientation of H is a orientation where the indegree at each
vertex is equal to the outdegree. It is simple to see that a graph with all
even degrees has an Eulerian orientation.

Theorem 3.1. Let G be a double-star with n edges and let H+ be a 2n-
regular multigraph with edge-multiplicity at most 2. Suppose the subgraph M
of H+ consisting of the edges of multiplicity 2 is either empty or 2-regular.

Let F be a 2-factor of H+ that contains every component of M . Then there

exists a G-decomposition ∆ of H+ with the property that the edges of F are

the center-edges of the double-stars in ∆.
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Proof. Let G be the double-star Sk1,k2 with center vertices a and b, where
the degree of a is k1 + 1 and the degree of b is k2 + 1. Let H+, D, and F be
as in the hypothesis.

Orient the edges of G so that each leaf has indegree 1. Orient edge {a, b}
from a to b. Since F is a 2-factor in H+, it has an Eulerian orientation.
Since H+ − F is (2n − 2)-regular, it has an Eulerian orientation. Consider
any cycle C in F , and let DC denote the digraph consisting of all arcs with
tail in V (C). Thus every vertex in DC will have outdegree either k1 + k2 +1
(if the vertex is in C) or 0. The proof will be complete if we can show that
each such subgraph DC has a G-decomposition.

Let cycle C have length p and consist of alternating vertices and arcs
labeled v0, e1, v1, e2, . . . , vp−1, ep, vp = v0.

For the first copy G1 of G in the decomposition, we use e1 as the central
arc, and identify v0 with a and v1 with b. Choose k2 arcs other than e2 with
tail at v1; label as X the set of endvertices of these k2 arcs. The remaining
k1 arcs with tail at v0 in G1 in this construction will be determined at the
end.

We construct the remaining copiesG2, G3, . . . , Gp sequentially. After Gi−1

is determined we construct Gi as follows:
The central arc ofGi is ei, with vi−1 identified with a fromG , and vi identified
with b. The remaining arcs with tail at vi−1 are all such arcs of DC −C that
were not chosen to be in Gi−1. From the remaining k1 + k2 arcs with tail at
vi, we choose k2 so that:

i) no arc is chosen that is adjacent with an arc chosen at this step to have
tail vi−1 (to avoid an immediate triangle), and

ii) we include in the pool all arcs with head a vertex in X .

The selection process above can always be implemented because in Gi−1

we chose all possible arcs with tail at vi−1 and head at a vertex in X , so no
such arc appears in Gi.

It remains only to complete the construction of G1. After Gp has been
constructed, k1 arcs with tail at v0 have yet to be assigned; we include these
arcs in G1. Because of the pattern noted above, none of these arcs has as a
head a vertex in X . Thus G1 also has no triangles and is therefore isomorphic
to G.

Theorem 3.2. Let k1 and k2 be positive integers and let G = Sk1 ∪ Sk2.

Let n = k1 + k2 and suppose that H is a 2n-regular graph.

Then G decomposes H.
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Proof. Let H have order p. If H is the complete graph Kp, the result is
covered by Corollary 2.3. Hereafter, we assume that H is not complete.

If H has odd order, then Hc, the complement of H , is even regular and
thus contains a 2-factor F . Let H+ denote the graph with vertex set V (H)
and edge set E(H)∪E(F ). By Theorem 3.1, there is an Sk1,k2-decomposition
∆ of H+ with the property that the edges of F are the center-edges of the
double-stars in ∆. By removing the center edges from the double-stars in ∆,
we obtain a G-decomposition of H .

If H has even order, then Hc is odd regular. Let 2Hc be the multigraph
obtained from Hc by doubling all its edges. Let F be a 2-factor in 2Hc and
let H+ be as in the previous case. Note that H+ and F satisfy the conditions
of Theorem 3.1. We proceed as in the previous case.

Horsley [12] recently proved that Conjecture 1.6 holds when G is a star
forest. We provide proofs of two results subsumed by Horsley’s result because
they parallel our results for 2n-regular graphs.

Theorem 3.3. Every star forest G with n edges decomposes Kn,n.

Proof. Let k1, k2, . . . , kt be positive integers with sum n and let G be a star
forest with t components where component i has size ki for i ∈ [1, t]. Let
(A,B) be a bipartition of V (Kn,n), where A = {a1, a2, . . . , an} and B = Zn.
Let k′

0 = 0 and for each j ∈ [1, t], let k′

j =
∑j

i=1
ki.

Let G1, G2, . . . , Gn be copies of G in Kn,n constructed as follows. For
i ∈ [1, t], component i of G1 is centered at vertex ci,1 = i − 1 in B and has
leaves ak′

i−1
+1, ak′

i−1
+2, . . . , ak′

i
in A. Thus the last component of G1 has center

ct,1 = t − 1 and leaves ak′
t−1

+1, ak′
t−1

+2, . . . , an. For i ∈ [1, t] and j ∈ [2, n],
we will let ci,j denote the center of component i in Gj. For j ∈ [2, n], let Gj

be the copy of G where each component has the same set of leaves as in G1,
but is centered at ci,j +1 (mod n) in B. It is easy to verify that the n copies
of G are edge-disjoint and thus ∆ = {Gi : i ∈ [1, n]} is a G-decomposition of
Kn,n.

Theorem 3.4. Let k1 and k2 be positive integers and let n = k1 + k2 + 1.
Suppose that H is an n-regular bipartite graph and let I be a 1-factor in

H. Then Sk1,k2 decomposes H with the edges of I as the center edges of the

double-stars in the decomposition.

Proof. Let (A,B) be a bipartition of V (H), where A = {x1, x2, . . . , xt} and
B = {y1, y2, . . . , yt}. Without loss of generality, let
E(I) = {{x1, y1}, {x2, y2}, . . . , {xt, yt}}. Let H ′ = H − I. Let I1, I2, . . . , Ik1
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be k1 edge-disjoint 1-factors in H ′ and let F =
⋃k1

i=1
Ii. For each i ∈ [1, t], let

S(xi; k1) be the k1-star with center xi induced by the edges in F incident with
xi. For each j ∈ [1, t], let S(yj; k2) be the k2-star with center yj induced by
the edges in H ′ −F incident with yj. For each ℓ ∈ [1, t], let Gℓ = S(xℓ; k1)∪
{xℓ, yℓ}∪S(yℓ; k2). Each Gℓ is isomorphic to Sk1,k2 and ∆ = {G1, G2, . . . , Gt}
is an Sk1,k2-decomposition of H with the edges of I as the center edges of the
double-stars in the decomposition.

Theorem 3.5. Let k1, k2 be positive integers and let G = Sk1 ∪ Sk2. Let

n = k1 + k2 and suppose that H is an n-regular bipartite graph. Then G
decomposes H.

Proof. Let (A,B) be a bipartition of V (H), where A = {x1, x2, . . . , xt} and
B = {y1, y2, . . . , yt}. If H is the complete bipartite graph Kn,n, then the
result is covered by Theorem 3.3. Otherwise, let I be a 1-factor in KA,B −H
and let H∗ = H ∪ I. By Theorem 3.4, there exists an Sk1,k2-decomposition
∆ of H∗ with the edges of I as the center edges of the double-stars in the
decomposition. By removing the center edges from the double-stars in ∆, we
obtain a G-decomposition of H .
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