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Abstract

The secure-domination number γs(G) of a finite simple graph G

is the smallest size of a set of vertices in G which is both secure
and dominating in G. It is elementary that γs(G)

|V (G)| ≥ 1
2 . A cur-

rently unsolved problem: Find the largest number g ∈ (12 , 1] such
that there is a sequence (Hn) of distinct connected graphs such that

limn→∞
γs(Hn)
|V (Hn)|

= g. In early work on this problem the full balanced

binary trees Gn (which has 2n leafs, each a distance n from the root
vertex) were of interest. They are no longer, but the unexpected dif-
ficulty of determining γs(Gn) has made this determination of interest

in itself. In this paper we show that lim infn→∞
γs(Gn)
|V (Gn)|

≥ 8
15 and

give a construction of a secure-dominating set Sn ⊆ V (Gn) such that

limn→∞
|Sn|

V (Gn)
= 11

20 . However, we find that Sn is not a minimum
secure-dominating set in Gn for n ≥ 6.
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1 Introduction to Secure-Domination

All graphs will be finite and simple. Notation and terminology will be as in
[3]. For instance, if S ⊆ V (G) is a set of vertices in a graph G, the open and
closed neighbor sets of S in G will be denoted NG(S) and NG[S] = S∪NG(S),
respectively, or N(S) and N [S], if the graph G is obvious from the context.

A set S ⊆ V (G) is dominating in G if NG[S] = V (G). In other words, S
is dominating in G if and only if each vertex of G which is not in S has a
neighbor in S.

In an attack on a set S ⊆ V (G), each vertex in N(S)\S attacks one of its
neighbors in S. In a defense of S, each v ∈ S defends either itself or one of
its neighbors. A defense of S thwarts an attack on S if each v ∈ S has at
least as many defenders as attackers. If every attack on S can be thwarted
by a shrewdly chosen defense, then S is secure in G.

The secure-domination number of G, denoted γs(G), is
γs(G) = min{|S| : S ⊆ V (G) is both secure and dominating in G}.

As noted in [2], if S ⊆ V (G) is dominating in G and |S| < |V (G)|
2

, then

|V (G)| − |S| = |V (G)\S| = |NG(S)\S| >
|V (G)|

2
> |S|; clearly, since S has

more possible attackers outside of S than elements of S, such an S is not
secure. Therefore,

γs(G)

|V (G)|
≥

1

2
.

In anticipation of future applications, the questions of how big a fraction
of the vertex set of a graph is required to form a secure-dominating set, and
of how to form minimum secure-dominating sets, are of interest. (We also
find them intriguing as purely combinatorial problems.) For any graph G,

let qs(G) = γs(G)
|V (G)|

, which we will call the secure-domination quotient of G.
Because every dominating set in a graph must contain every isolated ver-

tex of the graph, arrangements can easily be made for qs(G) to be any ra-
tional number in the interval [1

2
, 1]. Therefore, we confine our attention to

connected graphs with two or more vertices. So far, the largest value of qs
known on these graphs is 2

3
, and there are only three small connected graphs

known so far at which the value of qs is 2
3
: P3, the path on three vertices,

C3 = K3, the complete graph on three vertices, and C6, the cycle on six
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vertices.
Getting away from possibly anomalous values of qs on small graphs, the

outstanding problem is to determine what is defined in [1] as lim supG connected qs(G),
the largest number g ∈ [1

2
, 1] such that there exists a sequence (Hn) of dis-

tinct connected graphs such that limn→∞ qs(Hn) = g.
In the early going, it was not even obvious that g > 1

2
. The balanced

binary trees Gn on which we shall concentrate here were of great interest to
the co-authors of [1], who eventually abandoned their study due to lack of
success. By the results here and in [1],

lim sup
n→∞

qs(Gn) ≤
11

20
<

4

7
≤ lim sup

G connected
qs(G),

so the Gn are no longer in the running as a possible winning sequence in the
lim supG connected qs(G) problem. But the problem of determining γs(Gn) as
a function of n may be of comparable status. It appears to lack generality,
but often work on specific structures can be generalized. We expect that the
lemma-sized discoveries and one construction that we will present here will
point the way to efficient production of economical secure-dominating sets in
arbitrary trees.

2 Balanced Full Binary Trees

A full binary tree is a tree (a connected graph with no cycles) in which
one vertex, the root, has degree 2, and all other vertices have degrees 3 or 1.
A vertex of degree 1 in any tree is called a leaf (pl. leafs).

In any tree, any two distinct vertices are joined by a unique path, the
number of edges on which is the distance between the vertices, in the tree.
For a vertex of degree 3 in a full binary tree, one of its incident edges belongs
to the unique path joining it to the root, and the other two edges join it to
the children of which it is the parent. Those two children are siblings.

It is elementary that every full binary tree with n leafs has 2n−1 vertices.
It is often convenient to consider these vertices as partitioned into levels ;
the vertices on the kth level are a distance k from the root. Obviously the
children, if any, of the vertices on the level k are the vertices of the (k+1)st
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level. Any vertex on level k ≥ 1 has exactly one neighbor on level k − 1: its
parent.

The balanced full binary trees are the full binary trees G1, G2, . . . such
that Gn has 2n leafs, each on level n of the graph.

Levels G1 G2 G3

0

1

2

3

Figure 1: G1, G2, and G3

There are 2k vertices on level k of Gn, 0 ≤ k ≤ n. Therefore, for n ≥ 3,
there are 2n−2 G2’s occupying levels n− 2, n − 1, and n of Gn, each rooted
in level n− 2. We will refer to these as terminal G2’s of Gn.

Lemma 2.1. If n ≥ 3 and S ⊆ V (Gn) is secure-dominating in Gn, then

each terminal G2 contains at least 4 vertices of S.

Proof. For this proof, ignore the darkened vertices in Figure 2. Let G be the
terminal G2 rooted at w depicted in Figure 2. If w /∈ S, S ∩ V (G1) must
be secure-dominating in each of the G1’s induced by u, v, a and by b, x, c,
respectively. Since γs(G1) = 2, it follows that |S ∩ V (G)| ≥ 2 + 2 = 4. So,
suppose that w ∈ S. Then S ∩ V (G) must be dominating in G. It is easy
to check that the only three-element subset of V (G) containing w which is
dominating in G is {v, w, x}. But if S ∩ V (G) = {v, w, x}, then any attack
on S in which u and a attack v, and b and c attack x, cannot be thwarted,
and this would contradict the presumed secureness of S.
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y

w

v x

u a b c

Figure 2: A terminal G2 with the parent of its root and a particular
secure-dominating set {u, v, w, x} in that graph

Lemma 2.2. In the graph depicted in Figure 2, S ′ = {u, v, w, x} is secure

and dominating.

Proof. There is only one possible attack on S ′ that utilizes every attacker,
and the following defense assignments thwarts that attack: u defends v, v
defends w, and w and x defend x.

Later, when we construct secure-dominating sets in Gn, the terminal G2’s
will always have the four set elements depicted in Figure 2, whether the root
parent (y, in Figure 2) is in the set being constructed or not.

The lemmas following are about arbitrary subgraphs of Gn isomorphic to
G2 or G3. In the application of these lemmas the G2’s and G3’s will be in
“standard position” in Gn, with the children of the root on level t+1 of Gn if
the root is on level t of Gn. These lemmas hold for arbitrary G2’s and G3’s.
Perhaps this will be useful one day.

Lemma 2.3. Suppose that n ≥ 3, and S is a secure-dominating set in Gn.

Suppose that H ≃ G2 is a subgraph of Gn with its root, w, adjacent to a

vertex y /∈ V (H). Then |S ∩V (H)| ≥ 1, with equality only if y ∈ S. If y /∈ S
then |S ∩ V (H)| ≥ 3. If y ∈ S and w /∈ S then |S ∩ V (H)| ≥ 2.

Proof. Let the vertices of H be named as in Figure 2. (Ignore the darkening
of u, v, w, and x in that figure.) If S ∩ V (H) = ∅ then v and x are not
dominated by S. Therefore |S ∩ V (H)| ≥ 1. Suppose |S ∩ V (H)| = 1. If
the single vertex of S ∩ V (H) were any vertex in S other than w, then S is
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not dominating in H . Therefore the lone vertex in S ∩ V (H) must be w. If
y /∈ S then S is not secure. Therefore, |S ∩ V (H)| = 1 implies y ∈ S.

Suppose that y /∈ S. If w ∈ S, then at least one of v, x must be in S;
otherwise, S would not be secure. Let us suppose without loss of generality
that v ∈ S and x /∈ S. Then at least one of u, a must be in S; if not, then
{v, w} has four potential attackers and no defenders except v, w, so S is not
secure. Thus, in any case, if y /∈ S and w ∈ S then |S ∩ V (H)| ≥ 3.

Now suppose that w, y /∈ S. Since S is dominating in G, at least one of
v, x must be in S. Suppose that v ∈ S. Because S is secure, at least one of
u, a must be in S. If x ∈ S also, then we are done (in fact, |S ∩ V (H)| ≥ 4
in this case), so assume that x /∈ S. Because w /∈ S and S is dominating, at
least one of b, c is in S. Thus |S ∩ V (H)| ≥ 3 if y /∈ S.

Finally, suppose that y ∈ S and w /∈ S. Since S is dominating, for each of
v, x, either the vertex itself or one of its children, in H ≃ G2, is in S. Thus
|S ∩ V (H)| ≥ 2 in this case.

Lemma 2.4. Suppose that n ≥ 3, and S is a secure-dominating set in Gn.

Suppose that H ≃ G3 is a subgraph of Gn. Then |S ∩ V (H)| ≥ 4.

Proof. Let y be the root of H ≃ G3. Each of y’s children is a root of a G2

in H . If y /∈ S, by Lemma 2.3 |S ∩ V (H)| ≥ 6. If y ∈ S, then either both
children of y are in S, or, by Lemma 2.3, |S ∩ V (H)| ≥ 4. If y and both its
children in H are in S, then at least one grandchild of y in H must be in S;
otherwise, an attack on S in which each grandchild attacks its parent cannot
be thwarted. Thus, in any case, |S ∩ V (H)| ≥ 4.

Theorem 2.5. lim inf
n → ∞

qs(Gn) ≥
8
15
.

Proof. Suppose that n ≥ 6 and that S is a minimum secure-dominating set
in Gn. Let t ∈ {0, 1, 2, 3} and k ≥ 0 be such that n − 2 − t = 4k. Then
[t, t+1, . . . , n−3] can be partitioned into k disjoint blocks of four consecutive
integers, B0 = {t, t+1, t+2, t+3}, . . . , Bk−1 = {n−6, n−5, n−4, n−3}. The
four levels in Gn corresponding to Bj = {t+4j, t+4j+1, t+4j+2, t+4j+3}
contain 2t+4j disjoint G3’s, each rooted at level t+4j in Gn. By Lemmas 2.1
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and 2.4,

|S| ≥ 4 · 2n−2 + 4
k−1
∑

j=0

2t+4j

= 2n + 4 · 2t
16k − 1

15

= 2n +
4

15
(24k+t − 2t) = 2n +

2n − 2t+2

15
.

Recollect that, although t depends on n, 0 ≤ t ≤ 3 for every n. Therefore,

qs(Gn) =
γs(Gn)

2n+1 − 1
=

|S|

2n+1 − 1

≥
1

2
+

2n − 2t+2

15 · 2n+1

→
1

2
+

1

30
=

8

15
as n → ∞.�

Remark: The proof of Theorem 2.5 was needlessly complicated for the
sake of clarity. If a certain amount of reckless abandon is permitted, we could
argue as follows: In the graph Gn, about half of the vertices are at level n.
Therefore, about 7

8
of the vertices are on the last three levels, occupied by

those terminal G2’s. If S is a minimum secure-dominating set in Gn, and
n ≥ 3, at least 4

7
of the vertices of the last three levels of Gn are in S (Lemma

2.1), and, except for no more than seven vertices in levels 0, 1, and 2 of Gn,
at least 4

15
of the approximately 1

8
of the vertices of Gn not in the last three

levels are in S. Therefore,

lim inf
n→∞

γs(Gn)

|V (Gn)|
≥

4

7
·
7

8
+

4

15
·
1

8
=

8

15
.

3 An Easy Construction

The construction referred to will produce a secure-dominating set Sn of
Gn such that |Sn|

|V (Gn)|
→ 11

20
as n → ∞. Because, by Lemma 2.1, there is not
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much choice in picking a small secure-dominating set in Gn when it comes
to the terminal G2’s, the construction starts by taking care of the last three
levels of Gn, and then attacks the approximately 1

8
of the graph remaining.

The basic idea behind this attack is simple and greedy (a desirable attribute
in an algorithm) and could be adapted to find a secure-dominating set in any
tree. The algorithm starts: choose a vertex of the tree and make it the root.
With the root chosen, work through the levels of the tree, putting vertices
in or leaving them out of the set under construction, guided by the principle
that a vertex goes in the set only if it must go in, either for domination or
for security. So, by this principle, the root does not go into the set; then,
because the root must be dominated, exactly one of its neighbors on level 1
goes into the set, that is, if none of those neighbors is a leaf of the tree. If
there are leafs at level 1, then for both domination and security, they all go
into the set, and it is on to level 2. Right away, we see that this algorithm
can do badly; if the tree is K1,t, t > 2, and we take the vertex of degree t
as the root, the algorithm gives the secure-dominating set S consisting of all
the leafs, |S| = t, whereas γs(K1,t) = ⌈ t+1

2
⌉ ([2]). If we ran the variant of

the algorithm in which the root is put in the set, and thereafter the greedy
principles are applied, then starting with the vertex of degree t as the root,
we get a minimum secure-dominating set in K1,t. We get the same result
with the original algorithm if we take one of the leafs as a root. Perhaps an
algorithmist should look into this matter.

Instructions for Forming a Secure-Dominating Set Sn in Gn, n ≥ 3

1. Let each terminal G2 contribute four vertices to Sn, the four indicated
in Figure 2.

2. The root of Gn is not in Sn. If n = 3, stop.

3. Having determined membership in Sn for vertices on levels 0, . . . , k,
with k ≤ n − 4, determine Sn membership for the children of each
vertex v on level k as follows.

• If v ∈ Sn then one child of v is in Sn and the other is not.
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• If v /∈ Sn and the parent of v is in Sn, then neither child of v is in
Sn.

• Otherwise (i.e., if k = 0, or k > 0 and neither v nor its parent is
in Sn), one child of v is in Sn and the other one is not.

Figure 3 depicts S7 in levels 0, . . . , 4.

32 terminal G2’s, each as in Figure 2

Figure 3: S7

It is clear from the instructions that Sn is dominating in Gn - the root is
dominated in G, and every vertex on level k ≥ 1 which is not dominated by
Sn intersected with levels k, k − 1 will have one of its children in Sn.

To see that Sn is secure it suffices to see that each connected component
of Gn[Sn], the subgraph of Gn induced by Sn, is secure in Gn. Some of these
components are paths on four vertices contained in a terminal G2; these have
at most 4 possible attackers, three inside and possibly one outside the G2. A
defense is described in the proof of Lemma 2.2.

The other components of Gn[Sn] consist of paths running through levels
to level n− 3 where the last vertex of the path is the parent of two children
in two terminal G2’s. See Figure 4.

There is only one attack on such a component to worry about, and here
is the defense: uj defends uj−1, 2 ≤ j ≤ t, and u1 defends itself. The parts
of the component in the terminal G2’s can take care of themselves.
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u1

u2

...
...

ut−1

ut

Two terminal G2’s

Figure 4: A component of Gn[Sn], with attackers

Theorem 3.1. lim
n → ∞

|Sn|
|V (Gn)|

= 11
20
.

Proof. Suppose that n ≥ 4. For 0 ≤ k ≤ n − 3, let ak be the number of
elements of Sn on level k of Gn, let bk be the number of non-members of
Sn on level k which have their parent in Sn, and let ck = 2k − (ak + bk),
the number of non-members of Sn on level k not parented in Sn. Thus, for

instance,





a0
b0
c0



 =





0
0
1



 and





a1
b1
c1



 =





1
0
1



. If 0 ≤ k ≤ n− 4, then, by the

instructions for forming Sn, ak+1 = ak + ck, bk+1 = ak, and ck+1 = 2bk + ck.
That is,





ak+1

bk+1

ck+1



 =





1 0 1
1 0 0
0 2 1









ak
bk
ck



 = A





ak
bk
ck



 = Ak+1





0
0
1



 =





(Ak+1)1,3
(Ak+1)2,3
(Ak+1)3,3





By the standard trick of diagonalizing A =





1 0 1
1 0 0
0 2 1



, we have obtained
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closed forms for the powers of A. For instance, if k ≡ 0 mod 4,

Ak =







2k+1+3
5

2k+1−2
5

2k+1−2
5

2k−1
5

2k+4
5

2k−1
5

2k+1−2
5

2k+1−2
5

2k+1+3
5






.

Ak for k ≡ 1, 2, or 3 mod 4 can be obtained by multiplying A to a power ≡ 0
mod 4 by A, A2, or A3; one more multiplication by A can prove the validity
of these formulae, by induction on k. You needn’t go through the hassle of
diagonalization to verify our claims!

We have ak = (Ak)1,3 =
2k+1+δk

5
where

δk =



















−2 if k ≡ 0 mod 4

1 if k ≡ 1 mod 4

2 if k ≡ 2 mod 4

−1 if k ≡ 3 mod 4

.

Therefore, the number un of elements of Sn on levels 0, . . . , n− 3 is

un =

n−3
∑

k=1

ak =
1

5

[

n−3
∑

k=1

2k+1 +

n−3
∑

k=1

δk

]

=
2n−1

5
+ dn, |dn| ≤

4

5
.

Meanwhile, the number of elements of Sn on levels n − 2, n − 1, and n is
4 · 2n−2 = 2n. Thus

|Sn|

|V (Gn)|
=

2n + 2n−1

5
+ dn

2n+1 − 1

=
2n(1 + 1

10
)

2n+1 − 1
+

dn
2n+1 − 1

→
1

2
·
11

10
+ 0 =

11

20
as n → ∞.�

Corollary 3.2. lim supn→∞ qs(Gn) ≤
11
20
.
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With the aid of Lemma 2.1 it is not hard to prove that γs(Gn) = |Sn| for n ∈
{3, 4, 5}. To our surprise, γs(G6) ≤ 69 = |S6|−1 and γs(G7) ≤ 138 = |S7|−2,
as shown in Figure 5, and in Figure 6 we see that γs(G8) ≤ 278 = |S8| − 3.

It seems clear that γs(Gn) < |Sn| for all n > 5, although we are not
prepared to prove this. But if, as seems likely, |Sn| − γs(Gn) = O(n),
or if, even more likely, |Sn| − γs(Gn) = o(2n), then it would follow that
limn→∞ qs(Gn) =

11
20
.
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16 terminal G2’s

32 terminal G2’s

Figure 5: Secure-dominating sets showing that γs(G6) ≤ 69 and
γs(G7) ≤ 138

64 terminal G2’s

Figure 6: A secure-dominating set that shows that γs(G8) ≤ 278
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Let G∞ denote the infinite binary tree with no leafs and a root. This
graph contains infinitely many copies of Gn for each n = 1, 2, . . . ; let Gn

stand for the unique copy that shares its root with G∞.
Delete instruction 1 from the instructions for constructing Sn, and replace

n in instructions 2 and 3 by ∞. Ignoring some now-absurd phrases, like
“with k ≤ ∞ − 4”, we now have instructions for constructing an infinite
secure-dominating set S∞ in G∞. (The connected components of G∞[S∞]
are one-way infinite paths, and they are secure in G∞.)

By a calculation similar to one in the proof of Theorem 3.1,

lim
n→∞

|S∞ ∩ V (Gn)|

|V (Gn)|
=

2

5
,

which is intriguing, because 2
5
< 1

2
. We wonder: what is the infimum of the

values lim supn→∞
|S∩V (Gn)|
|V (Gn)|

as S ranges over secure-dominating sets in G∞?
By using Lemma 2.4 as in the proof of Theorem 2.5 it can be seen that for
any secure-dominating set S in G∞, lim infn→∞

|S∩V (Gn)|
|V (Gn)|

≥ 4
15
.
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