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Abstract

Writing the values of Krawtchouk polynomials as matrices, we con-
sider weighted partial sums along columns. For the general case, we
find an identity that, in the symmetric case yields a formula for such
partial sums. Complete sums of squares along columns involve “Su-
per Catalan” numbers. We look as well for particular values (matrix
entries) involving the Catalan numbers. Properties considered and
developed in this work are applied to calculations of various dimen-
sions that describe the structure of some *-algebras over the Boolean
lattice based on inclusion/superset relations expressed algebraically
using zeons [zero-square elements].

1 Introduction

Our approach to Krawtchouk polynomials is to consider the values as entries
in corresponding matrices. This makes it convenient to refer to their values,
indexing, and associated properties. We begin with Krawtchouk polynomi-
als for general parameter p and derive an identity for partial sums of squares
along a column. For the case p = 1/2 this leads to evaluations of these sums.
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We also review some basic properties of Krawtchouk matrices that we will
find useful.

Two related features are considered in detail. First is the “Catalan connec-
tion” which appears when looking at complete sums of squares along columns.
As well, Catalan numbers appear as particular entries in Krawtchouk matri-
ces. The second main feature is the use of properties of Krawtchouk matrices
in calculating dimensions of some algebras over the Boolean lattice. These
arise when considering the lattice of subsets of {1, 2, . . . , n} as an algebra
generated by “zeons” — commuting elements which square to zero. These
algebras are generated by the basic matrices corresponding to inclusion and
superset, specifically, the regular representation of the zeon algebra.

References to Catalan numbers are readily available and abundant, so these
have been skipped, but see [7] for a relevant discussion involving Super Cata-
lan numbers. For sums of squares, we found the results of [1] important,
though we stress that the difference in our approaches is substantial. Our
approach to Krawtchouk polynomials follows [5, 6]. For the Boolean con-
nection, full details are presented in [4]. And we found the discussion in [8]
especially valuable for background.

2 Krawtchouk polynomials

We modify the generating function given in [2, 18.23], formula 18.23.3, for
convenience in computations as well as in point of view. Throughout, we will
use the parameter

r =
1− p

p

with r = 1 corresponding to the symmetric case p = 1/2. Note the relation

1

p
= 1 + r

that we will find useful.

The generating function takes the form

(1 + z)N−j(1− rz)j =
N
∑

n=0

zn φN
nj (1)
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with slight changes in notation. In particular, we prefer the matrix form φN
nj

for the values of the Krawtchouk polynomials at integer points, 0 ≤ j ≤ N .

2.1 Relations of Pascal type

First we note some identities similar to Pascal’s triangle for binomial coeffi-
cients. See [6] for the case r = 1.

Proposition 2.1. The following identities of Pascal type hold for
N ≥ 0, 0 ≤ j, n ≤ N :

φN
n j + φN

n−1 j = φN+1
n j (i)

φN
n j − r φN

n−1 j = φN+1
n j+1 (ii)

with the boundary conditions φN
−1 j = 0, 0 ≤ j ≤ N , for N ≥ 0.

Proof. The first relation follows upon multiplication of the generating func-
tion (1) by 1 + z. The second follows similarly using the factor 1− rz.

2.2 Recurrence formula

The second ingredient needed is a recurrence formula for Krawtchouk poly-
nomials. From [2, 18.22], formula 18.22.12, Difference Equations in x, we
have, replacing x by j and rearranging:

p(N − j)φN
n j+1 + qjφN

n j−1 = (Np+ (q − p)j − n)φN
n j

where we introduce the notation q = 1 − p for convenience, with r = q/p.
Dividing through by p and noting r = q/p, 1/p = 1 + r, let us state

Lemma 2.2. We have the recurrence in j

(N + (r − 1)j − n(1 + r))φN
n j = (N − j)φN

n j+1 + rjφN
n j−1 .

3 Sums of Squares

We now derive our main result.
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3.1 Sums of squares for general r

Multiply equations (i) and (ii) of Proposition 2.1, for N → N − 1, to get

φN
n j+1φ

N
n j = (φN−1

n j )2 − r(φN−1
n−1 j)

2 + (1− r)φN−1
n j φN−1

n−1 j

= (φN−1
n j )2 − r(φN−1

n−1 j)
2 +

1− r

2

[

(φN
n j)

2 − (φN−1
n j )2 − (φN−1

n−1 j)
2
]

=
1− r

2
(φN

n j)
2 +

1 + r

2

[

(φN−1
n j )2 − (φN−1

n−1 j)
2
]

where in the second line we use Proposition 2.1, (i), in the elementary identity
ab = ((a + b)2 − a2 − b2)/2. A similar formula holds replacing j → j − 1.
Now multiply through the relation in Lemma 2.2 by φN

n j to get

(N + (r − 1)j − n(1 + r))(φN
n j)

2 = (N − j)φN
n j+1φ

N
n j + rjφN

n j−1φ
N
n j

= (N − j)

(

1− r

2
(φN

n j)
2 +

1 + r

2

[

(φN−1
n j )2 − (φN−1

n−1 j)
2
]

)

+ rj

(

1− r

2
(φN

n j−1)
2 +

1 + r

2

[

(φN−1
n j−1)

2 − (φN−1
n−1 j−1)

2
]

)

With the telescoping parts collapsing, we sum n from 0 to m to get

m
∑

n=0

(N + (r − 1)j − n(1 + r))(φN
n j)

2 =
1− r

2
(N − j)

m
∑

n=0

(φN
n j)

2 +
1 + r

2
(N − j)(φN−1

m j )2

+ rj
1− r

2

m
∑

n=0

(φN
n j−1)

2 + rj
1 + r

2
(φN−1

m j−1)
2

Multiplying through by 2/(1 + r) we arrive at our main formula.

Theorem 3.1. We have the sum of squares identity for Krawtchouk polyno-
mials

m
∑

n=0

(N − 2n)(φN
n j)

2 = (N − j)(φN−1
m j )2 + rj(φN−1

m j−1)
2

+
1− r

1 + r
j

m
∑

n=0

(

r(φN
n j−1)

2 + (φN
n j)

2
)

Dette [1] has similar formulas, his formula (d) for Krawtchouk polynomials
is most similar to ours.
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4 Symmetric case

Letting r = 1 gives the symmetric case with generating function

(1 + z)N−j(1− z)j =

N
∑

n=0

zn ΦN
nj (2)

with the capital Φ denoting the values for this special case.

The recurrence is now

(N − 2n)ΦN
n j = (N − j)ΦN

n j+1 + jΦN
n j−1 (3)

4.1 Basic properties

Here we recall some basic properties of the Kravchuk matrices for r = 1.

Proposition 4.1.

1. Row and column sign symmetries.

ΦN
i N−j = (−1)i ΦN

i j

ΦN
N−i j = (−1)j ΦN

i j

ΦN
N−i N−i = (−1)N ΦN

i i

The first two follow readily from the generating function, the third fol-
lows from those.

For reference, here are the matrices for N = 3 and N = 4:

Φ3 =









1 1 1 1
3 1 −1 −3
3 −1 −1 3
1 −1 1 −1









Φ4 =













1 1 1 1 1
4 2 0 −2 −4
6 0 −2 0 6
4 −2 0 2 −4
1 −1 1 −1 1
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2. First rows. First columns. The entries in row i = 1 follow as the
coefficient of z in the expansion of the generating function eq. (2)
yielding

ΦN
1 j = N − 2j .

The entries in the first column are the binomial coefficients

ΦN
n 0 =

(

N

n

)

.

For the second column, we set j = 0 in Proposition 2.1, (ii) to get

ΦN+1
n 1 = ΦN

n 0 − ΦN
n−1 0 =

(

N

n

)

−

(

N

n− 1

)

(4)

=

(

N

n

)

N + 1− 2n

N + 1− n
(5)

3. Binomial conjugation. The diagonal matrix B is defined by

Bii =

(

N

i

)

.

Using the fact that ΦNB is symmetric (ref. [5]), i.e., ΦNB = B(ΦN )∗,
it follows

ΦN
j i =

(

N

i

)−1(
N

j

)

ΦN
i j . (6)

4. Sum of squares along a column, see [5] proof of Theorem 3.1.3

N
∑

i=0

(ΦN
i j)

2 =

(

2N − 2j

N − j

)(

2j

j

) / (

N

j

)

(7)

We will see that

The sum of squares of column j/2 of Φm is (−1)j/2Φ2m
m j .

5. Sum of squares along a row, see [5] proof of Lemma 3.3.9

N
∑

j=0

(ΦN
i j)

2 =

i
∑

k=0

(

N + 1

2k + 1

)(

2k

k

)(

N − 2k

i− k

)

(8)
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We have a result for partial sums along a column without the squares:

Theorem 4.2. For j ≥ 2, we have the partial sums

m
∑

n=0

(N − 2n)ΦN
n j = (N − j)ΦN−1

m j + jΦN−1
m j−2 = (N − 1− 2m)ΦN−1

m j−1+ΦN−1
m j−2 .

Proof. Start with the Pascal relation Proposition 2.1, (ii), with r = 1 and
N → N − 1

ΦN−1
n j − ΦN−1

n−1 j = ΦN
n j+1

summing from 0 to m yields

ΦN−1
m j =

m
∑

n=0

ΦN
n j+1 (9)

and similarly with j − 2 replacing j. Thus, summing the recurrence relation
(3) over n we have

m
∑

n=0

(N − 2n)ΦN
n j = (N − j)

m
∑

n=0

ΦN
n j+1 + j

m
∑

n=0

ΦN
n j−1

and using (9) with j adjusted accordingly yields the first equality. The second
follows by applying the right hand side of the recurrence formula (3) with
N → N − 1.

Theorem 3.1 takes the form

Theorem 4.3. For the symmetric Krawtchouk polynomials we have the sum
of squares identity

m
∑

n=0

(N − 2n)(ΦN
n j)

2 = (N − j)(ΦN−1
m j )2 + j(ΦN−1

m j−1)
2 .
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4.2 Special values. Catalan connection.

Proposition 4.4.

Φ2m
mj =

(

m

j/2

)

(−1)j/2

(

2m

m

)

(

2m

j

) for j even , 0 for j odd (10)

Φ2m+1
mj =

(

m

⌊j/2⌋

)

(−1)⌊j/2⌋

(

2m+ 1

m

)

(

2m+ 1

j

) . (11)

Proof. Setting N = 2m, j = m, the generating function, (2) becomes

(1 + z)m(1− z)m = (1− z2)m

=
∑

z2k
(

m

k

)

(−1)k =
∑

zℓΦ2m
ℓ m

hence the evaluation

Φ2m
ℓ m =

(

m

ℓ/2

)

(−1)ℓ/2 for ℓ even , 0 for ℓ odd

and applying the binomial conjugation, eq. (6), yields the result for N = 2m.

For N = 2m+ 1, j = m, we have

(1 + z)(1 − z2)m =
∑

(

z2k
(

m

k

)

(−1)k + z2k+1

(

m

k

)

(−1)k
)

which yields

Φ2m+1
ℓm =

(

m

⌊ℓ/2⌋

)

(−1)⌊ℓ/2⌋

and binomial conjugation completes the proof.

Remark 4.5. Note that for N even, these can be expressed as Super Catalan
numbers, in the terminology of [7], e.g., according to the relations

(

n

k

)

(

2n

n

)

(

2n

2k

) =

(

2n− 2k

n− k

)(

2k

k

)

(

n

k

) =
(2n− 2k)! (2k)!

(n− k)! k!n!
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with n replacing m and k replacing j/2 in (10).

Note that for N = 2m + 1, (11) yields for the entry in the second column
middle row

Φ
(2m+1)
m1 = Cm =

1

m+ 1

(

2m

m

)

.

the mth Catalan number. In fact,

Proposition 4.6. Catalan Connection
We have the following evaluations involving Catalan numbers.
1. For N = 2m even,

Φ
(2m)
m−1,1 = Cm

Φ
(2m)
m+1,1 = −Cm

Φ
(2m)
m 2 = −2Cm−1

2. For N = 2m+ 1 odd,

Φ
(2m+1)
m 1 = Cm

Φ
(2m+1)
m 2 = Φ

(2m+1)
m+1 1 = Φ

(2m+1)
m+1 2 = −Cm

3. Reading right-to-left along the rows yield evaluations correspondingly by
sign symmetries.

Proof. The first two equations in #1 follow from eq. (4). The third follows
from (10).

Similarly, for #2, the column one evaluations follow from (4) and the Φ2m+1
m 2

entry follows from (11). For Φ2m+1
m+1 2 , use Pascal as follows:

Φ
(2m)
m+1 1 − Φ

(2m)
m 1 = Φ

(2m+1)
m+1 2 = −Cm

noting that Φ
(2m)
m 1 vanishes.

Remark 4.7. See [3] for worksheets on Catalan numbers, listed up to C20,
and on Kravchuk matrices, listed up to N = 12.
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5 Dimensions of algebras over the Boolean

lattice

Let B denote the Boolean lattice of subsets of the standard n-set {1, 2, . . . , n}.
The layers, each consisting of subsets of cardinality ℓ, are denoted Bℓ. We
identify each element i with a variable ei, taken together forming the gener-
ators of a commutative algebra satisfying the conditions

e2i = 0 .

We call such variables zeons.

A subset I ∈ Bℓ is identified with the product

eI = ei1 · · · eiℓ

for I = {i1, . . . , iℓ}.

We will consider some algebras generated by the zeons and determine their
structure. See [4] for a full account.

Start with the linear operator êi of multiplication by ei.

êi eI =

{

e{i}∪I, if i /∈ I

0, otherwise

And for the dual basis {δi}, the action of δi is given by the linear operator
δ̂i defined by

δ̂i eI =

{

eI \ {i}, if i ∈ I

0, otherwise

For convenience we will drop theˆnotations. With the standard inner product
〈eI, eJ〉 = δIJ, one checks that

〈eieI, eJ〉 = 〈eI, e
∗
i eJ〉 = 〈eI, δieJ〉

the ∗ indicating adjoint with respect to the inner product. We define the
operator T =

∑

i ei and its adjoint

T ∗ =
∑

i

δi =
∑

e∗i
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Their commutator
U = [T ∗, T ]

has matrix elements

UIJ =

{

n− 2ℓ, if I = J ∈ Bℓ

0, otherwise

Recall that a finite-dimensional ∗-algebra is a direct sum of matrix algebras.
Our goal here is to find the form of some algebras generated by these op-
erators as direct sums of matrix algebras. The description is provided by
four numbers. The algebra consists of a direct sum of mi copies of matrix
algebras of degree di.

d = Degree of the algebra =
∑

midi

δ = Dimension of the algebra =
∑

d2i

ζ = Dimension of the centralizer =
∑

m2
i

z = Dimension of the center = the number of components of the decompo-
sition

Remark 5.1. See, e.g., [8, Ch. 1], for an exposition in the context of group
algebras.

The calculations, although accessible by elementary means, are done illus-
trating the connection with Kravchuk matrices.

In the discussion below, we write N = n+ 1.
For N even, write N = 2m, for N odd, write N = 2m+ 1. And

⌊n

2

⌋

=

{

m− 1, for N even

m, for N odd

5.1 Algebra generated by U

Since U is diagonal, all of the di = 1 and we only need to determine mi.
Since the mi are exactly given by the number of sets in each layer, we see
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that the mi are precisely the binomial coefficients. See Appendix page for U .

Note that this is the ”horizontal description” of B(n).

We have immediately

d = 2n, degree of the algebra

δ = n + 1, dimension of the algebra

z = n + 1, dimension of the center

And we have the dimension of the centralizer

ζ =
∑

i

(

n

i

)2

=

(

2n

n

)

.

5.2 Algebra generated by T and T ∗

This is the ”vertical description” of B(n).

The di may be seen directly to be n+1− 2α, where 0 ≤ α ≤ ⌊n/2⌋. The mi

are correspondingly given by
(

n
α

)

−
(

n
α−1

)

, with m0 = 1. See Appendix page
for n = 4 as well as that for T and T ∗.

For the degree, we have

⌊n/2⌋
∑

α=0

[(

n

α

)

−

(

n

α− 1

)]

(n+ 1− 2α)

Using the relation (ΦN)2 = 2N I, write this as

m
∑

α=0

ΦN
1 αΦ

N
α 1 =

1

2
(ΦN

1 1)
2 =

1

2
2N = 2n

appropriately.

And we have
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d = 2n, degree of the algebra

δ =

⌊n/2⌋
∑

α=0

(n+ 1− 2α)2 =

(

n+ 3

3

)

z = 1 + ⌊n/2⌋, dimension of the center

Proof of the formula for δ:

By sign symmetry, we have, using eq. (8),

m
∑

α=0

(n+ 1− 2α)2 =
1

2

∑

(ΦN
1 α)

2 =
1

2

[

(N + 1)N + 2

(

N + 1

3

)]

=

(

N + 2

3

)

as required.

The dimension of the centralizer

ζ =

⌊n/2⌋
∑

α=0

[(

n

α

)

−

(

n

α− 1

)]2

=
1

n+ 1

(

2n

n

)

= Cn .

Proof of the formula for ζ :

Using eq. (7), we have

m
∑

α=0

(ΦN
α 1)

2 =
1

2

(

2N−2
N−1

)(

2
1

)

(

N
1

) = CN−1 = Cn

as required.

5.3 Algebra generated by TT ∗ and T ∗T

If theA(T, T ∗) hasmi and di, then here we have di copies ofmi all with d = 1.
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d = 2n, degree of the algebra

δ =

⌊n/2⌋
∑

α=0

(n+ 1− 2α) =











(n+ 2)2/4, if n is even

(n+ 1)(n + 3)/4 if n is odd

z = 1 + ⌊n/2⌋, dimension of the center

Proof of the formula for δ:

⌊n

2
⌋

∑

α=0

(n+ 1− 2α) =

m
∑

0

(N − 2α)

= N(m+ 1)−m(m+ 1) = (m+ 1)(N −m)

For N odd we get (m+ 1)2 = ((N + 1)/2)2. Even N yields

(1 +N/2)(N/2) =
N(N + 2)

4

as required.

And we have the dimension of the centralizer

ζ =

⌊n/2⌋
∑

α=0

(n+1−2α)

[(

n

α

)

−

(

n

α− 1

)]2

=























(

n

n/2

)2

, if n is even

2

(

n

⌊n/2⌋

)(

n− 1

⌊n/2⌋

)

, if n is odd

.

Proof of the formula for ζ :

Using Theorem 3.1, we have

m
∑

α=0

(N − 2α) (ΦN
α 1)

2 = (N − 1)(ΦN−1
m 1 )2 + (ΦN−1

m 0 )2

= (N − 1)

((

N − 2

m

)

−

(

N − 2

m− 1

))2

+

(

N − 1

m

)2

= (N − 1)

(

N − 2

m

)2(
N − 1− 2m

N − 1−m

)2

+

(

N − 1

m

)2

.
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If N is odd, n = N − 1 = 2m and we get

(

n

n/2

)2

. If N is even, substituting

N = 2m and simplifying gives

2

(

2m− 1

m− 1

)(

2m− 2

m− 1

)

and n = N − 1 = 2m− 1, m− 1 = ⌊n/2⌋ yields the result.
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Boolean System for n= 4

Table of TT*

♯ U ℓ 4 2 2 2 0 0

1 4 0 0

4 2 1 4 0 0 0

6 0 2 6 2 2 2 0 0

4 -2 3 6 2 2 2

1 -4 4 4

Table of States

♯ U ℓ 4 2 2 2 0 0

1 4 0 1

4 2 1 e1 + e2 + e3 + e4 e1 − e2 e1 + e2 − 2e3 e1 + e2 + e3 − 3e4

6 0 2

e1e2 + e1e3 + e1

e4 + e2e3 + e2e4

+e3e4

e1e3 + e1e4

−e2e3 − e2

e4

2e1e2 − e1e3 + e1

e4 − e2e3 + e2e4

−2e3e4

2e1e2 + 2e1e3 − 2e1

e4 + 2e2e3 − 2e2e4

−2e3e4

e1e3 − e1e4

−e2e3 + e2

e4

2e1e2 − e1e3 − e1

e4 − e2e3 − e2e4

+2e3e4

4 -2 3
e1e2e3 + e1e2e4

+e1e3e4 + e2e3e4

e1e3e4 − e2

e3e4

2e1e2e4 − e1e3e4

−e2e3e4

3e1e2e3 − e1e2e4 −

e1e3e4 − e2e3e4

1 -4 4 e1e2e3e4

Casimirs: 255 , 99 , 12

Casimir C = 4TT * +(U + 1)2 has multiplicity 
⎛
⎝

n +1

ℓ

⎞
⎠

C

n +1
, where ℓ is the level of the vacuum for the

corresponding states.

Table of Casimirs

♯ U ℓ 4 2 2 2 0 0

1 4 0 25

4 2 1 25 9 9 9

6 0 2 25 9 9 9 1 1

4 -2 3 25 9 9 9

1 -4 4 25
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