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Abstract

Assuming the Riemann hypothesis, we provide a new formula to

help in finding the imaginary parts of the non-trivial zeros of the

Riemann zeta function. This formula may also be useful in studies

involving prime numbers.

1 Introduction

The Riemann zeta function [2] is defined in the half-plane with the complex
variable s = σ + it as an absolutely convergent series on σ > 1 :

ζ(s) =

∞
∑

n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+

1

4s
· · · for 1 < R(s) (1.1)

As shown by Riemann, ζ(s) extends to the whole complex plane C as a
meromorphic function by analytic continuation and satisfies the functional
equation:

ζ(s) Γ
(s

2

)

= ζ(1− s)Γ

(

1− s

2

)

πs−1/2 for s 6= 1 (1.2)

Also, if we consider the alternative functional equation ([5], p. 146),

ζ(s) = 2sπs−1 sin(
πs

2
)Γ(1− s)ζ(1− s) for s 6= 1 (1.3)
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we can see that the Riemann zeta function ζ(s) has zeros at the negative even
integers −2, −4, −6, ... which are called as the trivial zeros. The Riemann
hypothesis, proposed by Riemann in 1859, is concerned with the non-trivial
zeros [2]. Let us denote such a zero by so = σo + ito.

The Riemann hypothesis: The real part of a non-trivial zero of the Rie-
mann zeta function is 1/2. That means, ζ(so) = 0 ⇒ σo = 1/2.

2 The partial sum with the Riemann zeta

function

In 1914, Hardy [3] proved that ζ(1/2 + it) has infinitely many zeros.
Assuming the Riemann hypothesis, we can write the infinitely many non-
trivial zeros of the Riemann zeta function as follows:

so = 1/2∓ ito

Now we study such zeros. Let us write with s = σ + it:

ζ(s)−
1

s− 1
=

∞
∑

n=1

1

ns
−
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1

1

xs
dx for 1 < σ

Then, we can write the following formula ([1], p. 1):
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∑
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for 0 < σ and s 6= 1 (2.1)

For a sufficiently large positive integer N, let

ζ1(s) =
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We can now make the following rearrangement:
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3 A new formula as ζN(s)

We obtained the following function from equation (2.1):

ζ1(s) =
N
∑
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xs
dx for 0 < σ < 1 (3.1)

Inspired by the above-formula, we can derive:
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Continuing:
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Rearranging:

ζ2(s) =
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1
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xs
dx for 0 < σ < 1 (3.2)

Since we have obtained two partial sums (3.1) and (3.2) from the same
source (2.1), we can expect: ζ1(s) and ζ2(s) bound ζ(s)by both sides as lower
and upper with the sufficiently N values. As N increases, we can observe
that the gap between the three will decrease naturally.

Now here, let us write the optimal equation between ζ1(s) and ζ2(s). We
now have a chance for a most perfect approach to the Riemann zeta function.

Taking the average of the N and N + 1 values on the integrals, we have

ζN(s) =
N
∑

n=1

1

ns
−

∫ N+1/2

0

1

xs
dx for 0 < σ < 1 (3.3)

In Section 4, we will do some calculations to show how ζN(s) is precise when
we compare the Riemann zeta function.
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4 Two examples with numeric calculations

The first example: First, let us do a calculation with the Riemann zeta
function:

ζ(1/5 + 109i) = 8.27517...− i0.783862...

Then, let us do the same calculation with ζN(s), ζ1(s) and ζ2(s). To show the
differences among them more clearly, let us take the N value a little smaller
as 100000. For their calculations, let us use one of the online calculators
on the web. For example, if we choose ”the Wolfram Alpha Widget Limit
Calculator” [6], the calculation of ζN(1/5 + 109i) can be done as follows:

ζN(1/5 + 109i) = lim
t→109

(

100000
∑

1

1

n1/5+109i
−

(100000 + 1/2)4/5−it

4/5− it

)

ζN(1/5 + 109i) = 8.27517...− i0.783862...

Then, let us see the calculations with the partial sums of the Riemann zeta
function:

ζ1(1/5 + 109i) = 8.28296...− i0.83325...

ζ2(1/5 + 109i) = 8.26734...− i0.734478...

One might want to see the calculation with the following sum (which is the
partial sum of the Riemann zeta function) with the same conditions:

ζ3(s) =
1

1− 21−s

N
∑

n=1

(−1)n−1

ns

ζ3(1/5 + 109i) = 8.24321...− i0.727209...

Thus, we have seen how ζN(s) is sensitive when we compare it with ζ1(s),
ζ2(s) and ζ3(s).
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The second example: This time, let us perform a very sophisticated
example to show how ζN(s) is extremely precise with a sufficiently large N
value when we compare the Riemann zeta function.
Let us consider the following functions ζN−(s) and ζN+(s) by taking this 1/2
with the differences ∓ 0.0001; for 0 < σ < 1:
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Then let us start the example. We know by [4]:
ζ(so) = 0 by so = 1/2+i30.4248761258595132103118975305840913201815600...

Now with s = 1/2 + 30.42487612585951321031189753058409132018156i
and the 1/2 with the differences if we take the N integer as 1011:

ζN−(s) =

1011
∑

n=1

1

ns
−

∫

1011+1/2−0.0001

0

1

xs
dx = −2.15346∗10−10+2.85953∗10−10i

ζN+(s) =
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∑

n=1

1
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−

∫

1011+1/2+0.0001

0

1

xs
dx = 1.91577∗10−10−2.53271∗10−10i

Thus, we see the above-calculations bound the zero of ζ(s) from both sides
as:

The real part of them :−2.15346∗10−10 < 0 < 1.91577∗10−10

The imaginary part of them :− 2.53271 ∗ 10−10 < 0 < 2.85953 ∗ 10−10

You see how these small differences ∓ 0.0001 on ζN(s) can bound the zero
of the Riemann zeta function so sensitively after 100 billions sums. Even, we
have just taken the imaginary part of the zeros of the Riemann zeta function
with 41 decimal digits on the functions ζN−(s) and ζN+(s).
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5 Calculations resulting from a specific value

Now, with the function ζN(1/2 + it) in the region 0 6 t 6 ta, let us see how
all calculations as sensitive compared to the Riemann zeta function.
For these calculations, our goal is to catch 100 decimal digits with a very
precise computing program. We can not use the above calculator [6] for this
purpose.
Denoting this decimal digits as c, one can consider the c decimal digits as
large as needed (500, 1000, or larger).

• Now, let us take the N value as 1012.

• Take the t value as ta which is the largest value in the region 0 6 t 6 ta.

• With ζN(1/2+ ita), suppose that we have made a calculation which has
100 decimal digits.

Then, let us ask ourselves the following critical question:
How can we be sure that this calculation is definitely the same as ζ(1/2+ ita)
which has also the 100 decimal digits?
Let us do a second calculation with N = 1013.

• If both 100 decimal digits are the same, we can say that our first cal-
culation is equivalent to ζ(1/2 + ita).

• If not, we can check it with N = 1013 & 1014 this time.

• If still not, we go on in the same way with N = 1014 & 1015 as ditto
...

• Once we have found this specific N value, we can talk about these
equivalents in all the region 0 6 t 6 ta by this specific N value.
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6 The imaginary parts of the zeros of Rie-

mann zeta function

Let us consider the specific N value here which provided catching the cal-
culations with the c decimal digits accuracy in the region 0 6 t 6 ta when
compared with the Riemann zeta function.
Denoting this specific N value as Nc, let us change the appearance of the
function ζN(1/2 + it) with it as follows:

ζNc
(1/2 + it) =

Nc
∑

n=1

1

n1/2+it
−

∫ Nc+1/2

0

1

x1/2+it
dx

So now, with the c decimal digits accuracy provided by the Nc value, we can
say again that:

All the calculations of ζNc
(1/2 + it) will be the same as the ones of

ζ(1/2 + it).

Thus, we can find the zeros of the Riemann zeta function precisely.
In the region 0 6 t 6 ta, if we intend to find the zeros of the Riemann zeta
function with the c decimal digits, we can find them using the following:

ζNc
(1/2 + it) = 0

Nc
∑

n=1

1
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−

∫ Nc+1/2

0

1

x1/2+it
dx = 0 (6.1)

Going one step further by applying Euler’s formula to equation 6.1, we have:

The terms of the real parts:

Nc
∑

n=1

cos(t lnn)

n1/2
−

∫ Nc+1/2

0

cos(t ln x)

x1/2
dx = 0

The terms of the imaginary parts:

Nc
∑

n=1

sin(t lnn)

n1/2
−

∫ Nc+1/2

0

sin(t lnx)

x1/2
dx = 0
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Even though the real terms as free from the complex ones, both are zero at

the same points.
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