International Journal of Mathematics and Computer Science, **13**(2018), no. 2, 139–155

Intuitionistic Fuzzy k- Γ -Hyperideals of Γ -Semihyperrings

Warud Nakkhasen¹, Bundit Pibaljommee^{1,2}

¹Department of Mathematics Faculty of Science Khon Kaen University Khon Kaen 40002, Thailand

²Centre of Excellence in Mathematics CHE, Si Ayuttaya Rd. Bangkok 10400, Thailand

email: w.nakkhasen@gmail.com, banpib@kku.ac.th

(Received January 8, 2018, Accepted February 26, 2018)

Abstract

We introduce the concept of intuitionistic fuzzy k- Γ -hyperideals of Γ -semihyperrings. Then, we investigate some fundamental properties of intuitionistic fuzzy k- Γ -hyperideals of Γ -semihyperrings.

1 Introduction

The fuzzy set was introduced by Zadeh [26] in 1965, as a function from a nonempty set X to the unit interval [0, 1]. Later, many researchers have researched on the generalization of the notion of fuzzy sets with applications in computer, logic and many ramifications of pure and applied mathematics. Atanassov [4] introduced and studied the concept of an intuitionistic fuzzy set which is a generalization of the notion of the fuzzy set. Namely, the fuzzy sets give the degree of membership of an element in a given set, while the intuitionistic fuzzy sets give both a degree of membership and a degree of nonmembership.

Key words and phrases: Γ -semihyperring, k- Γ -hyperideal, intuitionistic fuzzy k- Γ -hyperideal.

AMS (MOS) Subject Classifications: 03E72, 03F55, 20N20. ISSN 1814-0432, 2018, http://ijmcs.future-in-tech.net The concept of a hyperstructure was first introduced by Marty [16] in 1934, as a generalization of ordinary algebraic structures. This theory was studied in the following decades and nowadays by many mathematicians, e.g., [5, 6, 7, 25]. Vougiouklis [24] introduced the concept of a semihyperring, as a generalization of a semiring, where both the addition and the multiplication are hyperoperations.

The notion of a Γ -ring was introduced by Nobusawa [17]. Then, Rao [19] introduced the idea of a Γ -semiring which is a generalization of a Γ -ring as well as of a semiring. Later, Dehkori and Davvaz [8, 9, 10] introduced and studied the concept of a Γ -semihyperring as a generalization of a semiring, of a Γ -semiring and of a semihyperring.

Henriksen [15] defined a more restricted class of ideals in a semiring, which is called k-ideals. Then, Sen and Adhikari [21, 22] studied on k-ideals of semirings. Akram and Dudek [2] introduced the notion of an intuitionistic fuzzy left k-ideal in a semiring. Also, Dheena and Mohanraaj [11] studied the concept of an intuitionistic fuzzy k-ideal of a semiring. The concept of a k-hyperideal in a semihyperring was studied by Ameri and Hedayati [3, 13, 14], where it has been discussed only the addition as a hyperoperation. Omidi and Davvaz [18] introduced the notion of a k-hyperideal on an ordered semihyperring. In 2013, Ersoy and Davvaz [12] introduced the notion of an intuitionistic fuzzy Γ -hyperideal of a Γ -semihyperring and investigated some of its properties.

In this work, we introduce the notion of an intuitionistic fuzzy k- Γ -hyperideal of a Γ -semihyperring and study some basic of its properties.

2 Preliminaries

Let H be a nonempty set, and $\mathcal{P}^*(H)$ be the set of all nonempty subsets of H. A hyperoperation on H is a mapping $\circ : H \times H \to \mathcal{P}^*(H)$ (e.g., [5, 6, 7, 25]). The hyperstructure (H, \circ) is called a hypergroupoid. If $x \in H$ and $A, B \in \mathcal{P}^*(H)$, then we denote

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b, A \circ \{x\} = A \circ x, \{x\} \circ B = x \circ B.$$

A hypergroupoid (H, \circ) is called a *semihypergroup* if for all $x, y, z \in H$, we have $(x \circ y) \circ z = x \circ (y \circ z)$. That is, $\bigcup_{u \in x \circ y} u \circ z = \bigcup_{v \in y \circ z} x \circ v$. A semihypergroup (H, \circ) is called *commutative* if $x \circ y = y \circ x$, for all $x, y \in H$.

Let (S, +) be a commutative semihypergroup, and $(\Gamma, +)$ be a commutative semigroup. Then S is called a Γ -semihyperring (see, [8, 9, 10]) if there exists a map $S \times \Gamma \times S \to \mathcal{P}^*(S)$ (the image of (a, α, b) is denoted by $a\alpha b$, for all $a, b \in S$ and $\alpha \in \Gamma$) which, for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$, satisfying the following conditions:

- (i) $x\alpha(y+z) = x\alpha y + x\alpha z;$
- (ii) $(x+y)\alpha z = x\alpha z + y\alpha z;$
- (iii) $x(\alpha + \beta)z = x\alpha z + x\beta z;$
- (iv) $x\alpha(y\beta z) = (x\alpha y)\beta z$.

A nonempty subset I of a Γ -semihyperring S is called a *left* (resp. *right*) Γ *hyperideal* of S if it satisfies (i) $x+y \subseteq I$ and (ii) $s\alpha x \subseteq I$ (resp. $x\alpha s \subseteq I$), for all $x, y \in I, s \in S$ and $\alpha \in \Gamma$. We call I a Γ -*hyperideal* of a Γ -semihyperring S if it is both a left and a right Γ -hyperideal of S.

A left (resp. right) Γ -hyperideal I of a Γ -semihyperring S is called a *left* (resp. *right*) k- Γ -hyperideal of S if for any $a \in I, x \in S, x + a \subseteq I$ implies $x \in I$. We note that I is called a k- Γ -hyperideal of a Γ -semihyperring S if it is both a left and a right k- Γ -hyperideal of S.

Example 2.1. Let $S = \{a, b, c, d\}$ and $\Gamma = \{\alpha, \beta, \gamma\}$ with the hyperoperation \oplus and $x\delta y$, for every $x, y \in S$ and $\delta \in \Gamma$ are defined as follows:

\oplus	a	b	c	d α	a	b	c	d
a	$\{a\}$	$\{a,b\}$	$\{a, b, c\}$	S a	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$
b	$\{a,b\}$	$\{a, b\}$	$\{a, b, c\}$	S b	$\{a\} \in \{a\}$	$\{a,b\}$	$\{a, b\}$	$\{a, b\}$
c	$\{a, b, c\}$	$\{a, b, c\}$	$\{a, b, c\}$	S c	$\{a\} \in \{a\}$	[a,b]	$\{a, b\}$	$\{a, b\}$
d	S	S	S	S d	$l = \{a\} = \{a\}$	[a,b]	$\{a, b\}$	$\{a, b\}$
		- 1			-			
		β	a b	С	d	_		
		$a \mid \{$	a { a }	$\{a\}$	$\{a\}$			
		$b \mid \{$	a { a,b }	$\{a,b\}$	$\{a, b\}$			
		$c \mid \{$	$\{a\} \{a,b\}$	$\{a, b, c\}$	$\{a, b, c\}$			
		$d \mid \{$	$\{a\} \{a,b\}$	$\{a, b, c\}$	$\{a, b, c\}$			
		γ	a b	c	d			
		a	$\{a\}$ $\{a\}$	$\left\{a\right\}$	$\{a\}$			
		b	$\{a\} \{a, b\}$	$\{a,b\}$	$\{a, b\}$			
		c	$\{a\} \{a, b\}$	$\{a, b, c\}$	$\{a, b, c\}$;}		
		d	$\{a\} \{a, b\}$	$\{a, b, c\}$	S			

Define the operation + on Γ by

$$\begin{array}{c|cccc} + & \alpha & \beta & \gamma \\ \hline \alpha & \alpha & \alpha & \alpha \\ \beta & \alpha & \beta & \beta \\ \gamma & \alpha & \beta & \gamma \end{array}$$

Now, $(\Gamma, +)$ is a commutative semigroup and then S is a Γ -semihyperring. We can show that $\{a, b\}$ is a k- Γ -hyperideal of S.

Obviously, every k- Γ -hyperideal of a Γ -semihyperring S is a Γ -hyperideal of S, but the converse is not true as the following example shows.

Example 2.2. Let $S = \{a, b, c, d\}$ and $\Gamma = \{\alpha, \beta, \gamma\}$ with the hyperoperation \oplus and $x\delta y$, for every $x, y \in S$ and $\delta \in \Gamma$ are defined as follows:

\in	\exists	a	b .	c	d		α	a	b	c	d
C	$a = \{a$	$a\}$ {	$b\} \{c\}$	$,d\}$	$\{d\}$		a	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$
l	b {i	$b\} \{c\}$	$,d\} \{c$	$,d\} $ {	$c, d\}$		b	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$
($c \mid \{c,$	d { c	$,d\} \{c_i\}$	$,d\} $ {	$c, d\}$		c	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$
6	$d \mid \{a\}$	d { c	$,d\} \{c_i\}$	$,d\} $ {	$c, d\}$		d	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$
~ 1		_		_				_			_
β	a	b	c	d		γ	a	b		c	d
a	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$		a	$\{a\}$	$\{a$	}	$\{a\}$	$\{a\}$
b	$\{a\}$	$\{b\}$	$\{c,d\}$	$\{c,d\}$		b	$\{a\}$	$\{c, c\}$	$d\}$	$\{c,d\}$	$\{c,d\}$
							C >	(1)	(1)	(1)
c	$\{a\}$	$\{c,d\}$	$\{c,d\}$	$\{c, d\}$		C	$\{a\}$	$\{c, c\}$	d	$\{c, d\}$	$\{c, d\}$

Define the operation + on Γ by

+	α	β	γ
α	α	α	α
β	α	β	γ
γ	α	γ	γ

Now, $(\Gamma, +)$ is a commutative semigroup and then S is a Γ -semihyperring. It easy to see that $\{a, c, d\}$ is a Γ -hyperideal of S, but it is not a k- Γ -hyperideal of S, since $b \oplus c = \{c, d\} \subseteq \{a, c, d\}$ but $b \notin \{a, c, d\}$.

Now, we review the notion of fuzzy sets defined by Zadeh [26]. Let X be a nonempty set. A fuzzy set of X is a mapping $\mu : X \to [0, 1]$. Let μ be a fuzzy set of X. The set $U(\mu; t) = \{x \in X \mid \mu(x) \ge t\}$ is called an *upper level* set of μ , and the set $L(\mu; t) = \{x \in X \mid \mu(x) \le t\}$ is called a *lower level set* of μ , where $t \in [0, 1]$. The *complement* of μ denoted by μ^c , is the fuzzy set of X defined by $\mu^c(x) = 1 - \mu(x)$, for all $x \in X$. The intersection and the union of two fuzzy sets μ and λ of X, denoted by $\mu \cap \lambda$ and $\mu \cup \lambda$, resp., are defined by letting $x \in X$,

$$(\mu \cap \lambda)(x) = \min\{\mu(x), \lambda(x)\}$$
 and $(\mu \cup \lambda)(x) = \max\{\mu(x), \lambda(x)\}.$

Atanassov [4] introduced the concept of an intuitionistic fuzzy set, which is extension of a fuzzy set. An *intuitionistic fuzzy set* A in a nonempty set X is defined as the form $A = \{(x, \mu_A(x), \lambda_A(x)) \mid x \in X\}$ where $\mu_A : X \to [0, 1]$ and $\lambda_A : X \to [0, 1]$ denote the *degree of membership* and the *degree of nonmembership*, resp., of each $x \in X$ to the set A and also $0 \leq \mu_A(x) + \lambda_A(x) \leq 1$, for all $x \in X$. For the sake of simplicity, we shall use the symbol $A = (\mu_A, \lambda_A)$ instead of the intuitionistic fuzzy set $A = \{(x, \mu_A(x), \lambda_A(x)) \mid x \in X\}$.

Let $A = (\mu_A, \lambda_A)$ and $B = (\mu_B, \lambda_B)$ be intuitionistic fuzzy sets in a nonempty set X. We define

(i) $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\lambda_A(x) \geq \lambda_B(x)$, for all $x \in X$,

(ii)
$$A \cap B = (\mu_A \cap \mu_B, \lambda_A \cup \lambda_B)$$

An intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ of a Γ -semihyperring S is called an *intuitionistic fuzzy left* (resp. *right*) Γ -hyperideal (see, [1, 12]) of S which, for all $x, y \in S$ and $\alpha \in \Gamma$, if it satisfies the following axiom:

(i)
$$\inf_{z \in x+y} \mu_A(z) \ge \min\{\mu_A(x), \mu_A(y)\};$$

(ii)
$$\inf_{z \in x \alpha y} \mu_A(z) \ge \mu_A(y)$$
 (resp. $\inf_{z \in x \alpha y} \mu_A(z) \ge \mu_A(x)$);

(iii) $\sup_{z \in x+y} \lambda(z) \le \max\{\lambda(x), \lambda(y)\};$

(iv)
$$\sup_{z \in x \alpha y} \lambda(z) \le \lambda(y)$$
 (resp. $\sup_{z \in x \alpha y} \lambda(z) \le \lambda(x)$),

We call that $A = (\mu_A, \lambda_A)$ is an *intuitionistic fuzzy* Γ -hyperideal of S if it is both an intuitionistic fuzzy left Γ -hyperideal and an intuitionistic fuzzy right Γ -hyperideal of S.

3 Intuitionistic Fuzzy k- Γ -Hyperideals

In this section, we introduce the concept of intuitionistic fuzzy k- Γ -hyperideals of Γ -semihyperrings and investigate some of their fundamental properties.

Definition 3.1. An intuitionistic fuzzy left (resp. right) Γ -hyperideal $A = (\mu_A, \lambda_A)$ of a Γ -semihyperring S is said to be an intuitionistic fuzzy left (resp. right) k- Γ -hyperideal of S if for any $x, y \in S$,

(i)
$$\mu_A(x) \ge \min\{\inf_{z \in x+y} \mu_A(z), \mu_A(y)\}$$

and

(ii)
$$\lambda_A(x) \le \max\{\sup_{z \in x+y} \lambda_A(z), \lambda_A(y)\}.$$

 $A = (\mu_A, \lambda_A)$ is called an intuitionistic fuzzy k- Γ -hyperideal of a Γ -semihyperring S if it is both an intuitionistic fuzzy left k- Γ -hyperideal and an intuitionistic fuzzy right k- Γ -hyperideal of S.

Example 3.2. In Example 2.1, we define an intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ of S by for every $x \in S$,

$$\mu_A(x) = \begin{cases} 0.7 & \text{if } x \in \{a, b\}, \\ 0.2 & \text{otherwise} \end{cases} \quad and \quad \lambda_A(x) = \begin{cases} 0.2 & \text{if } x \in \{a, b\}, \\ 0.7 & \text{otherwise.} \end{cases}$$

By routine calculations, $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy k- Γ -hyperideal of S.

We note that every intuitionistic fuzzy k- Γ -hyperideal is an intuitionistic fuzzy Γ -hyperideal. But every intuitionistic fuzzy Γ -hyperideal need not to be an intuitionistic fuzzy k- Γ -hyperideal as the following example shows.

Example 3.3. In Example 2.2, we define an intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ of S by for every $x \in S$,

$$\mu_A(x) = \begin{cases} 0.8 & \text{if } x \in \{a, c, d\}, \\ 0.1 & \text{otherwise} \end{cases} \quad and \quad \lambda_A(x) = \begin{cases} 0.1 & \text{if } x \in \{a, c, d\}, \\ 0.8 & \text{otherwise}, \end{cases}$$

By routine computations, $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy Γ -hyperideal of S, but it is not an intuitionistic fuzzy k- Γ -hyperideal, because $\mu_A(b) < \min\{\inf_{z \in b \oplus c} \mu_A(z), \mu_A(c)\}$ and $\lambda_A(b) > \max\{\sup_{z \in b \oplus c} \lambda_A(z), \lambda_A(c)\}.$ Throughout this section, we will prove the following theorems for intuitionistic fuzzy left k- Γ -hyperideals, for intuitionistic fuzzy right k- Γ -hyperideals, one can prove similarly.

Theorem 3.4. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy set of a Γ -semihyperring S. Then A is an intuitionistic fuzzy left (resp. right) k- Γ -hyperideal of S if and only if the subsets $U(\mu_A; t)$ and $L(\lambda_A; s)$ are left (resp. right) k- Γ -hyperideals of S for all $s, t \in [0, 1]$, whenever they are nonempty.

Proof. Assume that A is an intuitionistic fuzzy left k- Γ -hyperideal of S. Then A is also an intuitionistic fuzzy left Γ -hyperideal of S. By Theorem 16 in [12], $U(\mu_A; t)$ and $L(\lambda_A; s)$ are left Γ -hyperideals of S for all $s, t \in [0, 1]$. Let $a \in U(\mu_A; t)$ and $x \in S$ with $x+a \subseteq U(\mu_A; t)$. Then $\mu_A(a) \ge t$ and $\mu_A(z) \ge t$, for all $z \in x + a$. This implies that $\inf_{z \in x+a} \mu_A(z) \ge t$. By assumption, we have $\mu_A(x) \ge \{\inf_{z \in x+a} \mu_A(z), \mu_A(a)\} \ge t$, i.e., $x \in U(\mu_A; t)$. Hence, $U(\mu_A; t)$ is a left k- Γ -hyperideal of S. Similarly, we can show that $L(\lambda_A; s)$ is a left k- Γ -hyperideal of S.

Conversely, assume that all nonempty level sets $U(\mu_A; t)$ and $L(\lambda_A; s)$ are left k- Γ -hyperideals of S. Then $U(\mu_A; t)$ and $L(\lambda_A; s)$ are also left Γ hyperideals of S. By Theorem 16 in [12], we have that A is an intuitionistic fuzzy left Γ -hyperideal of S. Let $x, y \in S$, min $\{\inf_{z \in x+y} \mu_A(z), \mu_A(y)\} = t_0$ and max $\{\sup_{z \in x+y} \lambda_A(z), \lambda_A(y)\} = s_0$. Thus, $\inf_{z \in x+y} \mu_A(z) \ge t_0$ and $\mu_A(y) \ge t_0$. So, $y \in U(\mu_A; t_0)$ and $x + y \subseteq U(\mu_A; t_0)$. By assumption, we have $x \in U(\mu_A; t_0)$. This implies that $\mu_A(x) \ge t_0 = \min\{\inf_{z \in x+y} \mu_A(z), \mu_A(y)\}$. Similarly, we can show that $\lambda_A(x) \le \max\{\sup_{z \in x+y} \lambda(z), \lambda(y)\}$. Therefore, $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy left k- Γ -hyperideal of S.

Corollary 3.5. Let I be a nonempty subset of a Γ -semihyperring S. We define fuzzy sets μ_A and λ_A as follows:

$$\mu_A(x) = \begin{cases} t_0 & \text{if } x \in I; \\ t_1 & \text{if } x \notin I \end{cases} \text{ and } \lambda_A(x) = \begin{cases} s_0 & \text{if } x \in I; \\ s_1 & \text{if } x \notin I, \end{cases}$$

where $0 \le t_1 < t_0, 0 \le s_0 < s_1$ and $t_i + s_i \le 1$ for i = 0, 1. Then $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy left (resp. right) k- Γ -hyperideal of S if and only if I is a left (resp. right) k- Γ -hyperideal of S. Moreover, $U(\mu_A; t_0) = I = L(\lambda_A; s_0)$. **Theorem 3.6.** Let S be a Γ -semihyperring and $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy set of S. Then $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy left (resp. right) k- Γ -hyperideal of S if and only if $\Box A = (\mu_A, \mu_A^c)$ and $\Delta A = (\lambda_A^c, \lambda_A)$ are intuitionistic fuzzy left (resp. right) k- Γ -hyperideals of S.

Proof. Assume that $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy left k- Γ -hyperideal of S. For any $x, y \in S$ and $\alpha \in \Gamma$, we consider

$$\sup_{z \in x+y} \mu_A^c(z) = \sup_{z \in x+y} (1 - \mu_A(z)) = 1 - \inf_{z \in x+y} \mu_A(z) \le 1 - \min\{\mu_A(x), \mu_A(y)\}$$

$$= \max\{1 - \mu_A(x), 1 - \mu_A(y)\} = \max\{\mu_A^c(x), \mu_A^c(y)\},$$

$$\sup_{z \in x\alpha y} \mu_A^c(z) = \sup_{z \in x\alpha y} (1 - \mu_A(z)) = 1 - \inf_{z \in x\alpha y} \mu_A(z) \le 1 - \mu_A(y) = \mu_A^c(y) \text{ and}$$

$$\mu_A^c(x) = 1 - \mu_A(x) \le 1 - \min\{\inf_{z \in x+y} \mu_A(z), \mu_A(y)\}$$

$$= \max\{1 - \inf_{z \in x+y} \mu_A(z), 1 - \mu_A(y)\} = \max\{\sup_{z \in x+y} \mu_A^c(z), \mu_A^c(y)\}.$$

Similarly, we can show that $\inf_{z \in x+y} \lambda_A^c(z) \ge \min\{\lambda_A^c(x), \lambda_A^c(y)\}, \inf_{z \in x \alpha y} \lambda_A^c(z) \ge \lambda_A^c(y)$ and $\lambda_A^c(x) \ge \min\{\inf_{z \in x+y} \lambda_A^c(z), \lambda_A^c(y)\}$. Hence, $\Box A = (\mu_A, \mu_A^c)$ and $\triangle A = (\lambda_A^c, \lambda_A)$ are intuitionistic fuzzy left k- Γ -hyperideals of S. The proof of the sufficiency part is similar to the necessity part. \Box

Theorem 3.7. If $A = (\mu_A, \lambda_A)$ and $B = (\mu_B, \lambda_B)$ are intuitionistic fuzzy left (resp. right) k- Γ -hyperideals of a Γ -semihyperring S, then $A \cap B$ is an intuitionistic fuzzy left (resp. right) k- Γ -hyperideal of S.

Proof. Assume that A and B are intuitionistic fuzzy left k- Γ -hyperideals of S. Clearly, $A \cap B$ is an intuitionistic fuzzy set of S. Let $x, y \in S$ and $\alpha \in \Gamma$.

We have

$$\min\{(\mu_A \cap \mu_B)(x), (\mu_A \cap \mu_B)(y)\}$$

$$= \min\{\min\{\mu_A(x), \mu_B(x)\}, \min\{\mu_A(y), \mu_B(y)\}\}$$

$$= \min\{\min\{\mu_A(x), \mu_A(y)\}, \min\{\mu_B(x), \mu_B(y)\}\}$$

$$\le \min\{\inf_{z \in x+y} \mu_A(z), \inf_{z \in x+y} \mu_B(z)\} = \inf_{z \in x+y} (\mu_A \cap \mu_B)(z),$$

$$(\mu_A \cap \mu_B)(y) = \min\{\mu_A(y), \mu_B(y)\} \le \min\{\inf_{z \in x \alpha y} \mu_A(z), \inf_{z \in x \alpha y} \mu_B(z)\}$$

$$= \inf_{z \in x \alpha y} (\mu_A \cap \mu_B)(z) \text{ and }$$

$$(\mu_A \cap \mu_B)(x) = \min\{\mu_A(x), \mu_B(x)\}$$

$$\ge \min\{\min\{\inf_{z \in x+y} \mu_A(z), \mu_A(y)\}, \min\{\inf_{z \in x+y} \mu_B(z), \mu_B(y)\}\}$$

$$= \min\{\min\{\inf_{z \in x+y} \mu_A(z), \inf_{z \in x+y} \mu_B(z)\}, \min\{\mu_A(y), \mu_B(y)\}\}$$

$$= \min\{\inf_{z \in x+y} (\mu_A \cap \mu_B)(z), (\mu_A \cap \mu_B)(y)\}.$$

Moreover, we have

$$\max\{(\lambda_A \cup \lambda_B)(x), (\lambda_A \cup \lambda_B)(y)\} = \max\{\max\{\lambda_A(x), \lambda_B(x)\}, \max\{\lambda_A(y), \lambda_B(y)\}\} = \max\{\max\{\lambda_A(x), \lambda_A(y)\}, \max\{\lambda_B(x), \lambda_B(y)\}\} \\ \geq \max\{\sup_{z \in x+y} \lambda_A(z), \sup_{z \in x+y} \lambda_B(z)\} = \sup_{z \in x+y} (\lambda_A \cup \lambda_B)(z), \\ (\lambda_A \cup \lambda_B)(y) \geq \max\{\sup_{z \in x \alpha y} \lambda_A(z), \sup_{z \in x \alpha y} \lambda_B(z)\} = \sup_{z \in x \alpha y} (\lambda_A \cup \lambda_B)(z) \text{ and } \\ (\lambda_A \cup \lambda_B)(x) = \max\{\lambda_A(x), \lambda_B(x)\} \\ \leq \max\{\max\{\sup_{z \in x+y} \lambda_A(z), \lambda_A(y)\}, \max\{\sup_{z \in x+y} \lambda_B(z), \lambda_B(y)\}\} \\ = \max\{\max\{\sup_{z \in x+y} \lambda_A(z), \sup_{z \in x+y} \lambda_B(z)\}, \max\{\lambda_A(y), \lambda_B(y)\}\} \\ = \max\{\sup_{z \in x+y} (\lambda_A \cup \lambda_B)(z), (\lambda_A \cup \lambda_B)(y)\}.$$

Therefore, $A \cap B$ is an intuitionistic fuzzy left k- Γ -hyperideal of S.

Let μ be a fuzzy set of a nonempty set X and $t \in [0, 1 - \sup_{x \in X} \mu(x)]$. The mapping $\mu^T : X \to [0, 1]$ is called a *fuzzy translation* [23] of μ if $\mu^T(x) = \mu(x) + t$, for all $x \in X$.

Theorem 3.8. Let S be a Γ -semihyperring, μ_A and λ_A be fuzzy sets of S and $t \in [0, \frac{1}{2}(1 - \sup_{s \in S} \{\mu_A(s) + \lambda_A(s)\})]$. Suppose that μ_A^T and λ_A^T are fuzzy translations of μ_A and λ_A with respect to t, resp. Then $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy left (resp. right) k- Γ -hyperideal of S if and only if $A^T = (\mu_A^T, \lambda_A^T)$ is an intuitionistic fuzzy left (resp. right) k- Γ -hyperideal of S.

Proof. Assume that $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy left k- Γ -hyperideal of S. Let $a \in S$ and choose $t = \frac{1}{2}(1 - \sup_{s \in S} \{\mu_A(s) + \lambda_A(s)\})$. We have

$$\mu_{A}^{T}(a) + \lambda_{A}^{T}(a) = \mu_{A}(a) + \lambda_{A}(a) + 2t$$

= $\mu_{A}(a) + \lambda_{A}(a) + 1 - \sup_{s \in S} \{\mu_{A}(s) + \lambda_{A}(s)\}$
 $\leq \mu_{A}(a) + \lambda_{A}(a) + 1 - (\mu_{A}(a) + \lambda_{A}(a)) = 1$

Let $x, y \in S$ and $\alpha \in \Gamma$. We have

$$\inf_{z \in x+y} \mu_A^T(z) = \inf_{z \in x+y} \mu_A(z) + t \ge \min\{\mu_A(x), \mu_A(y)\} + t$$

$$= \min\{\mu_A(x) + t, \mu_A(y) + t\} = \min\{\mu_A^T(x), \mu_A^T(y)\},$$

$$\inf_{z \in x\alpha y} \mu_A^T(z) = \inf_{z \in x\alpha y} \mu_A(z) + t \ge \mu_A(y) + t = \mu_A^T(y) \text{ and}$$

$$\mu_A^T(x) = \mu_A(x) + t \ge \min\{\inf_{z \in x+y} \mu_A(z), \mu_A(y)\} + t$$

$$= \min\{\inf_{z \in x+y} \mu_A(z) + t, \mu_A(y) + t\} = \min\{\inf_{z \in x+y} \mu_A^T(z), \mu_A^T(y)\}$$

Moreover, we have

$$\sup_{z \in x+y} \lambda_A^T(z) = \sup_{z \in x+y} \lambda_A(z) + t \le \max\{\lambda_A(x), \lambda_A(y)\} + t$$
$$= \max\{\lambda_A(x) + t, \lambda_A(y) + t\} = \max\{\lambda_A^T(x), \lambda_A^T(y)\},$$
$$\sup_{z \in x\alpha y} \lambda_A^T(z) = \sup_{z \in x\alpha y} \lambda_A(z) + t \le \lambda_A(y) + t = \lambda_A^T(y) \text{ and}$$
$$\lambda_A^T(x) = \lambda_A(x) + t \le \max\{\sup_{z \in x+y} \lambda_A(z), \lambda_A(y)\} + t$$
$$= \max\{\sup_{z \in x+y} \lambda_A(z) + t, \lambda_A(y) + t\} = \max\{\sup_{z \in x+y} \lambda_A^T(z), \lambda_A^T(y)\}.$$

Hence, $A^T = (\mu_A^T, \lambda_A^T)$ is an intuitionistic fuzzy left k- Γ -hyperideal of S.

Conversely, assume that $A^T = (\mu_A^T, \lambda_A^T)$ is an intuitionistic fuzzy left k- Γ -hyperideal of S. Let $x, y \in S$ and $\alpha \in \Gamma$. We have

$$\begin{split} \inf_{z \in x+y} \mu_A(z) + t &= \inf_{z \in x+y} \mu_A^T(z) \ge \min\{\mu_A^T(x), \mu_A^T(y)\} \\ &= \min\{\mu_A(x) + t, \mu_A(y) + t\} = \min\{\mu_A(x), \mu_A(y)\} + t, \\ \inf_{z \in x\alpha y} \mu_A(z) + t &= \inf_{z \in x\alpha y} \mu_A^T(z) \ge \mu_A^T(y) = \mu_A(y) + t \text{ and} \\ \mu_A(x) + t &= \mu_A^T(x) \ge \min\{\inf_{z \in x+y} \mu_A^T(z), \mu_A^T(y)\} \\ &= \min\{\inf_{z \in x+y} \mu_A(z) + t, \mu_A(y) + t\} \\ &= \min\{\inf_{z \in x+y} \mu_A(z), \mu_A(y)\} + t. \end{split}$$

This implies that $\inf_{z \in x+y} \mu_A(z) \ge \min\{\mu_A(x), \mu_A(y)\}, \inf_{z \in x\alpha y} \mu_A(z) \ge \mu_A(y)$ and $\mu_A(x) \ge \min\{\inf_{z \in x+y} \mu_A(z), \mu_A(y)\}$ since $t \ge 0$. Moreover, we have

$$\begin{split} \sup_{z \in x+y} \lambda_A(z) + t &= \sup_{z \in x+y} \lambda_A^T(z) \le \max\{\lambda_A^T(x), \lambda_A^T(y)\} \\ &= \max\{\lambda_A(x) + t, \lambda_A(y) + t\} = \max\{\lambda_A(x), \lambda_A(y)\} + t, \\ \sup_{z \in x\alpha y} \lambda_A(z) + t &= \sup_{z \in x\alpha y} \lambda_A^T(z) \le \lambda_A^T(y) = \lambda_A(y) + t \text{ and} \\ \lambda_A(x) + t &= \lambda_A^T(x) \le \max\{\sup_{z \in x+y} \lambda_A^T(z), \lambda_A^T(y)\} \\ &= \max\{\sup_{z \in x+y} \lambda_A(z) + t, \lambda_A(y) + t\} \\ &= \max\{\sup_{z \in x+y} \lambda_A(z), \lambda_A(y)\} + t. \end{split}$$

Since $t \ge 0$, we have $\sup_{z \in x+y} \lambda_A(z) \le \max\{\lambda_A(x), \lambda_A(y)\}, \sup_{z \in x \alpha y} \lambda_A(z) \le \lambda_A(y)$ and $\lambda_A(x) \le \max\{\sup_{z \in x+y} \lambda_A(z), \lambda_A(y)\}$. Therefore, $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy left k- Γ -hyperideal of S.

Let μ be a fuzzy set of a nonempty set X and $m \in [0, 1]$. The mapping $\mu^M : X \to [0, 1]$ is called a *fuzzy multiplication* [23] of μ if $\mu^M(x) = m\mu(x)$, for all $x \in X$.

Theorem 3.9. Let S be a Γ -semihyperring, $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy set of S and $m \in (0, 1]$. Suppose that μ_A^M and λ_A^M are fuzzy multiplications of μ_A and λ_A , resp., where $\mu_A^M(x) = m\mu_A(x)$ and $\lambda_A^M(x) = m\lambda_A(x)$, for all $x \in S$. Then $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy left (resp. right) k- Γ -hyperideal of S if and only if $A^M = (\mu_A^M, \lambda_A^M)$ is an intuitionistic fuzzy left (resp. right) k- Γ -hyperideal of S.

Proof. Assume that $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy left k- Γ -hyperideal of S. Clearly, $\mu_A^M(a) + \lambda_A^M(a) \leq 1$, for all $a \in S$. Let $x, y \in S$ and $\alpha \in \Gamma$. We have

$$\inf_{z \in x+y} \mu_A^M(z) = \inf_{z \in x+y} m\mu_A(z) \ge m \min\{\mu_A(x), \mu_A(y)\}
= \min\{m\mu_A(x), m\mu_A(y)\} = \min\{\mu_A^M(x), \mu_A^M(y)\},
\inf_{z \in x\alpha y} \mu_A^M(z) = \inf_{z \in x\alpha y} m\mu_A(z) \ge m\mu_A(y) = \mu_A^M(y) \text{ and}
\mu_A^M(x) = m\mu_A(x) \ge m \min\{\inf_{z \in x+y} \mu_A(z), \mu_A(y)\}
= \min\{\inf_{z \in x+y} m\mu_A(z), m\mu_A(y)\} = \min\{\inf_{z \in x+y} \mu_A^M(z), \mu_A^M(y)\}$$

Moreover, we have

$$\sup_{z \in x+y} \lambda_A^M(z) = \sup_{z \in x+y} m\lambda_A(z) \le m \max\{\lambda_A(x), \lambda_A(y)\}$$

= max{m\lambda_A(x), m\lambda_A(y)} = max{\lambda_A^M(x), \lambda_A^M(y)},
$$\sup_{z \in x \alpha y} \lambda_A^M(z) = \sup_{z \in x \alpha y} m\lambda_A(z) \le m\lambda_A(y) = \lambda_A^M(y) \text{ and}$$

$$\lambda_A^M(x) = m\lambda_A(x) \le m \max\{\sup_{z \in x+y} \lambda_A(z), \lambda_A(y)\}$$

= max{ sup m\lambda_A(z), m\lambda_A(y)} = max{ sup \lambda_A^M(z), \lambda_A^M(y)}.

Thus, $A^M = (\mu^M_A, \lambda^M_A)$ is an intuitionistic fuzzy left k- Γ -hyperideal of S. Conversely, assume that $A^M = (\mu^M_A, \lambda^M_A)$ is an intuitionistic fuzzy left k- Γ -hyperideal of S. Let $x, y \in S$ and $\alpha \in \Gamma$. we have

$$m \inf_{z \in x+y} \mu_A(z) = \inf_{z \in x+y} \mu_A^M(z) \ge \min\{\mu_A^M(x), \mu_A^M(y)\}$$

= min{m \mu_A(x), m \mu_A(y)} = m min{\mu_A(x), \mu_A(y)},
m \inf_{z \in x \alpha y} \mu_A(z) = \inf_{z \in x \alpha y} \mu_A^M(z) \ge \mu_A^M(y) = m \mu_A(y) and
m \mu_A(x) = \mu_A^M(x) \ge \min\{ \inf_{z \in x+y} \mu_A^M(z), \mu_A^M(y) \}
= min{\inf_{z \in x+y} m \mu_A(z), m \mu_A(y)} = m min{\inf_{z \in x+y} \mu_A(z), \mu_A(y)}.

Since m > 0, we have $\inf_{z \in x+y} \mu_A(z) \ge \min\{\mu_A(x), \mu_A(y)\}, \inf_{z \in x\alpha y} \mu_A(z) \ge \mu_A(y)$ and $\mu_A(x) \ge \min\{\inf_{z \in x+y} \mu_A(z), \mu_A(y)\}$. Moreover, we have

$$m \sup_{z \in x+y} \lambda_A(z) = \sup_{z \in x+y} \lambda_A^M(z) \le \max\{\lambda_A^M(x), \lambda_A^M(y)\}$$

= max{m\lambda_A(x), m\lambda_A(y)} = m max{\lambda_A(x), \lambda_A(y)},
$$m \sup_{z \in x \alpha y} \lambda_A(z) = \sup_{z \in x \alpha y} \lambda_A^M(z) \le \lambda_A^M(y) = m \lambda_A(y) \text{ and}$$

$$m \lambda_A(x) = \lambda_A^M(x) \le \max\{\sup_{z \in x+y} \lambda_A^M(z), \lambda_A^M(y)\}$$

= max{\lambda_z(x), m\lambda_A(z), m\lambda_A(y)} = m max{\lambda_z(x), \lambda_A(z), \lambda_A(y)}

That is, $\sup_{z \in x+y} \lambda_A(z) \leq \max\{\lambda_A(x), \lambda_A(y)\}, \sup_{z \in x \alpha y} \lambda_A(z) \leq \lambda_A(y)$ and $\lambda_A(x) \leq \max\{\sup_{z \in x+y} \lambda_A(z), \lambda_A(y)\}$ because m > 0. Therefore, $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy left k- Γ -hyperideal of S.

Let μ be a fuzzy set of a nonempty set $X, m \in [0, 1]$ and $t \in [0, 1 - \sup_{x \in X} \mu(x)]$. The mapping $\mu^{MT} : X \to [0, 1]$ is called a *fuzzy magnified translation* [20] of μ if $\mu^{MT}(x) = m\mu(x) + t$, for all $x \in X$. Then the following corollary is immediately done by Theorem 3.8 and Theorem 3.9.

Corollary 3.10. Let S be a Γ -semihyperring, $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy set of S, $t \in [0, \frac{1}{2}(1 - \sup_{s \in S} \{\mu_A(s) + \lambda_A(s)\})]$ and $m \in (0, 1]$. Suppose that μ_A^{MT} and λ_A^{MT} are fuzzy magnified translation of μ_A and λ_A , with respect to t and m, resp. Then $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy left (resp. right) k- Γ -hyperideal of S if and only if $A^{MT} = (\mu_A^{MT}, \lambda_A^{MT})$ is an intuitionistic fuzzy left (resp. right) k- Γ -hyperideal of S.

4 k-Noetherian and k-Artinian Γ -semihyperrings

In this section, we apply the concepts of Noetherian and Artinian Γ -semihyperrings in [12, 9], to define the notion of a k-Noetherian and k-Artinian Γ -semihyperrings and study some of their properties.

Let S be a Γ -semihyperring. Then S is called *Noetherian* (resp. Artinian) [9] if S satisfies the ascending (resp. descending) chain condition on Γ -hyperideals, that is, for any Γ -hyperideals I_1, I_2, I_3, \ldots of S, with

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots \subseteq I_i \cdots$$
 (resp. $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots \supseteq I_i \cdots$),

there exists $n \in \mathbb{N}$ such that $I_i = I_{i+1}$, for all $i \ge n$.

Definition 4.1. A Γ -semihyperring S is called k-Noetherian (resp. k-Artinian) if S satisfies the ascending (resp. descending) chain condition on k- Γ -hyperideals.

Remark 4.2. Every Noetherian (resp. Artinian) Γ -semihyperring is a k-Noetherian (resp. k-Artinian) Γ -semihyperring.

Theorem 4.3. If $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy k- Γ -hyperideal of a Γ -semihyperring S with the finite image, then S is k-Noetherian.

Proof. Assume that $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy k- Γ -hyperideal of a Γ -semihyperring S with the finite image. Suppose that S is not k-Noetherian. Then there exists an ascending chain condition on k- Γ -hyperideals of S, that is, $I_0 \subseteq I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$. We define the intuitionistic fuzzy set A by

$$\mu_A(x) = \begin{cases} \frac{1}{n+2} & \text{if } x \in I_{n+1} - I_n; \\ 0 & \text{if } x \in S - \bigcup_{n=0}^{\infty} I_n; \text{ and } \lambda_A(x) = \begin{cases} \frac{n+1}{n+2} & \text{if } x \in I_{n+1} - I_n; \\ 1 & \text{if } x \in S - \bigcup_{n=0}^{\infty} I_n; \\ 0 & \text{if } x \in I_0, \end{cases}$$

for all $x \in S$. It is easy to show that A is an intuitionistic fuzzy k- Γ -hyperideal of S. This is a contradiction because $I_0 \subseteq I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ infinitely ascending chain of k- Γ -hyperideals of S.

Theorem 4.4. If $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy k- Γ -hyperideal of a Γ -semihyperring S with the finite image, then S is k-Artinian.

Proof. The proof is similar to Theorem 27 in [12].

Theorem 4.5. A Γ -semihyperring S is k-Noetherian if and only if the set of values of intuitionistic fuzzy k- Γ -hyperideals of S is a well-ordered subset of [0, 1].

Proof. Assume that S is k-Noetherian. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy k- Γ -hyperideal of S. Suppose that the set of values of A is not a well-ordered subset of [0, 1]. Then there exists a infinite decreasing sequence

 $\{t_n\}_{n=1}^{\infty}$ such that $\mu_A(x) = t_n$ and $\lambda_A(x) \leq 1 - t_n$, for some $x \in S$. Let $I_n = \{x \in S \mid \mu_A(x) \geq t_n\}$ and $J_n = \{x \in S \mid \lambda_A(x) \leq 1 - t_n\}$. By Theorem 3.4, I_n and J_n are k- Γ -hyperideals of S, for all $n \in \mathbb{N}$. Moreover, $I_1 \subset I_2 \subset I_3 \subset \cdots$ and $J_1 \subset J_2 \subset J_3 \subset \cdots$ are strictly infinite ascending chains of k- Γ -hyperideals of S. Thus, we get a contradiction.

Conversely, assume that the set of values of intuitionistic fuzzy k- Γ -hyperideals of S is a well-ordered subset of [0, 1]. Since every intuitionistic fuzzy k- Γ -hyperideal of S is an intuitionistic fuzzy Γ -hyperideal of S and by Theorem 28 in [12], we have that S is Northerian. By Remark 4.2, S is also k-Northerian.

Theorem 4.6. A Γ -semihyperring S is both k-Noetherian and k-Artinian if and only if every intuitionistic fuzzy k- Γ -hyperideal of S has a finite number of values.

Proof. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy k- Γ -hyperideal of S. Suppose that $\operatorname{Im}(\mu_A)$ and $\operatorname{Im}(\lambda_A)$ are infinite. By Theorem 3.4, $U(\mu_A; t_i)$ and $L(\lambda_A; s_j)$, for $i, j \in \mathbb{N}$, are k- Γ -hyperideals of S. Since S is k-Noetherian and Theorem 4.5, we have that $\operatorname{Im}(\mu_A)$ and $\operatorname{Im}(\lambda_A)$ are well-ordered subsets of [0, 1]. Thus, we can divide to be two cases, as follows.

Case 1. Assume that $t_1 < t_2 < t_3 < \cdots$ is an increasing sequence in $\operatorname{Im}(\mu_A)$ and $s_1 > s_2 > s_3 > \cdots$ is a decreasing sequence in $\operatorname{Im}(\lambda_A)$. This implies that $U(\mu_A; t_1) \supset U(\mu_A; t_2) \supset U(\mu_A; t_3) \supset \cdots$ and $L(\lambda_A; s_1) \supset$ $L(\lambda_A; s_2) \supset L(\lambda_A; s_3) \supset \cdots$ are absolutely descending chains of k- Γ -hyperideals of S. Since S is k-Artinian, there exist $i, j \in \mathbb{N}$ such that

 $U(\mu_A; t_i) = U(\mu_A; t_{i+n})$ and $L(\lambda_A; s_j) = L(\lambda_A; s_{j+m})$, where $n, m \in \mathbb{N}$. It follows that $t_i = t_{i+n}$ and $s_j = s_{j+m}$. This is a contradiction.

Cases 2. Assume that $t_1 > t_2 > t_3 > \cdots$ is a decreasing sequence in $\operatorname{Im}(\mu_A)$ and $s_1 < s_2 < s_3 < \cdots$ is an increasing sequence in $\operatorname{Im}(\lambda_A)$. We obtain that $U(\mu_A; t_1) \subset U(\mu_A; t_2) \subset U(\mu_A; t_3) \subset \cdots$ and $L(\lambda_A; s_1) \subset$ $L(\lambda_A; s_2) \subset L(\lambda_A; s_3) \subset \cdots$ are exactly ascending chains of k- Γ -hyperideals of S. Since S is k-Noetherian, there exist $i, j \in \mathbb{N}$ such that $U(\mu_A; t_i) =$ $U(\mu_A; t_{i+n})$ and $L(\lambda_A; s_j) = L(\lambda_A; s_{j+m})$, where $n, m \in \mathbb{N}$. It follows that $t_i = t_{i+n}$ and $s_j = s_{j+m}$. We have a contradiction.

Conversely, it follows by Theorem 4.3 and Theorem 4.4.

Acknowledgements. This research is supported by the Faculty of Science, Khon Kaen University, Thailand.

References

- S. Abirami, S. Murugesan, A study on an intuitionistic fuzzy prime Γ-hyperideals of Γ-semihyperring, International Journal of Advanced Research in Computer Engineering and Technology, 4, (12), (2015), 4370–4376.
- [2] M. Akram, W. A. Dudek, Intuitionistic fuzzy left k-ideals of semirings, Soft Computing, 12, (2008), 881–890.
- [3] R. Ameri, H. Hedayati, On k-hyperideals of semihyperrings, Journal of Discrete Mathematical Sciences and Cryptography, 10, (1), (2007), 41–54.
- [4] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, (1), (1986), 87–96.
- [5] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, 1993.
- [6] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publishers, Dordrecht, Hardbound, 2003.
- [7] B. Davvaz, V. Leoreanu-Fotea, Hyperring theorey and applications, International Academic Press, USA, 2007.
- [8] S. O. Dehkordi, B. Davvaz, Γ-semihyperrings: approximations and rough ideals, Bulletin of the Malaysian Mathematical Sciences Society, 35, (4), (2012), 1035–1047.
- [9] S. O. Dehkordi, B. Davvaz, Ideals theory in Γ-semihyperrings, Iranian Journal of Science and Technology, 37, (3), (2013), 251–263.
- [10] S. O. Dehkordi, B. Davvaz, Γ-Semihyperrings: ideals, homomorphisms and regular relations, Afrika Matematika, 26, (2015), 849–861.
- [11] P. Dheena, G. Mohanraaj, On intuitionistic fuzzy k-ideals of semirings, International Journal of Computational Cognition, 9, (2), (2011), 45–50.
- [12] B. A. Ersoy, B. Davvaz, Structure of intuitionistic fuzzy sets in Γsemihyperrings, Abstract and Applied Analysis, 2013, (2013), 9 pages.
- [13] H. Hedayati, Closure of k-hyperideals in multiplicative semihyperrings, Southeast Asian Bulletin of Mathematics, 35, (2011), 81–89.

- [14] H. Hedayati, R. Ameri, Construction of k-hyperideals by Phyperoperations, Ratio Math., 15, (2005), 75–89.
- [15] M. Henriksen, Ideals in semirings with commutative addition, Am. Math. Soc. Notices, 6, (1958), 3–21.
- [16] F. Marty, Sur une generalization de la notion de group, in Proceedings of the 8th Congress des Mathematiciens Scandinave, Stockholm, Sweden, (1934), 45–49.
- [17] N. Nobusawa, On a generalization of the ring theory, Osaka Journal of Mathematics, 1, (1994), 81–89.
- [18] S. Omidi, B. Davvaz, Contribution to study special kinds of hyperideals in ordered semihyperrings, Journal of Taibah University for Science, 11, (2017), 1083–1094.
- [19] M. M. K. Rao, Γ-semirings-1, Southeast Asian Bulletin of Mathematics, 19, (1), (1995), 49–54.
- [20] S. K. Sardar, S. K. Majumder, Fuzzy magnified translation on groups, Journal of Mathematics, 1, (2), (2008), 117–124.
- [21] M. K. Sen, M. R. Adhikari, On k-ideals of semirings, International Journal of Mathematics and Mathematical Sciences, 15, (2), (1992), 347– 350.
- [22] M. K. Sen, M. R. Adhikari, On maximal k-ideals of semirings, Proceeding of the American Mathematics Society, 118, (3), (1993), 699–703.
- [23] W. B. Vasantha Kandasamy, Smarandache fuzzy algebra, American Research Press, Rehoboth, 2003.
- [24] T. Vougiouklis, On some representation of hypergroups, Ann. Sci. Univ. Clermont-Ferrand II Math, 26, (1990), 21–29.
- [25] T. Vougiouklis, Hyperstructures and their representations, Handronic press inc., Florida, 1994.
- [26] L. A. Zadeh, Fuzzy sets, Information and Control, 8, (3) (1965), 338-353.