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Abstract

We introduce the concept of intuitionistic fuzzy k-Γ-hyperideals of

Γ-semihyperrings. Then, we investigate some fundamental properties

of intuitionistic fuzzy k-Γ-hyperideals of Γ-semihyperrings.

1 Introduction

The fuzzy set was introduced by Zadeh [26] in 1965, as a function from a
nonempty set X to the unit interval [0, 1]. Later, many researchers have
researched on the generalization of the notion of fuzzy sets with applications
in computer, logic and many ramifications of pure and applied mathematics.
Atanassov [4] introduced and studied the concept of an intuitionistic fuzzy
set which is a generalization of the notion of the fuzzy set. Namely, the fuzzy
sets give the degree of membership of an element in a given set, while the
intuitionistic fuzzy sets give both a degree of membership and a degree of
nonmembership.
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The concept of a hyperstructure was first introduced by Marty [16] in
1934, as a generalization of ordinary algebraic structures. This theory was
studied in the following decades and nowadays by many mathematicians, e.g.,
[5, 6, 7, 25]. Vougiouklis [24] introduced the concept of a semihyperring, as a
generalization of a semiring, where both the addition and the multiplication
are hyperoperations.

The notion of a Γ-ring was introduced by Nobusawa [17]. Then, Rao [19]
introduced the idea of a Γ-semiring which is a generalization of a Γ-ring as
well as of a semiring. Later, Dehkori and Davvaz [8, 9, 10] introduced and
studied the concept of a Γ-semihyperring as a generalization of a semiring,
of a Γ-semiring and of a semihyperring.

Henriksen [15] defined a more restricted class of ideals in a semiring,
which is called k-ideals. Then, Sen and Adhikari [21, 22] studied on k-ideals
of semirings. Akram and Dudek [2] introduced the notion of an intuitionistic
fuzzy left k-ideal in a semiring. Also, Dheena and Mohanraaj [11] studied
the concept of an intuitionistic fuzzy k-ideal of a semiring. The concept
of a k-hyperideal in a semihyperring was studied by Ameri and Hedayati
[3, 13, 14], where it has been discussed only the addition as a hyperoperation.
Omidi and Davvaz [18] introduced the notion of a k-hyperideal on an ordered
semihyperring. In 2013, Ersoy and Davvaz [12] introduced the notion of an
intuitionistic fuzzy Γ-hyperideal of a Γ-semihyperring and investigated some
of its properties.

In this work, we introduce the notion of an intuitionistic fuzzy k-Γ-
hyperideal of a Γ-semihyperring and study some basic of its properties.

2 Preliminaries

Let H be a nonempty set, and P∗(H) be the set of all nonempty subsets
of H . A hyperoperation on H is a mapping ◦ : H × H → P∗(H) (e.g.,
[5, 6, 7, 25]). The hyperstructure (H, ◦) is called a hypergroupoid. If x ∈ H

and A,B ∈ P∗(H), then we denote

A ◦B =
⋃

a∈A,b∈B

a ◦ b, A ◦ {x} = A ◦ x, {x} ◦B = x ◦B.

A hypergroupoid (H, ◦) is called a semihypergroup if for all x, y, z ∈ H , we

have (x◦y)◦z = x◦(y◦z). That is,
⋃

u∈x◦y

u◦z =
⋃

v∈y◦z

x◦v. A semihypergroup

(H, ◦) is called commutative if x ◦ y = y ◦ x, for all x, y ∈ H .



Intuitionistic Fuzzy k-Γ-Hyperideals of Γ-Semihyperrings 141

Let (S,+) be a commutative semihypergroup, and (Γ,+) be a commuta-
tive semigroup. Then S is called a Γ-semihyperring (see, [8, 9, 10]) if there
exists a map S × Γ × S → P∗(S) (the image of (a, α, b) is denoted by aαb,
for all a, b ∈ S and α ∈ Γ) which, for all x, y, z ∈ S and α, β ∈ Γ, satisfying
the following conditions:

(i) xα(y + z) = xαy + xαz;

(ii) (x+ y)αz = xαz + yαz;

(iii) x(α + β)z = xαz + xβz;

(iv) xα(yβz) = (xαy)βz.

A nonempty subset I of a Γ-semihyperring S is called a left (resp. right) Γ-
hyperideal of S if it satisfies (i) x+y ⊆ I and (ii) sαx ⊆ I (resp. xαs ⊆ I), for
all x, y ∈ I, s ∈ S and α ∈ Γ. We call I a Γ-hyperideal of a Γ-semihyperring
S if it is both a left and a right Γ-hyperideal of S.

A left (resp. right) Γ-hyperideal I of a Γ-semihyperring S is called a left
(resp. right) k-Γ-hyperideal of S if for any a ∈ I, x ∈ S, x + a ⊆ I implies
x ∈ I. We note that I is called a k-Γ-hyperideal of a Γ-semihyperring S if it
is both a left and a right k-Γ-hyperideal of S.

Example 2.1. Let S = {a, b, c, d} and Γ = {α, β, γ} with the hyperoperation
⊕ and xδy, for every x, y ∈ S and δ ∈ Γ are defined as follows:

⊕ a b c d

a {a} {a, b} {a, b, c} S

b {a, b} {a, b} {a, b, c} S

c {a, b, c} {a, b, c} {a, b, c} S

d S S S S

α a b c d

a {a} {a} {a} {a}
b {a} {a, b} {a, b} {a, b}
c {a} {a, b} {a, b} {a, b}
d {a} {a, b} {a, b} {a, b}

β a b c d

a {a} {a} {a} {a}
b {a} {a, b} {a, b} {a, b}
c {a} {a, b} {a, b, c} {a, b, c}
d {a} {a, b} {a, b, c} {a, b, c}

γ a b c d

a {a} {a} {a} {a}
b {a} {a, b} {a, b} {a, b}
c {a} {a, b} {a, b, c} {a, b, c}
d {a} {a, b} {a, b, c} S
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Define the operation + on Γ by

+ α β γ

α α α α

β α β β

γ α β γ

Now, (Γ,+) is a commutative semigroup and then S is a Γ-semihyperring.
We can show that {a, b} is a k-Γ-hyperideal of S.

Obviously, every k-Γ-hyperideal of a Γ-semihyperring S is a Γ-hyperideal
of S, but the converse is not true as the following example shows.

Example 2.2. Let S = {a, b, c, d} and Γ = {α, β, γ} with the hyperoperation
⊕ and xδy, for every x, y ∈ S and δ ∈ Γ are defined as follows:

⊕ a b c d

a {a} {b} {c, d} {d}
b {b} {c, d} {c, d} {c, d}
c {c, d} {c, d} {c, d} {c, d}
d {d} {c, d} {c, d} {c, d}

α a b c d

a {a} {a} {a} {a}
b {a} {a} {a} {a}
c {a} {a} {a} {a}
d {a} {a} {a} {a}

β a b c d

a {a} {a} {a} {a}
b {a} {b} {c, d} {c, d}
c {a} {c, d} {c, d} {c, d}
d {a} {c, d} {c, d} {c, d}

γ a b c d

a {a} {a} {a} {a}
b {a} {c, d} {c, d} {c, d}
c {a} {c, d} {c, d} {c, d}
d {a} {c, d} {c, d} {c, d}

Define the operation + on Γ by

+ α β γ

α α α α

β α β γ

γ α γ γ

Now, (Γ,+) is a commutative semigroup and then S is a Γ-semihyperring. It
easy to see that {a, c, d} is a Γ-hyperideal of S, but it is not a k-Γ-hyperideal
of S, since b⊕ c = {c, d} ⊆ {a, c, d} but b 6∈ {a, c, d}.

Now, we review the notion of fuzzy sets defined by Zadeh [26]. Let X be
a nonempty set. A fuzzy set of X is a mapping µ : X → [0, 1]. Let µ be a
fuzzy set of X . The set U(µ; t) = {x ∈ X | µ(x) ≥ t} is called an upper level
set of µ, and the set L(µ; t) = {x ∈ X | µ(x) ≤ t} is called a lower level set
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of µ, where t ∈ [0, 1]. The complement of µ denoted by µc, is the fuzzy set
of X defined by µc(x) = 1 − µ(x), for all x ∈ X . The intersection and the
union of two fuzzy sets µ and λ of X , denoted by µ∩ λ and µ∪ λ, resp., are
defined by letting x ∈ X ,

(µ ∩ λ)(x) = min{µ(x), λ(x)} and (µ ∪ λ)(x) = max{µ(x), λ(x)}.

Atanassov [4] introduced the concept of an intuitionistic fuzzy set, which
is extension of a fuzzy set. An intuitionistic fuzzy set A in a nonempty set X
is defined as the form A = {(x, µA(x), λA(x)) | x ∈ X} where µA : X → [0, 1]
and λA : X → [0, 1] denote the degree of membership and the degree of
nonmembership, resp., of each x ∈ X to the set A and also 0 ≤ µA(x) +
λA(x) ≤ 1, for all x ∈ X . For the sake of simplicity, we shall use the symbol
A = (µA, λA) instead of the intuitionistic fuzzy set A = {(x, µA(x), λA(x)) |
x ∈ X}.

Let A = (µA, λA) and B = (µB, λB) be intuitionistic fuzzy sets in a
nonempty set X . We define

(i) A ⊆ B if and only if µA(x) ≤ µB(x) and λA(x) ≥ λB(x), for all x ∈ X ,

(ii) A ∩ B = (µA ∩ µB, λA ∪ λB).

An intuitionistic fuzzy set A = (µA, λA) of a Γ-semihyperring S is called
an intuitionistic fuzzy left (resp. right) Γ-hyperideal (see, [1, 12]) of S which,
for all x, y ∈ S and α ∈ Γ, if it satisfies the following axiom:

(i) inf
z∈x+y

µA(z) ≥ min{µA(x), µA(y)};

(ii) inf
z∈xαy

µA(z) ≥ µA(y) (resp. inf
z∈xαy

µA(z) ≥ µA(x));

(iii) sup
z∈x+y

λ(z) ≤ max{λ(x), λ(y)};

(iv) sup
z∈xαy

λ(z) ≤ λ(y) (resp. sup
z∈xαy

λ(z) ≤ λ(x)),

We call that A = (µA, λA) is an intuitionistic fuzzy Γ-hyperideal of S if
it is both an intuitionistic fuzzy left Γ-hyperideal and an intuitionistic fuzzy
right Γ-hyperideal of S.
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3 Intuitionistic Fuzzy k-Γ-Hyperideals

In this section, we introduce the concept of intuitionistic fuzzy k-Γ-hyperideals
of Γ-semihyperrings and investigate some of their fundamental properties.

Definition 3.1. An intuitionistic fuzzy left (resp. right) Γ-hyperideal A =
(µA, λA) of a Γ-semihyperring S is said to be an intuitionistic fuzzy left (resp.
right) k-Γ-hyperideal of S if for any x, y ∈ S,

(i) µA(x) ≥ min{ inf
z∈x+y

µA(z), µA(y)}

and

(ii) λA(x) ≤ max{ sup
z∈x+y

λA(z), λA(y)}.

A = (µA, λA) is called an intuitionistic fuzzy k-Γ-hyperideal of a
Γ-semihyperring S if it is both an intuitionistic fuzzy left k-Γ-hyperideal and
an intuitionistic fuzzy right k-Γ-hyperideal of S.

Example 3.2. In Example 2.1, we define an intuitionistic fuzzy set A =
(µA, λA) of S by for every x ∈ S,

µA(x) =

{

0.7 if x ∈ {a, b},

0.2 otherwise
and λA(x) =

{

0.2 if x ∈ {a, b},

0.7 otherwise.

By routine calculations, A = (µA, λA) is an intuitionistic fuzzy k-Γ-hyperideal
of S.

We note that every intuitionistic fuzzy k-Γ-hyperideal is an intuitionistic
fuzzy Γ-hyperideal. But every intuitionistic fuzzy Γ-hyperideal need not to
be an intuitionistic fuzzy k-Γ-hyperideal as the following example shows.

Example 3.3. In Example 2.2, we define an intuitionistic fuzzy set A =
(µA, λA) of S by for every x ∈ S,

µA(x) =

{

0.8 if x ∈ {a, c, d},

0.1 otherwise
and λA(x) =

{

0.1 if x ∈ {a, c, d},

0.8 otherwise,

By routine computations, A = (µA, λA) is an intuitionistic fuzzy Γ-hyperideal
of S, but it is not an intuitionistic fuzzy k-Γ-hyperideal, because µA(b) <

min{ inf
z∈b⊕c

µA(z), µA(c)} and λA(b) > max{ sup
z∈b⊕c

λA(z), λA(c)}.
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Throughout this section, we will prove the following theorems for intu-
itionistic fuzzy left k-Γ-hyperideals, for intuitionistic fuzzy right
k-Γ-hyperideals, one can prove similarly.

Theorem 3.4. Let A = (µA, λA) be an intuitionistic fuzzy set of a
Γ-semihyperring S. Then A is an intuitionistic fuzzy left (resp. right) k-Γ-
hyperideal of S if and only if the subsets U(µA; t) and L(λA; s) are left (resp.
right) k-Γ-hyperideals of S for all s, t ∈ [0, 1], whenever they are nonempty.

Proof. Assume that A is an intuitionistic fuzzy left k-Γ-hyperideal of S. Then
A is also an intuitionistic fuzzy left Γ-hyperideal of S. By Theorem 16 in
[12], U(µA; t) and L(λA; s) are left Γ-hyperideals of S for all s, t ∈ [0, 1]. Let
a ∈ U(µA; t) and x ∈ S with x+a ⊆ U(µA; t). Then µA(a) ≥ t and µA(z) ≥ t,
for all z ∈ x+ a. This implies that inf

z∈x+a
µA(z) ≥ t. By assumption, we have

µA(x) ≥ { inf
z∈x+a

µA(z), µA(a)} ≥ t, i.e., x ∈ U(µA; t). Hence, U(µA; t) is

a left k-Γ-hyperideal of S. Similarly, we can show that L(λA; s) is a left
k-Γ-hyperideal of S.

Conversely, assume that all nonempty level sets U(µA; t) and L(λA; s)
are left k-Γ-hyperideals of S. Then U(µA; t) and L(λA; s) are also left Γ-
hyperideals of S. By Theorem 16 in [12], we have that A is an intuitionistic
fuzzy left Γ-hyperideal of S. Let x, y ∈ S, min{ inf

z∈x+y
µA(z), µA(y)} = t0 and

max{ sup
z∈x+y

λA(z), λA(y)} = s0. Thus, inf
z∈x+y

µA(z) ≥ t0 and µA(y) ≥ t0. So,

y ∈ U(µA; t0) and x+ y ⊆ U(µA; t0). By assumption, we have x ∈ U(µA; t0).
This implies that µA(x) ≥ t0 = min{ inf

z∈x+y
µA(z), µA(y)}. Similarly, we can

show that λA(x) ≤ max{ sup
z∈x+y

λ(z), λ(y)}. Therefore, A = (µA, λA) is an

intuitionistic fuzzy left k-Γ-hyperideal of S.

Corollary 3.5. Let I be a nonempty subset of a Γ-semihyperring S. We
define fuzzy sets µA and λA as follows:

µA(x) =

{

t0 if x ∈ I;

t1 if x 6∈ I
and λA(x) =

{

s0 if x ∈ I;

s1 if x 6∈ I,

where 0 ≤ t1 < t0, 0 ≤ s0 < s1 and ti+si ≤ 1 for i = 0, 1. Then A = (µA, λA)
is an intuitionistic fuzzy left (resp. right) k-Γ-hyperideal of S if and only if
I is a left (resp. right) k-Γ-hyperideal of S. Moreover, U(µA; t0) = I =
L(λA; s0).
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Theorem 3.6. Let S be a Γ-semihyperring and A = (µA, λA) be an in-
tuitionistic fuzzy set of S. Then A = (µA, λA) is an intuitionistic fuzzy
left (resp. right) k-Γ-hyperideal of S if and only if �A = (µA, µ

c
A) and

△ A = (λc
A, λA) are intuitionistic fuzzy left (resp. right) k-Γ-hyperideals of

S.

Proof. Assume that A = (µA, λA) is an intuitionistic fuzzy left k-Γ-hyperideal
of S. For any x, y ∈ S and α ∈ Γ, we consider

sup
z∈x+y

µc
A(z) = sup

z∈x+y

(1− µA(z)) = 1− inf
z∈x+y

µA(z) ≤ 1−min{µA(x), µA(y)}

= max{1− µA(x), 1− µA(y)} = max{µc
A(x), µ

c
A(y)},

sup
z∈xαy

µc
A(z) = sup

z∈xαy

(1− µA(z)) = 1− inf
z∈xαy

µA(z) ≤ 1− µA(y) = µc
A(y) and

µc
A(x) = 1− µA(x) ≤ 1−min{ inf

z∈x+y
µA(z), µA(y)}

= max{1− inf
z∈x+y

µA(z), 1 − µA(y)} = max{ sup
z∈x+y

µc
A(z), µ

c
A(y)}.

Similarly, we can show that inf
z∈x+y

λc
A(z) ≥ min{λc

A(x), λ
c
A(y)}, inf

z∈xαy
λc
A(z) ≥

λc
A(y) and λc

A(x) ≥ min{ inf
z∈x+y

λc
A(z), λ

c
A(y)}. Hence, �A = (µA, µ

c
A) and

△ A = (λc
A, λA) are intuitionistic fuzzy left k-Γ-hyperideals of S. The proof

of the sufficiency part is similar to the necessity part.

Theorem 3.7. If A = (µA, λA) and B = (µB, λB) are intuitionistic fuzzy
left (resp. right) k-Γ-hyperideals of a Γ-semihyperring S, then A ∩ B is an
intuitionistic fuzzy left (resp. right) k-Γ-hyperideal of S.

Proof. Assume that A and B are intuitionistic fuzzy left k-Γ-hyperideals of
S. Clearly, A∩B is an intuitionistic fuzzy set of S. Let x, y ∈ S and α ∈ Γ.
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We have

min{(µA ∩ µB)(x), (µA ∩ µB)(y)}

= min{min{µA(x), µB(x)},min{µA(y), µB(y)}}

= min{min{µA(x), µA(y)},min{µB(x), µB(y)}}

≤ min{ inf
z∈x+y

µA(z), inf
z∈x+y

µB(z)} = inf
z∈x+y

(µA ∩ µB)(z),

(µA ∩ µB)(y) = min{µA(y), µB(y)} ≤ min{ inf
z∈xαy

µA(z), inf
z∈xαy

µB(z)}

= inf
z∈xαy

(µA ∩ µB)(z) and

(µA ∩ µB)(x) = min{µA(x), µB(x)}

≥ min{min{ inf
z∈x+y

µA(z), µA(y)},min{ inf
z∈x+y

µB(z), µB(y)}}

= min{min{ inf
z∈x+y

µA(z), inf
z∈x+y

µB(z)},min{µA(y), µB(y)}}

= min{ inf
z∈x+y

(µA ∩ µB)(z), (µA ∩ µB)(y)}.

Moreover, we have

max{(λA ∪ λB)(x), (λA ∪ λB)(y)}

= max{max{λA(x), λB(x)},max{λA(y), λB(y)}}

= max{max{λA(x), λA(y)},max{λB(x), λB(y)}}

≥ max{ sup
z∈x+y

λA(z), sup
z∈x+y

λB(z)} = sup
z∈x+y

(λA ∪ λB)(z),

(λA ∪ λB)(y) ≥ max{ sup
z∈xαy

λA(z), sup
z∈xαy

λB(z)} = sup
z∈xαy

(λA ∪ λB)(z) and

(λA ∪ λB)(x) = max{λA(x), λB(x)}

≤ max{max{ sup
z∈x+y

λA(z), λA(y)},max{ sup
z∈x+y

λB(z), λB(y)}}

= max{max{ sup
z∈x+y

λA(z), sup
z∈x+y

λB(z)},max{λA(y), λB(y)}}

= max{ sup
z∈x+y

(λA ∪ λB)(z), (λA ∪ λB)(y)}.

Therefore, A ∩ B is an intuitionistic fuzzy left k-Γ-hyperideal of S.

Let µ be a fuzzy set of a nonempty set X and t ∈ [0, 1 − sup
x∈X

µ(x)]. The

mapping µT : X → [0, 1] is called a fuzzy translation [23] of µ if µT (x) =
µ(x) + t, for all x ∈ X .
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Theorem 3.8. Let S be a Γ-semihyperring, µA and λA be fuzzy sets of S
and t ∈ [0, 1

2
(1 − sup

s∈S

{µA(s) + λA(s)})]. Suppose that µT
A and λT

A are fuzzy

translations of µA and λA with respect to t, resp. Then A = (µA, λA) is
an intuitionistic fuzzy left (resp. right) k-Γ-hyperideal of S if and only if
AT = (µT

A, λ
T
A) is an intuitionistic fuzzy left (resp. right) k-Γ-hyperideal of

S.

Proof. Assume that A = (µA, λA) is an intuitionistic fuzzy left k-Γ-hyperideal
of S. Let a ∈ S and choose t = 1

2
(1− sup

s∈S

{µA(s) + λA(s)}). We have

µT
A(a) + λT

A(a) = µA(a) + λA(a) + 2t

= µA(a) + λA(a) + 1− sup
s∈S

{µA(s) + λA(s)}

≤ µA(a) + λA(a) + 1− (µA(a) + λA(a)) = 1.

Let x, y ∈ S and α ∈ Γ. We have

inf
z∈x+y

µT
A(z) = inf

z∈x+y
µA(z) + t ≥ min{µA(x), µA(y)}+ t

= min{µA(x) + t, µA(y) + t} = min{µT
A(x), µ

T
A(y)},

inf
z∈xαy

µT
A(z) = inf

z∈xαy
µA(z) + t ≥ µA(y) + t = µT

A(y) and

µT
A(x) = µA(x) + t ≥ min{ inf

z∈x+y
µA(z), µA(y)}+ t

= min{ inf
z∈x+y

µA(z) + t, µA(y) + t} = min{ inf
z∈x+y

µT
A(z), µ

T
A(y)}.

Moreover, we have

sup
z∈x+y

λT
A(z) = sup

z∈x+y

λA(z) + t ≤ max{λA(x), λA(y)}+ t

= max{λA(x) + t, λA(y) + t} = max{λT
A(x), λ

T
A(y)},

sup
z∈xαy

λT
A(z) = sup

z∈xαy

λA(z) + t ≤ λA(y) + t = λT
A(y) and

λT
A(x) = λA(x) + t ≤ max{ sup

z∈x+y

λA(z), λA(y)}+ t

= max{ sup
z∈x+y

λA(z) + t, λA(y) + t} = max{ sup
z∈x+y

λT
A(z), λ

T
A(y)}.

Hence, AT = (µT
A, λ

T
A) is an intuitionistic fuzzy left k-Γ-hyperideal of S.
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Conversely, assume that AT = (µT
A, λ

T
A) is an intuitionistic fuzzy left k-Γ-

hyperideal of S. Let x, y ∈ S and α ∈ Γ. We have

inf
z∈x+y

µA(z) + t = inf
z∈x+y

µT
A(z) ≥ min{µT

A(x), µ
T
A(y)}

= min{µA(x) + t, µA(y) + t} = min{µA(x), µA(y)}+ t,

inf
z∈xαy

µA(z) + t = inf
z∈xαy

µT
A(z) ≥ µT

A(y) = µA(y) + t and

µA(x) + t = µT
A(x) ≥ min{ inf

z∈x+y
µT
A(z), µ

T
A(y)}

= min{ inf
z∈x+y

µA(z) + t, µA(y) + t}

= min{ inf
z∈x+y

µA(z), µA(y)}+ t.

This implies that inf
z∈x+y

µA(z) ≥ min{µA(x), µA(y)}, inf
z∈xαy

µA(z) ≥ µA(y) and

µA(x) ≥ min{ inf
z∈x+y

µA(z), µA(y)} since t ≥ 0. Moreover, we have

sup
z∈x+y

λA(z) + t = sup
z∈x+y

λT
A(z) ≤ max{λT

A(x), λ
T
A(y)}

= max{λA(x) + t, λA(y) + t} = max{λA(x), λA(y)}+ t,

sup
z∈xαy

λA(z) + t = sup
z∈xαy

λT
A(z) ≤ λT

A(y) = λA(y) + t and

λA(x) + t = λT
A(x) ≤ max{ sup

z∈x+y

λT
A(z), λ

T
A(y)}

= max{ sup
z∈x+y

λA(z) + t, λA(y) + t}

= max{ sup
z∈x+y

λA(z), λA(y)}+ t.

Since t ≥ 0, we have sup
z∈x+y

λA(z) ≤ max{λA(x), λA(y)}, sup
z∈xαy

λA(z) ≤ λA(y)

and λA(x) ≤ max{ sup
z∈x+y

λA(z), λA(y)}. Therefore, A = (µA, λA) is an intu-

itionistic fuzzy left k-Γ-hyperideal of S.

Let µ be a fuzzy set of a nonempty set X and m ∈ [0, 1]. The mapping
µM : X → [0, 1] is called a fuzzy multiplication [23] of µ if µM(x) = mµ(x),
for all x ∈ X .

Theorem 3.9. Let S be a Γ-semihyperring, A = (µA, λA) be an intuitionistic
fuzzy set of S and m ∈ (0, 1]. Suppose that µM

A and λM
A are fuzzy multipli-

cations of µA and λA, resp., where µM
A (x) = mµA(x) and λM

A (x) = mλA(x),
for all x ∈ S. Then A = (µA, λA) is an intuitionistic fuzzy left (resp. right)
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k-Γ-hyperideal of S if and only if AM = (µM
A , λM

A ) is an intuitionistic fuzzy
left (resp. right) k-Γ-hyperideal of S.

Proof. Assume that A = (µA, λA) is an intuitionistic fuzzy left k-Γ-hyperideal
of S. Clearly, µM

A (a)+λM
A (a) ≤ 1, for all a ∈ S. Let x, y ∈ S and α ∈ Γ. We

have

inf
z∈x+y

µM
A (z) = inf

z∈x+y
mµA(z) ≥ mmin{µA(x), µA(y)}

= min{mµA(x), mµA(y)} = min{µM
A (x), µM

A (y)},

inf
z∈xαy

µM
A (z) = inf

z∈xαy
mµA(z) ≥ mµA(y) = µM

A (y) and

µM
A (x) = mµA(x) ≥ mmin{ inf

z∈x+y
µA(z), µA(y)}

= min{ inf
z∈x+y

mµA(z), mµA(y)} = min{ inf
z∈x+y

µM
A (z), µM

A (y)}.

Moreover, we have

sup
z∈x+y

λM
A (z) = sup

z∈x+y

mλA(z) ≤ mmax{λA(x), λA(y)}

= max{mλA(x), mλA(y)} = max{λM
A (x), λM

A (y)},

sup
z∈xαy

λM
A (z) = sup

z∈xαy

mλA(z) ≤ mλA(y) = λM
A (y) and

λM
A (x) = mλA(x) ≤ mmax{ sup

z∈x+y

λA(z), λA(y)}

= max{ sup
z∈x+y

mλA(z), mλA(y)} = max{ sup
z∈x+y

λM
A (z), λM

A (y)}.

Thus, AM = (µM
A , λM

A ) is an intuitionistic fuzzy left k-Γ-hyperideal of S.
Conversely, assume that AM = (µM

A , λM
A ) is an intuitionistic fuzzy left

k-Γ-hyperideal of S. Let x, y ∈ S and α ∈ Γ. we have

m inf
z∈x+y

µA(z) = inf
z∈x+y

µM
A (z) ≥ min{µM

A (x), µM
A (y)}

= min{mµA(x), mµA(y)} = mmin{µA(x), µA(y)},

m inf
z∈xαy

µA(z) = inf
z∈xαy

µM
A (z) ≥ µM

A (y) = mµA(y) and

mµA(x) = µM
A (x) ≥ min{ inf

z∈x+y
µM
A (z), µM

A (y)}

= min{ inf
z∈x+y

mµA(z), mµA(y)} = mmin{ inf
z∈x+y

µA(z), µA(y)}.
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Since m > 0, we have inf
z∈x+y

µA(z) ≥ min{µA(x), µA(y)}, inf
z∈xαy

µA(z) ≥ µA(y)

and µA(x) ≥ min{ inf
z∈x+y

µA(z), µA(y)}. Moreover, we have

m sup
z∈x+y

λA(z) = sup
z∈x+y

λM
A (z) ≤ max{λM

A (x), λM
A (y)}

= max{mλA(x), mλA(y)} = mmax{λA(x), λA(y)},

m sup
z∈xαy

λA(z) = sup
z∈xαy

λM
A (z) ≤ λM

A (y) = mλA(y) and

mλA(x) = λM
A (x) ≤ max{ sup

z∈x+y

λM
A (z), λM

A (y)}

= max{ sup
z∈x+y

mλA(z), mλA(y)} = mmax{ sup
z∈x+y

λA(z), λA(y)}.

That is, sup
z∈x+y

λA(z) ≤ max{λA(x), λA(y)}, sup
z∈xαy

λA(z) ≤ λA(y) and

λA(x) ≤ max{ sup
z∈x+y

λA(z), λA(y)} because m > 0. Therefore, A = (µA, λA)

is an intuitionistic fuzzy left k-Γ-hyperideal of S.

Let µ be a fuzzy set of a nonempty set X , m ∈ [0, 1] and t ∈ [0, 1 −
sup
x∈X

µ(x)]. The mapping µMT : X → [0, 1] is called a fuzzy magnified trans-

lation [20] of µ if µMT (x) = mµ(x) + t, for all x ∈ X . Then the following
corollary is immediately done by Theorem 3.8 and Theorem 3.9.

Corollary 3.10. Let S be a Γ-semihyperring, A = (µA, λA) be an intuition-
istic fuzzy set of S, t ∈ [0, 1

2
(1−sup

s∈S

{µA(s)+λA(s)})] and m ∈ (0, 1]. Suppose

that µMT
A and λMT

A are fuzzy magnified translation of µA and λA, with respect
to t and m, resp. Then A = (µA, λA) is an intuitionistic fuzzy left (resp.
right) k-Γ-hyperideal of S if and only if AMT = (µMT

A , λMT
A ) is an intuition-

istic fuzzy left (resp. right) k-Γ-hyperideal of S.

4 k-Noetherian and k-Artinian

Γ-semihyperrings

In this section, we apply the concepts of Noetherian and Artinian
Γ-semihyperrings in [12, 9], to define the notion of a k-Noetherian and k-
Artinian Γ-semihyperrings and study some of their properties.

Let S be a Γ-semihyperring. Then S is called Noetherian (resp. Ar-
tinian) [9] if S satisfies the ascending (resp. descending) chain condition on
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Γ-hyperideals, that is, for any Γ-hyperideals I1, I2, I3, . . . of S, with

I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ Ii · · · (resp. I1 ⊇ I2 ⊇ I3 ⊇ · · · ⊇ Ii · · · ),

there exists n ∈ N such that Ii = Ii+1, for all i ≥ n.

Definition 4.1. A Γ-semihyperring S is called k-Noetherian (resp. k-Artinian)
if S satisfies the ascending (resp. descending) chain condition on k-Γ-hyperideals.

Remark 4.2. Every Noetherian (resp. Artinian) Γ-semihyperring is a k-
Noetherian (resp. k-Artinian) Γ-semihyperring.

Theorem 4.3. If A = (µA, λA) is an intuitionistic fuzzy k-Γ-hyperideal of
a Γ-semihyperring S with the finite image, then S is k-Noetherian.

Proof. Assume that A = (µA, λA) is an intuitionistic fuzzy k-Γ-hyperideal
of a Γ-semihyperring S with the finite image. Suppose that S is not k-
Noetherian. Then there exists an ascending chain condition on k-Γ-hyperideals
of S, that is, I0 ⊆ I1 ⊆ I2 ⊆ I3 ⊆ · · · . We define the intuitionistic fuzzy set
A by

µA(x) =



















1

n+2
if x ∈ In+1 − In;

0 if x ∈ S −

∞
⋃

n=0

In;

1 if x ∈ I0

and λA(x) =



















n+1

n+2
if x ∈ In+1 − In;

1 if x ∈ S −

∞
⋃

n=0

In;

0 if x ∈ I0,

for all x ∈ S. It is easy to show that A is an intuitionistic fuzzy k-Γ-
hyperideal of S. This is a contradiction because I0 ⊆ I1 ⊆ I2 ⊆ I3 ⊆ · · ·
infinitely ascending chain of k-Γ-hyperideals of S.

Theorem 4.4. If A = (µA, λA) is an intuitionistic fuzzy k-Γ-hyperideal of
a Γ-semihyperring S with the finite image, then S is k-Artinian.

Proof. The proof is similar to Theorem 27 in [12].

Theorem 4.5. A Γ-semihyperring S is k-Noetherian if and only if the set
of values of intuitionistic fuzzy k-Γ-hyperideals of S is a well-ordered subset
of [0, 1].

Proof. Assume that S is k-Noetherian. Let A = (µA, λA) be an intuitionistic
fuzzy k-Γ-hyperideal of S. Suppose that the set of values of A is not a
well-ordered subset of [0, 1]. Then there exists a infinite decreasing sequence
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{tn}
∞

n=1 such that µA(x) = tn and λA(x) ≤ 1 − tn, for some x ∈ S. Let
In = {x ∈ S | µA(x) ≥ tn} and Jn = {x ∈ S | λA(x) ≤ 1 − tn}. By
Theorem 3.4, In and Jn are k-Γ-hyperideals of S, for all n ∈ N. Moreover,
I1 ⊂ I2 ⊂ I3 ⊂ · · · and J1 ⊂ J2 ⊂ J3 ⊂ · · · are strictly infinite ascending
chains of k-Γ-hyperideals of S. Thus, we get a contradiction.

Conversely, assume that the set of values of intuitionistic fuzzy k-Γ-
hyperideals of S is a well-ordered subset of [0, 1]. Since every intuitionistic
fuzzy k-Γ-hyperideal of S is an intuitionistic fuzzy Γ-hyperideal of S and by
Theorem 28 in [12], we have that S is Northerian. By Remark 4.2, S is also
k-Northerian.

Theorem 4.6. A Γ-semihyperring S is both k-Noetherian and k-Artinian if
and only if every intuitionistic fuzzy k-Γ-hyperideal of S has a finite number
of values.

Proof. Let A = (µA, λA) be an intuitionistic fuzzy k-Γ-hyperideal of S. Sup-
pose that Im(µA) and Im(λA) are infinite. By Theorem 3.4, U(µA; ti) and
L(λA; sj), for i, j ∈ N, are k-Γ-hyperideals of S. Since S is k-Noetherian and
Theorem 4.5, we have that Im(µA) and Im(λA) are well-ordered subsets of
[0, 1]. Thus, we can divide to be two cases, as follows.

Case 1. Assume that t1 < t2 < t3 < · · · is an increasing sequence
in Im(µA) and s1 > s2 > s3 > · · · is a decreasing sequence in Im(λA).
This implies that U(µA; t1) ⊃ U(µA; t2) ⊃ U(µA; t3) ⊃ · · · and L(λA; s1) ⊃
L(λA; s2) ⊃ L(λA; s3) ⊃ · · · are absolutely descending chains of
k-Γ-hyperideals of S. Since S is k-Artinian, there exist i, j ∈ N such that
U(µA; ti) = U(µA; ti+n) and L(λA; sj) = L(λA; sj+m), where n,m ∈ N. It
follows that ti = ti+n and sj = sj+m. This is a contradiction.

Cases 2. Assume that t1 > t2 > t3 > · · · is a decreasing sequence
in Im(µA) and s1 < s2 < s3 < · · · is an increasing sequence in Im(λA).
We obtain that U(µA; t1) ⊂ U(µA; t2) ⊂ U(µA; t3) ⊂ · · · and L(λA; s1) ⊂
L(λA; s2) ⊂ L(λA; s3) ⊂ · · · are exactly ascending chains of k-Γ-hyperideals
of S. Since S is k-Noetherian, there exist i, j ∈ N such that U(µA; ti) =
U(µA; ti+n) and L(λA; sj) = L(λA; sj+m), where n,m ∈ N. It follows that
ti = ti+n and sj = sj+m. We have a contradiction.

Conversely, it follows by Theorem 4.3 and Theorem 4.4.
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