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Abstract

We derive some new results for the Mellin transform formulas as

well as for the Gauss hypergeometric function. Also, we have found the

relation between the Legendre functions of the second kind. We use

some of these results in quantum mechanics of two charged particles

of a continuous spectrum.

1 Introduction

Special functions are important in different branches of theoretical physics
and mathematics, for instance in particle physics [1]. That is why a great
deal of investigations is devoted to this subject for so long time [2, 3].

We have determined the Beta function of the imaginary parameters [4].
The function we have defined is the singular generalized function and may
be expressed through the delta function. Some applications of the method
developed in [4] will be considered below.

Using the aforementioned method we define the Mellin transform of the
imaginary parameters for the function f (t) = 1, t ∈ R.
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Also, we show that the Gauss hypergeometric function (HF)

F

(

a
c
; b, z

)

= 2F1 (a, b; c; z) = 2F1 (b, a; c; z)

has the weak limit for z → 1, for the set of the parameters: a = 2iτ, b =
iτ, c = 2iτ, nevertheless in this case Re (c− a− b) = 0 and so, the condition
Re (c− a− b) > 0 is not fulfilled. Some of the consequences are considered
below.

Finally, we consider the Legendre functions of the second kind and obtain
the relation between Qµ

ν (z) and Qν (z) when Reµ = 0. Using the relation
obtained, we derive some asymptotic formulas of the associated Legendre
function Qiτ

ν (z) , τ ∈ R.

2 Some special functions and the Dirac delta

function

The Euler Beta function has many features which can be used to explain
the physical property of strongly interacting particles [1]. This function is
defined as follows [5]:

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt, (1)

Re (α) > 0, Re (β) > 0.

Replacing the variable of integration in (1) by the formula

t =
u

1 + u

(

u =
t

1− t

)

, (2)

one obtains the representation:

B(α, β) =

∫

∞

0

uα−1

(1 + u)α+β
du. (3)

The function that is determined by the expression (1) satisfies the Euler
formula:

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
, (4)
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where Γ(z) is the Euler gamma function (the Euler integral of the second
kind):

Γ(z) =
∫ 1

0
tz−1 exp(−t)dt,

Rez > 0.

The beta function is an analytic function in the domain of its definition.
Taking into account wide applications in physics, we study an associated

Legendre function of the second kind (see, e. g., [12], N 8.711(4), p. 960).
We consider the integral representation

Qµ
ν (z) = exp(iπµ)

Γ (ν + 1)

Γ (ν − µ+ 1)

×
∞
∫

0

dt cosh (µt)
(

z +
√
z2 − 1 cosh (t)

)

−ν−1

, (5)

Re (ν + µ) > −1, ν 6= −1, −2, . . . , |arg (z ± 1)| < π.

For µ = 0 one obtains from (5) the Legendre function of the second kind:

Qν (z) =

∞
∫

0

dt
(

z +
√
z2 − 1 cos h (t)

)

−ν−1

. (6)

Below we investigate the relation between the functions (5) and (6) for Reµ =
0.

For completeness, we recall certain properties of the Dirac delta function.
According to the definition of the Dirac function (see e.g. [6], p. 99) we

assume that it is defined as the weak limit of a sequence of some approximate
functions ωε(x) :

δ(x)
weak
= lim

ε→0+
ωε(x), x ∈ R, (7)

where the approximate function ωε(x) can be constructed as (see [6], pp.
86-87)

ωε(x) = ε−1η(ε−1x) (8)

for any bounded finite function η(x), such that
∫

∞

−∞

η(x)dx = 1. (9)
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Below we shall use the function η(x) = [π(1 + x2)]−1.

Another mostly symbolic but rather common definition (see e.g. [6], pp.
84-85) considers the Dirac delta as a singular generalized function which
satisfies the (weak) equality

b
∫

a

ϕ(x)δ(x)dx =











ϕ(0), 0 ∈ (a, b),

ϕ(0)/2, a = 0, or b = 0,

0, 0 /∈ [a, b]

(10)

for any continuous function ϕ(x) defined on the interval [a, b].

We study the behavior of the B(α, β) function and show [4] that for
β = −α = iτ the following relations are valid:

B(i τ, −i τ) = lim
ε→0+

B(ε+ iτ, ε− iτ) =

lim
ε→0+

1
∫

0

tε+iτ−1(1− t)ε−iτ−1 dt =
1
∫

0

tiτ−1(1− t)−iτ−1 dt = 2πδ (τ) . (11)

So, the function B(i τ, −i τ) which we have defined is the singular generalized
function and may be presented in the explicit form:

B(i τ, −i τ) =
1
∫

0

tiτ−1(1− t)−iτ−1 dt = 2 π δ (τ). (12)

3 Applications

The Mellin transform. Using the substitution (2) in formula (11) one
obtains the representation (τ ∈ R):

B(i τ, −i τ) = lim
ε→0+

∞
∫

0

tε+iτ−1

(1− t)2ε
dt =

∞
∫

0

yiτ−1dy = 2πδ(τ). (13)

Consider the Mellin integral [7]:

φ (z) =

∞
∫

0

tz−1f (t) dt, (14)
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where tz−1f(t) ∈ L (0,∞) and the function f(t) is bounded for arbitrary real
t. Under these conditions, φ(z) is continuous and f(t) can be expressed in
terms of the inverse transformation [7]:

f (t) =
1

2πi

+i∞
∫

−i∞

dzt−zφ (z) . (15)

By (13) and (14), the integral:

∞
∫

0

yix−1dy = 2πδ (x) (16)

is the Mellin integral of the function f (t) = 1 for Re (z) = 0. Using the
expression (15) and the function 2πδ (x) one can define the inverse transfor-
mation:

f (t) =
1

2πi

+i∞
∫

−i∞

t−ix2πδ (x) d (ix) = 1. (17)

Thus, for Re (z) = 0, Mellin’s formulas for the function f (t) = 1 are
reasonable in the sense of singular generalized functions. The expression
(16) shows that the function which is obtained by the Mellin transform of
the function f (t) = 1 is not continuous. In addition, note that the Mellin
transform of the function f (t) = 1 coincides in this case with its Fourier
transform. Similar results for the case Re (z) 6= 0 hold [8].

The Gauss Hypergeometric Function. Consider Gauss well known
formula (see e. g. [5], 2.1.3(14), p. 73):

F

(

a
c
; b, 1

)

=
Γ (c) Γ (c− a− b)

Γ (c− a) Γ (c− b)
, (18)

Re (c) > Re (b) > 0, Re (c− a− b) > 0.

For the set of parameters a = 2iτ, b = ε + iτ, c = 2ε+ 2iτ (ε > 0) one
can write:

F

(

2iτ
2ε+ 2iτ

; ε+ iτ, 1

)

=
Γ (2ε+ 2iτ ) Γ (ε− iτ )

Γ (2ε) Γ (ε+ iτ )
. (19)



110 V. Jikia, I. Lomidze

Using the method proposed in [4], let us calculate the weak limit:

lim
ε→0+

F

(

2iτ
2ε+ 2iτ

; ε+ iτ, 1

)

. (20)

By the Legendre formula

Γ (2z) =
22z−1

√
π

Γ (z) Γ

(

z +
1

2

)

after simplifications, one gets:

F

(

2iτ
2ε+ 2iτ

; ε+ iτ, 1

)

=
22(ε+iτ)−1

√
π

Γ (ε+ iτ + 1/2) Γ (ε− iτ )

Γ (2ε)
. (21)

Using the known property of the gamma function zΓ(z) = Γ(1+ z), formula
(21) can be rewritten as follows:

F

(

2iτ
2ε+ 2iτ

; ε+ iτ, 1

)

= f (ε, τ ) (ε+ iτ)ωε (τ) , (22)

where ωε(τ) = π−1ε(ε2 + τ 2)
−1

is defined according to (8), and

f (ε, τ ) =
√
π22(ε+iτ)Γ (ε+ iτ + 1/2) Γ (ε− iτ + 1)

Γ (2ε+ 1)
. (23)

The function f (ε, τ) is an analytic at the point ε = 0, τ = 0 of the complex
plane and f(ε, τ) ∈ C∞. So it can be expanded in the neighborhood of the
point (0, τ) , τ ∈ R. According to the Taylor formula with remainder in the
Lagrange form

f(ε, τ) = f(0, τ) +
1

1!
f ′

ε(0, τ)ε+
1

2!
f ′′

εε(ξ, τ)ε
2, 0 < ξ < ε, τ ∈ R,

one obtains

F

(

2iτ
2ε+ 2iτ

; ε+ iτ, 1

)

= (ε+ iτ)

(

f(0, τ) +
1

1!
f ′

ε(0, τ)ε+
1

2!
f ′′

εε(ξ, τ)ε
2

)

ωε (τ) , (24)

0 < ξ < ε, τ ∈ R,
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where

f (0, τ) =
4iτ√
π
Γ (iτ + 1/2) Γ (−iτ + 1) ,

f ′

ε (0, τ) = f (0, τ) [ψ (iτ + 1/2) + ψ (−iτ + 1) + 2γ + ln 4] ,

f ′′

εε (ξ, τ ) = f (ξ, τ) {ψ′ (ξ + iτ + 1/2) + ψ′ (ξ − iτ + 1)− 4ψ′ (2ξ + 1) (25)

+ [ψ (ξ + iτ + 1/2) + ψ (ξ − iτ + 1)− 2ψ (2ξ + 1) + ln 4]2
}

,

0 < ξ < ε, τ ∈ R,

and ψ (x) is the digamma function:

ψ (x) =
d

dx
Γ (x) = Γ′ (x)/Γ (x).

Therefore

f (0, 0) = 1, f ′

ε (0, 0) = 0, f ′′

εε(ξ, τ) ≤M <∞.

By definition (7), one can write:

δ(τ)
weak
= lim

ε→0+
ωε(τ) = lim

ε→0+

1

π

ε

ε2 + τ 2
, (26)

which has the following integral form:

b
∫

a

dτϕ(τ)δ(τ) =

= lim
ε→0+

b
∫

a

dτϕ(τ)
1

π

ε

ε2 + τ 2
=











ϕ(0), 0 ∈ (a, b),

ϕ(0)/2, a = 0, or b = 0,

0, 0 /∈ [a, b]

(27)

where ϕ(τ) is a continuous and bounded function. According to the formula
(27), from the equality (24) one obtains:

lim
ε→0+

b
∫

a

ϕ(τ)F

(

2iτ
2ε+ 2iτ

; ε+ iτ, 1

)

dτ = 0. (28)

By the definition of the weak limit (see, e. g. [10], p. 353), one can write:

lim
ε→0+

F

(

2iτ
2ε+ 2iτ

; ε+ iτ, 1

)

weak
= 0. (29)
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We define F

(

2iτ
2iτ

; iτ, 1

)

as follows:

F

(

2iτ
2iτ

; iτ, 1

)

weak
= lim

ε→0+
F

(

2iτ

2ε+ 2iτ
; ε+ iτ, 1

)

=

= lim
ε→0+

F

(

ε+ iτ
2ε+ 2iτ

; 2iτ , 1

)

. (30)

Thus, even if the conditions Re (c) > Re (b) > 0, Re (c− a− b) > 0 are not
fulfilled (see (18)), there exists the weak limit:

F

(

2iτ
2iτ

; iτ, 1

)

weak
= 0. (31)

Corollary. Using the well-known formula ([5], 2.8(4), p.109):

F

(

a
b
; b, z

)

= (1− z)−a, |z| < 1 (32)

and the equality (31), one obtains:

lim
z→1

F

(

iτ
2iτ

; 2iτ, z

)

= F

(

2iτ
2iτ

; iτ, 1

)

= lim
z→1

(1− z)−iτ weak
= 0. (33)

By relation (32), the limit (33) is determined in the area arg(1 − z) = ξ ∈
(−π/2, π/2).

Taking into account

lim
z→1

(1− z)−iτ = exp (ξτ)× lim
z→1

|1− z|−iτ weak
= 0,

one gets:

lim
z→1

|1− z|−iτ = lim
z→1

exp (−iτ ln |1− z|) weak
= 0. (34)

From (34), one obtains:

lim
z→1

cos (τ ln |1− z|) weak
= 0, lim

z→1
sin (τ ln |1− z|) weak

= 0. (35)

As far as |z| < 1, one can write:

lim
z→1

cos [τ ln(1− z)]
weak
= 0, lim

z→1
sin [τ ln(1− z)]

weak
= 0. (36)
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Similarly, one obtains:

(

1− z

1 + z

)

−iτ

= exp

[

−iτ ln
(

1− z

1 + z

)]

=

= cos [τ ln (1− z)− τ ln (1 + z)]− i sin [τ ln (1− z)− τ ln (1 + z)] . (37)

According to (36) and (37), one can write:

lim
z→1

(

1− z

1 + z

)

−iτ

= lim
z→1

cos [τ ln(1− z)]− i lim
z→1

sin [τ ln(1− z)]
weak
= 0.

In addition, from the equalities (36) we obtain:

lim
t→0

tiτ
weak
= 0.

The Legendre Functions. Now let us investigate the relation between
the functions (6) and (5) for Reµ = 0. In this case, one obtains from (5):

Qiτ
ν (a) = exp(−πτ) Γ (ν + 1)

Γ (ν − iτ + 1)

×
∞
∫

0

dt cos (τt)
(

z +
√
z2 − 1 cosh (t)

)

−ν−1

, (38)

τ ∈ R, Re (ν) > −1, |arg (z ± 1)| < π.

If z = a, where a is a real number greater than 1, the following relation holds:

(

a+
√
a2 − 1 cosh (t)

)

−ν−1

= 0, t→ ∞, Re (ν) > −1. (39)

Due to (39) one gets from (38):

Qiτ
ν (a) = exp(−πτ) Γ (ν + 1)

Γ (ν − iτ + 1)

×
A
∫

0

cos (τt)
(

a+
√
a2 − 1 cosh (t)

)

−ν−1

dt+O (A) , (40)

where A <∞. Similarly, we have:

Qν (a) =

A
∫

0

(

a+
√
a2 − 1 cosh (t)

)

−ν−1

dt+O (A) . (41)
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Note also that the function (39) is the impulse function and

(

a+
√
a2 − 1 cosh (t)

)

−ν−1

≥ 0, a > 1.

Thus, in the integral formula (40) one can write:

Qiτ
ν (a) = exp(−πτ) Γ (ν + 1)

Γ (ν − iτ + 1)
cos (τη)

×
A
∫

0

dt
(

a+
√
a2 − 1 cosh (t)

)

−ν−1

+O (A) , (42)

0 ≤ η ≤ A, Reν > −1.

Substituting (41) into (42) one gets:

Qiτ
ν (a) = exp(−πτ) Γ (ν + 1)

Γ (ν − iτ + 1)
cos (τη)Qν (a) , a > 1, (43)

Reν > −1, τ ∈ R.

The function Qµ
ν (z) is single-valued and regular in the complex plane

having a cut along the interval (−∞, 1] (see e. g. [12], p. 959). Besides,
the function Qν (z) is single-valued and analytic in the same region (see e. g.
[13], p. 169). Thus, by analytic continuation, one can write:

Qiτ
ν (z) = exp(−πτ) Γ (ν + 1)

Γ (ν − iτ + 1)
cos (τη)Qν (z) , (44)

τ ∈ R, Reν > −1, |arg (z − 1)| < π.

To define the real parameter η, let us rewrite (44) in the region |z| → ∞.
Inserting the asymptotic relation (see e. g. [5], 3.9.2(21), p.165)

Qµ
ν (z) =

√
π exp (iπµ)

Γ(ν + µ+ 1)

Γ(ν + 3/2)
(2z)−ν−1, z → ∞ (45)

into both sides of the formula (44), we get a specification of the parameter
we are looking for (τ ∈ R):

cos (τη) =
Γ (ν − iτ + 1) Γ (ν + iτ + 1)

Γ2 (ν + 1)
. (46)
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If ν, τ ∈ R, then the equation (46) has real solutions for the parameter η :
in this case, according to the relation (see e. g. [14], p. 82)

|Γ (ν − iτ + 1)| ≤ |Γ (ν + 1)|

one obtains from (46) an inequality |cos (τη) | ≤ 1. Inserting the expression
(46) into (44), one can write:

Qiτ
ν (z) = exp(−πτ)Γ (ν + iτ + 1)

Γ (ν + 1)
Qν (z) , (47)

ν, τ ∈ R, ν > −1, |arg (z − 1)| < π.

The functions Qν (z) and Q
µ
ν (z) are analytic with respect to ν (see e. g.

[15], p. 157), therefore, by analytic continuation, the relation (47) is fulfilled
for Reν > −1, τ ∈ R, |arg (z − 1)| < π. So, we have proved the next

Statement. If Reν > −1, τ ∈ R, then the behavior of Qiτ
ν (z) is condi-

tioned by the function Qν (z) according the formula (47).
Accordingly, one concludes that the principal value of Qiτ

ν (z) is analytic
if z does not lie on the cut (−∞, 1] .

If |ν| → ∞. due to the representation (see e. g. [5], 1.18(4), p. 62)

Γ (z + α)

Γ (z + β)
= zα−β , |z| → ∞, (48)

(46) gives:

cos (τη) = 1, η = 2πk/τ , k = 0,±1, .. .

In this case, substituting (46) into (44) and using formula (48) one can derive
an asymptotic expression (τ ∈ R):

Qiτ
ν (z) = exp(−πτ)νiτQν (z) , Reν > −1, |ν| → ∞. (49)

It is known that the function (6) has the asymptotic behavior (see e. g. [1],
p. 330):

Qν (z) = ν−1/2 exp [− (ν + 1/2) ξ] , ξ = cosh−1z, (50)

Reν > 0, |ν| → ∞.
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The expression (50) can be rewritten as follows:

Qν (z) = ν−1/2
(

z +
√
z2 − 1

)

−ν−1/2

, Reν > 0, |ν| → ∞. (51)

Inserting formulas (50) and (51) into (49) one obtains, respectively (τ ∈ R):

Qiτ
ν (z) = ν−1/2+iτ exp [−πτ − (ν + 1/2) ξ ] , Reν > 0, |ν| → ∞,

Qiτ
ν (z) = ν−1/2+iτ exp(−πτ)

(

z +
√
z2 − 1

)−ν−1/2
, Reν > 0, |ν| → ∞.

In addition, inserting the asymptotic relation (see e. g. [11], p. 220)

Qν (z) = − ln (z − 1)

2Γ (ν + 1)
(52)

(z → 1, ν 6= −1, −2, . . . , |arg (z − 1)| < π)

into (47), one can find the behavior of the function Qiτ
ν (z) in the neighbor-

hood of the point z = 1 :

Qiτ
ν (z) = −1

2
exp(−πτ)Γ (ν + iτ + 1)

Γ2 (ν + 1)
ln (z − 1) (53)

(z → 1, ν, τ ∈ R, ν > −1, |arg (z − 1)| < π) .

According to the formulas (52) and (53) the order of singularity of the
function Qµ

ν (z) at the neighborhood of the point z = 1 does not depend on
the imaginary part of the parameter µ. The character of the singularity is
caused by the real part of µ. For instance (see e. g. [5], p. 164):

Qµ
ν (z) = 1/2 exp(−iµπ )2µ/2−1Γ (µ) (z − 1)−µ/2, z → 1, Reµ > 0. (54)

4 Conclusions

We have studied the Euler beta function of imaginary parameters and found
its relation with the Dirac delta function [4]. For some functions, we have
defined the Mellin transform of the imaginary parameters. Also, we have
shown that the weak limit of the HF function exists, for the specific set of
the parameters.
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We have found the relation with the Legendre functions of the second
kind. Based on that, we have derived asymptotic formulas of the Associated
Legendre function of the second kind.

Some of the results obtained are useful in avoiding some quantum mechan-
ical difficulties. For instance, we have calculated a nonrelativistic transition
amplitude of two charged particles of continuous spectra in massive photon
approximation.
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