Left and right magnifying elements in semigroups of linear transformations with restricted range

Samruam Baupradist ${ }^{1}$, Thammarat Panityakul ${ }^{2}$, Ronnason Chinram ${ }^{2,3}$
${ }^{1}$ Department of Mathematics and Computer Science Faculty of Science
Chulalongkorn University
Bangkok 10330, Thailand
${ }^{2}$ Department of Mathematics and Statistics
Faculty of Science
Prince of Songkla University
Hat Yai, Songkhla 90110, Thailand
${ }^{3}$ Centre of Excellence in Mathematics
CHE, Si Ayuthaya Road
Bangkok 10400, Thailand

email: samruam.b@chula.ac.th, thammarat.p@psu.ac.th, ronnason.c@psu.ac.th
(Received April 2, 2018, Revised May 1, 2018, Accepted May 5, 2018)

Abstract

An element a of a semigroup S is called left [right] magnifying if there exists a proper subset M of S such that $S=a M[S=M a]$. Let $L(V)$ be the linear transformation semigroup on a vector space V. It is well-known that $L(V)$ contains left [right] magnifying elements if and only if the dimension of V is infinite. In case its dimension is infinite, α is left magnifying if and only if α is surjective and not injective and α is right magnifying if and only if α is injective and not

Key words and phrases: magnifying elements, linear transformation semigroups, vector spaces, basis.
AMS (MOS) Subject Classifications: 20M10, 20M20.
ISSN 1814-0432, 2019, http://ijmcs.future-in-tech.net
surjective. To generalize this results, let W be a subspace of V and $L(V, W)=\{\alpha \in L(V) \mid \operatorname{im} \alpha \subseteq W\}$. Then $L(V, W)$ is a subsemigroup of $L(V)$ and if $W=V$, then $L(V, W)=L(V)$. Our purpose in this paper is to give necessary and sufficient conditions for elements in $L(V, W)$ to be left or right magnifying.

1 Introduction and Preliminaries

The notions of left and right magnifying elements of a semigroup were introduced by Ljapin [6]. An element a of a semigroup S is called left [right] magnifying if there exists a proper subset M of S such that $S=a M[S=M a]$. Some author determined several properties of left and right magnifying elements in semigroups. Migliorini [8] gave some remarkable properties of left and right magnifying elements in semigroups. Minimal subsets associated with the left [right] magnifying were introduced and studied by Migliorini [9]. Catino and Migliorini [1] gave necessary and sufficient conditions for any semigroup to contain left and right magnifying elements. Gutan [4] studied semigroups with strong and non strong magnifying elements. Gutan [5] showed that every semigroup containing magnifying elements is factorizable. Recently, Chinram and Baupradist gave necessary and sufficient conditions for elements in some generalized transformation semigroups in [2] and [3]. Let V be a vector space over a field F and let $L(V)$ denote the set of all linear transformations from V into itself, that is, $L(V)=\{\alpha: V \rightarrow V \mid \alpha$ is a linear transformation $\}$. It is well-known that $L(V)$ is a semigroup under the composition of maps and the semigroup $L(V)$ is called the linear transformation semigroup on V. Magill, Jr. [7] studied left magnifying elements and right magnifying elements in transformation semigroups and applied to linear transformation semigroups over a vector space and semigroups of all continuous selfmaps of a topological space. Moreover, he gave necessary and sufficient conditions for elements in $L(V)$ to be left or right magnifying.

Theorem 1.1. ([7]) $L(V)$ contains left [right] magnifying elements if and only if the dimension of V is infinite. In case its dimension is infinite, $\alpha \in L(V)$ is a left magnifying element if and only if α is surjective and not injective and α is a right magnifying element if and only if α is injective and not surjective.

To generalize a semigroup $L(V)$ and Theorem 1.1, let W be a subspace of V and $L(V, W)=\{\alpha \in L(V) \mid \operatorname{im} \alpha \subseteq W\}$. Then $L(V, W)$ is a subsemigroup of $L(V)$ and $L(V, V)=L(V)$. Sulivan gave some remarkable properties of
$L(V, W)$ in [11]. Recently, Sommanee and Sanghanan [10] studied the regular part of $L(V, W)$. Our purpose in this paper is to give necessary and sufficient conditions for elements in $L(V, W)$ to be left or right magnifying.

2 Main Results

We will write functions from the right, $(v) \alpha$ rather than $\alpha(v)$ and compose from the left to the right, $(v)(\alpha \beta)$ rather than $(\beta \circ \alpha)(v)$, for $\alpha, \beta \in L(V)$ and $v \in V$.

2.1 Left magnifying elements

Lemma 2.1. If $\operatorname{dim} W<\operatorname{dim} V$, then $L(V, W)$ has no left magnifying element.

Proof. If $\operatorname{dim} W=0$, then $W=\{0\}$ and $|L(V, W)|=1$. This implies that $L(V, W)$ has no left magnifying element. Assume that $\operatorname{dim} W>0$. Let α be a left magnifying element in $L(V, W)$. So there exists a proper subset M of $L(V, W)$ such that $\alpha M=L(V, W)$. Since $\operatorname{dim} W<\operatorname{dim} V, \alpha$ is not injective. So there exist $w \in W$ and $v_{1}, v_{2} \in V$ such that $\left\{v_{1}, v_{2}\right\}$ is linearly independent and $\left(v_{1}\right) \alpha=\left(v_{2}\right) \alpha=w$. Let $w^{\prime} \in W$ be such that $w^{\prime} \neq w$ and B be a basis of V containing v_{1} and v_{2}. Define $\beta \in L(V, W)$ on B by for $b \in B$,

$$
(b) \beta= \begin{cases}w & \text { if } v=v_{1} \\ w^{\prime} & \text { if } v \neq v_{1}\end{cases}
$$

Then there is no $\gamma \in L(V, W)$ such that $\alpha \gamma=\beta$, a contradiction. Hence $L(V, W)$ has no left magnifying element.

Lemma 2.2. Assume that $\operatorname{dim} W=\operatorname{dim} V$. If α is a left magnifying element in $L(V, W)$, then α is injective.

Proof. Assume that α is a left magnifying element in $L(V, W)$. Then there exists a proper subset M of $L(V, W)$ such that $\alpha M=L(V, W)$. Since $\operatorname{dim} W=$ $\operatorname{dim} V$, there exists an injective linear transformation β in $L(V, W)$. Therefore there exists $\gamma \in M$ such that $\alpha \gamma=\beta$. This implies α is injective.

Lemma 2.3. Assume that $W \neq V$. Let $\alpha \in L(V, W)$. If α is injective, then α is a left magnifying element in $L(V, W)$.

Proof. Assume that $W \neq V$ and α is injective. Let $M=\{\gamma \in L(V, W) \mid$ $(v) \gamma=0$ for all $v \notin \operatorname{im} \alpha\}$. We claim that $\alpha M=L(V, W)$. Let $\beta \in L(V, W)$. Let B^{\prime} be a basis of V. Since α is injective, $A=\left\{(b) \alpha \mid b \in B^{\prime}\right\}$ is linearly independent and $<A>=\operatorname{im} \alpha$. Let B be a basis of V containing A. Define $\gamma \in L(V, W)$ on B by for $x \in B$

$$
(x) \gamma= \begin{cases}(b) \beta & \text { if } x \in A \text { and } x=(b) \alpha \\ 0 & \text { otherwise }\end{cases}
$$

Then $(v) \gamma=0$ for all $v \notin \operatorname{im} \alpha$, and so $\gamma \in M$. For $b \in B^{\prime}$, we have (b) $\alpha \gamma=((b) \alpha) \gamma=(b) \beta$. Then $\alpha \gamma=\beta$, this implies that $\alpha M=L(V, W)$. Hence α is a left magnifying element in $L(V, W)$.

Example 2.1. Let V be a vector space over a field \mathbb{R} such that $\operatorname{dim} V=\aleph_{0}$ and $B=\left\{b_{n} \mid n \in \mathbb{N}\right\}$ is a basis of V. Let $W=<\left\{b_{n} \mid n \in 2 \mathbb{N}\right\}>$. Define $\alpha \in$ $L(V, W)$ on B by $\left(b_{n}\right) \alpha=b_{2 n}$ for all positive integers n. Then α is injective. Let $M=\left\{\gamma \in L(V, W) \mid\left(b_{2 n-1}\right) \gamma=0\right.$ for all $\left.n \in \mathbb{N}\right\}$. Let $\beta \in L(V, W)$. By Lemma 2.3, we define $\gamma \in L(V, W)$ by for all $n \in \mathbb{N},\left(b_{2 n}\right) \gamma=\left(b_{n}\right) \beta$ and $\left(b_{2 n-1}\right) \gamma=0$. So $\gamma \in M$ and $\alpha \gamma=\beta$.

For example, if $\beta \in L(V, W)$ such that $\left(b_{n}\right) \beta=b_{4 n}$ for all $n \in \mathbb{N}$. Define $\gamma \in L(V, W)$ on B by $\left(b_{2 n}\right) \gamma=b_{4 n}$ and $\left(b_{2 n-1}\right) \gamma=0$ for all $n \in \mathbb{N}$. So $\gamma \in M$ and if $n \in \mathbb{N}$, we have $\left(b_{n}\right) \alpha \gamma=\left(\left(b_{n}\right) \alpha\right) \gamma=\left(b_{2 n}\right) \gamma=b_{4 n}=\left(b_{n}\right) \beta$.

Theorem 2.4. Assume that $\operatorname{dim} W=\operatorname{dim} V$ and $W \neq V$. Then α is left magnifying of $L(V, W)$ if and only if α is injective.

Proof. This follows from Lemma 2.2 and Lemma 2.3.
Corollary 2.5. Let $\alpha \in L(V)$. α is a left magnifying element in $L(V)$ if and only if α is injective but not surjective.

Proof. Assume that α is injective but not surjective. Let $M=\{\gamma \in L(V) \mid$ $(v) \gamma=0$ for all $v \notin \operatorname{im} \alpha\}$. We claim that $\alpha M=L(V)$. Let $\beta \in L(V)$. Let B^{\prime} be a basis of V. Clearly, $A=\left\{(b) \alpha \mid b \in B^{\prime}\right\}$ is linearly independent and so A is a basis of im α. Let B be a basis of V containing A. Define $\gamma \in L(V)$ on B by for $x \in B$

$$
(x) \gamma= \begin{cases}(b) \beta & \text { if } x \in A \text { and } x=(b) \alpha \\ 0 & \text { if } x \notin A .\end{cases}
$$

Then $\gamma \in M$ and for $b \in B^{\prime}$, we have $(b) \alpha \gamma=((b) \alpha) \gamma=(b) \beta$. Thus $\alpha \gamma=\beta$, this implies that $\alpha M=L(V)$. Therefore α is a left magnifying element in $L(V)$. Conversely, assume that α is a left magnifying element in $L(V)$. By Lemma 2.2, we have α is injective. Suppose α is surjective. Since α is bijective, α^{-1} is defined and $\alpha^{-1} \in L(V)$. Since α is a left magnifying element in $L(V)$, there exists a proper subset M of $L(V)$ such that $\alpha M=$ $L(V)$. We have $\alpha M=\alpha L(V)$ and so $M=\alpha^{-1} \alpha M=\alpha^{-1} \alpha L(V)=L(V)$, a contradiction, this implies that α is injective but not surjective.

2.2 Right magnifying elements

Lemma 2.6. If α is a right magnifying element in $L(V, W)$, then α is surjective.

Proof. Assume that α is a right magnifying element in $L(V, W)$. Therefore there exists a proper subset M of $L(V, W)$ such that $M \alpha=L(V, W)$. Since $W \subseteq V$, there exists a surjective linear transformation β in $L(V, W)$. Then there exists $\gamma \in M$ such that $\gamma \alpha=\beta$. This implies that α is surjective.

Lemma 2.7. Let $\alpha \in L(V, W)$ be surjective but not injective.
(1) If $(w) \alpha^{-1} \cap W=\emptyset$ for some $w \in W$, then α is not right magnifying.
(2) If $\left|(w) \alpha^{-1} \cap W\right|=1$ for all $w \in W$, then α is not right magnifying.
(3) If $(w) \alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$ and $\left|(w) \alpha^{-1} \cap W\right|>1$ for some $w \in W$, then α is right magnifying.

Proof. Let $\alpha \in L(V, W)$ be surjective but not injective.
(1) Assume that $(w) \alpha^{-1} \cap W=\emptyset$ for some $w \in W$. Let $w_{0} \in W$ be such that $\left(w_{0}\right) \alpha^{-1} \cap W=\emptyset$. Let B be a basis of V and define $\beta \in L(V, W)$ on B by $(b) \beta=w_{0}$ for all $b \in B$. Then there is no $\gamma \in L(V, W)$ such that $\gamma \alpha=\beta$. Then α is not right magnifying.
(2) Assume that $\left|(w) \alpha^{-1} \cap W\right|=1$ for all $w \in W$. Then $\left.\alpha\right|_{W}$ is bijective. Suppose α is right magnifying. Then there exists a proper subset M of $L(V, W)$ such that $M \alpha=L(V, W)$. Hence $M \alpha=L(V, W) \alpha$. Since $\left.\alpha\right|_{W}$ is bijective, $M=L(V, W)$, a contradiction. Therefore α is not right magnifying.
(3) Assume that $(w) \alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$ and $\left|(w) \alpha^{-1} \cap W\right|>1$ for some $w \in W$. Let $M=\{\gamma: V \rightarrow W \mid \gamma$ is not surjective $\}$. Then $M \neq L(V, W)$. Let β be any linear transformation in $L(V, W)$. Let B be a basis of V. Since α is surjective and $(w) \alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$, we
have for all $b \in B$, there exists $w_{b} \in W$ such that $\left(w_{b}\right) \alpha=(b) \beta$. Define $\gamma \in L(V, W)$ on a basis B of V by $(b) \gamma=w_{b}$ for all $b \in B$. Since α is not injective and $\left|(w) \alpha^{-1} \cap W\right|>1$ for some $w \in W, \gamma$ is not surjective. Then $\gamma \in M$ and for all $b \in B$, we have $(b) \gamma \alpha=((b) \gamma) \alpha=\left(w_{b}\right) \alpha=(b) \beta$. Thus $\gamma \alpha=\beta$, hence $M \alpha=L(V, W)$. Therefore α is right magnifying.

Example 2.2. Let V be a vector space over a field \mathbb{R} such that $\operatorname{dim} V=\aleph_{0}$ and $B=\left\{b_{n} \mid n \in \mathbb{N}\right\}$ is a basis of V. Let $W=<\left\{b_{n} \mid n \in 2 \mathbb{N}\right\}>$. Let $\alpha \in L(V, W)$ by $\left(b_{1}\right) \alpha=\left(b_{2}\right) \alpha=b_{2}$ and $\left(b_{2 n}\right) \alpha=\left(b_{2 n-1}\right) \alpha=b_{2 n-2}$ for all positive integer $n>1$. Then α is surjective but not injective such that $(w) \alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$ and $\left|(w) \alpha^{-1} \cap W\right|>1$ for some $w \in W$. Let $M=\{\gamma \in L(V, W) \mid \gamma$ is not surjective $\}$. Let $\beta \in L(V, W)$ be any linear transformation. By Lemma 2.7(3), we can define $\gamma \in L(V, W)$ such that $\gamma \in M$ and $\gamma \alpha=\beta$.

For example, if β is an element in $L(V, W)$ such that $\left(b_{n}\right) \beta=b_{2 n}$ for all $b_{n} \in B$. Define a linear transformation $\gamma \in L(V, W)$ by $\left(b_{n}\right) \gamma=b_{2 n+2}$ for all $n \in \mathbb{N}$. So $\gamma \in M$ and if $n \in \mathbb{N}$, we have $\left(b_{n}\right) \gamma \alpha=\left(\left(b_{n}\right) \gamma\right) \alpha=\left(b_{2 n+2}\right) \alpha=$ $b_{2 n}=\left(b_{n}\right) \beta$.

Theorem 2.8. α is right magnifying in $L(V, W)$ if and only if α is surjective but not injective such that $(w) \alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$ and $\left|(w) \alpha^{-1} \cap W\right|>$ 1 for some $w \in W$.

Proof. Assume that α is right magnifying. By Lemma 2.6, α is surjective. Suppose α is injective. Since α is right magnifying, there exists a proper subset M of $L(V, W)$ such that $M \alpha=L(V, W)$. This implies that $M \alpha=$ $L(V, W) \alpha$. Since α is injective, $M=L(V, W)$, a contradiction. Hence α is not injective. By Lemma 2.7, we have α is surjective but not injective such that $(w) \alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$ and $\left|(w) \alpha^{-1} \cap W\right|>1$ for some $w \in W$. Conversely, assume that α is surjective but not injective such that $(w) \alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$ and $\left|(w) \alpha^{-1} \cap W\right|>1$ for some $w \in W$. By Lemma 2.7, we have α is right magnifying.

Corollary 2.9. Let $\alpha \in L(V) . \alpha$ is right magnifying in $L(V)$ if and only if α is surjective but not injective.

Proof. This follows by Theorem 2.8 and the fact that if α is surjective but not injective, then $(v) \alpha^{-1} \cap V \neq \emptyset$ for all $v \in V$ and $\left|(v) \alpha^{-1} \cap V\right|>1$ for some $v \in V$.

3 Conclusion

We give necessary and sufficient conditions for elements in $L(V, W)$ to be left or right magnifying.

1. If $\operatorname{dim} W<\operatorname{dim} V$, then $L(V, W)$ has no left magnifying element.
2. If $\operatorname{dim} W=\operatorname{dim} V$ and $W \neq V$, then α is left magnifying in $L(V, W)$ if and only if α is injective.
3. α is left magnifying in $L(V)$ if and only if α is injective but not surjective.
4. α is right magnifying in $L(V, W)$ if and only if α is surjective but not injective such that $(w) \alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$ and $\left|(w) \alpha^{-1} \cap W\right|>1$ for some $w \in W$.
5. α is right magnifying in $L(V)$ if and only if α is surjective but not injective.

Acknowledgments: This paper was supported by Algebra and Applications Research Unit, Prince of Songkla University.

References

[1] F. Catino, F. Migliorini, Magnifying elements in semigroups, Semigroup Forum, 44, 1992, 314-319.
[2] R. Chinram, S. Baupradist, Magnifying elements in a semigroup of transformations with restricted range, Missouri Journal of Mathematical Sciences, 30, (2018), 54-58.
[3] R. Chinram, S. Baupradist, Magnifying elements in semigroups of transformations with invariant set, Asian-European Journal of Mathematics, 12, (2019), Article 1950056.
[4] M. Gutan, Semigroups with strong and nonstrong magnifying elements, Semigroup Forum, 53, 1996, 384-386.
[5] M. Gutan, Semigroups which contain magnifying elements are factorizable, Communications in Algebra, 25, 1997, 3953-3963.
[6] E. S. Ljapin, Semigroups, Transl. Math. Monographs, Vol. 3, Providence Rhode Island, 1963.
[7] K. D. Magill, Jr, Magnifying elements of transformation semigroups, Semigroup Forum, 48, 1994, 119-126.
[8] F. Migliorini, Some research on semigroups with magnifying elements, Periodica Mathematica Hungarica, 1, 1971, 279-286.
[9] F. Migliorini, Magnifying elements and minimal subsemigroups in semigroups, Periodica Mathematica Hungarica, 5, 1974, 279-288.
[10] W. Sommanee, K. Sanghanan, The regular part of a semigroup of linear transformations with restricted range, Journal of the Australian Mathematical Society, 103, 2017, 402-419.
[11] R. P. Sulivan, Semigroups of linear transformations with restricted range, Bulletin of the Australian Mathematical Society, 77, 2008, 441453.

