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Abstract

An element a of a semigroup S is called left [right] magnifying if
there exists a proper subset M of S such that S = aM [S = Ma].
Let L(V ) be the linear transformation semigroup on a vector space V.
It is well-known that L(V ) contains left [right] magnifying elements
if and only if the dimension of V is infinite. In case its dimension
is infinite, α is left magnifying if and only if α is surjective and not
injective and α is right magnifying if and only if α is injective and not
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surjective. To generalize this results, let W be a subspace of V and
L(V,W ) = {α ∈ L(V ) | imα ⊆ W}. Then L(V,W ) is a subsemigroup
of L(V ) and if W = V , then L(V,W ) = L(V ). Our purpose in this
paper is to give necessary and sufficient conditions for elements in
L(V,W ) to be left or right magnifying.

1 Introduction and Preliminaries

The notions of left and right magnifying elements of a semigroup were intro-
duced by Ljapin [6]. An element a of a semigroup S is called left [right] mag-
nifying if there exists a proper subset M of S such that S = aM [S = Ma].
Some author determined several properties of left and right magnifying ele-
ments in semigroups. Migliorini [8] gave some remarkable properties of left
and right magnifying elements in semigroups. Minimal subsets associated
with the left [right] magnifying were introduced and studied by Migliorini
[9]. Catino and Migliorini [1] gave necessary and sufficient conditions for any
semigroup to contain left and right magnifying elements. Gutan [4] stud-
ied semigroups with strong and non strong magnifying elements. Gutan [5]
showed that every semigroup containing magnifying elements is factorizable.
Recently, Chinram and Baupradist gave necessary and sufficient conditions
for elements in some generalized transformation semigroups in [2] and [3].
Let V be a vector space over a field F and let L(V ) denote the set of all
linear transformations from V into itself, that is, L(V ) = {α : V → V | α
is a linear transformation}. It is well-known that L(V ) is a semigroup under
the composition of maps and the semigroup L(V ) is called the linear trans-
formation semigroup on V. Magill, Jr. [7] studied left magnifying elements
and right magnifying elements in transformation semigroups and applied to
linear transformation semigroups over a vector space and semigroups of all
continuous selfmaps of a topological space. Moreover, he gave necessary and
sufficient conditions for elements in L(V ) to be left or right magnifying.

Theorem 1.1. ([7]) L(V ) contains left [right] magnifying elements if and
only if the dimension of V is infinite. In case its dimension is infinite,
α ∈ L(V ) is a left magnifying element if and only if α is surjective and not
injective and α is a right magnifying element if and only if α is injective and
not surjective.

To generalize a semigroup L(V ) and Theorem 1.1, let W be a subspace of
V and L(V,W ) = {α ∈ L(V ) | imα ⊆ W}. Then L(V,W ) is a subsemigroup
of L(V ) and L(V, V ) = L(V ). Sulivan gave some remarkable properties of
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L(V,W ) in [11]. Recently, Sommanee and Sanghanan [10] studied the regular
part of L(V,W ). Our purpose in this paper is to give necessary and sufficient
conditions for elements in L(V,W ) to be left or right magnifying.

2 Main Results

We will write functions from the right, (v)α rather than α(v) and compose
from the left to the right, (v)(αβ) rather than (β ◦ α)(v), for α, β ∈ L(V )
and v ∈ V.

2.1 Left magnifying elements

Lemma 2.1. If dimW < dimV , then L(V,W ) has no left magnifying ele-
ment.

Proof. If dimW = 0, then W = {0} and |L(V,W )| = 1. This implies that
L(V,W ) has no left magnifying element. Assume that dimW > 0. Let α
be a left magnifying element in L(V,W ). So there exists a proper subset
M of L(V,W ) such that αM = L(V,W ). Since dimW < dimV , α is not
injective. So there exist w ∈ W and v1, v2 ∈ V such that {v1, v2} is linearly
independent and (v1)α = (v2)α = w. Let w′ ∈ W be such that w′ 6= w and
B be a basis of V containing v1 and v2. Define β ∈ L(V,W ) on B by for
b ∈ B,

(b)β =

{

w if v = v1,

w′ if v 6= v1.

Then there is no γ ∈ L(V,W ) such that αγ = β, a contradiction. Hence
L(V,W ) has no left magnifying element.

Lemma 2.2. Assume that dimW = dimV . If α is a left magnifying element
in L(V,W ), then α is injective.

Proof. Assume that α is a left magnifying element in L(V,W ). Then there ex-
ists a proper subset M of L(V,W ) such that αM = L(V,W ). Since dimW =
dimV , there exists an injective linear transformation β in L(V,W ). There-
fore there exists γ ∈ M such that αγ = β. This implies α is injective.

Lemma 2.3. Assume that W 6= V . Let α ∈ L(V,W ). If α is injective, then
α is a left magnifying element in L(V,W ).
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Proof. Assume that W 6= V and α is injective. Let M = {γ ∈ L(V,W ) |
(v)γ = 0 for all v /∈ imα}. We claim that αM = L(V,W ). Let β ∈ L(V,W ).
Let B′ be a basis of V . Since α is injective, A = {(b)α | b ∈ B′} is linearly
independent and < A >= imα. Let B be a basis of V containing A. Define
γ ∈ L(V,W ) on B by for x ∈ B

(x)γ =

{

(b)β if x ∈ A and x = (b)α,

0 otherwise.

Then (v)γ = 0 for all v /∈ imα, and so γ ∈ M . For b ∈ B′, we have
(b)αγ = ((b)α)γ = (b)β. Then αγ = β, this implies that αM = L(V,W ).
Hence α is a left magnifying element in L(V,W ).

Example 2.1. Let V be a vector space over a field R such that dimV = ℵ0

andB = {bn | n ∈ N} is a basis of V . LetW =< {bn | n ∈ 2N} >. Define α ∈
L(V,W ) on B by (bn)α = b2n for all positive integers n. Then α is injective.
Let M = {γ ∈ L(V,W ) | (b2n−1)γ = 0 for all n ∈ N}. Let β ∈ L(V,W ).
By Lemma 2.3, we define γ ∈ L(V,W ) by for all n ∈ N, (b2n)γ = (bn)β and
(b2n−1)γ = 0. So γ ∈ M and αγ = β.

For example, if β ∈ L(V,W ) such that (bn)β = b4n for all n ∈ N. Define
γ ∈ L(V,W ) on B by (b2n)γ = b4n and (b2n−1)γ = 0 for all n ∈ N. So γ ∈ M
and if n ∈ N, we have (bn)αγ = ((bn)α)γ = (b2n)γ = b4n = (bn)β.

Theorem 2.4. Assume that dimW = dimV and W 6= V . Then α is left
magnifying of L(V,W ) if and only if α is injective.

Proof. This follows from Lemma 2.2 and Lemma 2.3.

Corollary 2.5. Let α ∈ L(V ). α is a left magnifying element in L(V ) if
and only if α is injective but not surjective.

Proof. Assume that α is injective but not surjective. Let M = {γ ∈ L(V ) |
(v)γ = 0 for all v /∈ imα}. We claim that αM = L(V ). Let β ∈ L(V ). Let
B′ be a basis of V . Clearly, A = {(b)α | b ∈ B′} is linearly independent and
so A is a basis of imα. Let B be a basis of V containing A. Define γ ∈ L(V )
on B by for x ∈ B

(x)γ =

{

(b)β if x ∈ A and x = (b)α,

0 if x /∈ A.
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Then γ ∈ M and for b ∈ B′, we have (b)αγ = ((b)α)γ = (b)β. Thus αγ = β,
this implies that αM = L(V ). Therefore α is a left magnifying element
in L(V ). Conversely, assume that α is a left magnifying element in L(V ).
By Lemma 2.2, we have α is injective. Suppose α is surjective. Since α
is bijective, α−1 is defined and α−1 ∈ L(V ). Since α is a left magnifying
element in L(V ), there exists a proper subset M of L(V ) such that αM =
L(V ). We have αM = αL(V ) and so M = α−1αM = α−1αL(V ) = L(V ), a
contradiction, this implies that α is injective but not surjective.

2.2 Right magnifying elements

Lemma 2.6. If α is a right magnifying element in L(V,W ), then α is sur-
jective.

Proof. Assume that α is a right magnifying element in L(V,W ). Therefore
there exists a proper subset M of L(V,W ) such that Mα = L(V,W ). Since
W ⊆ V , there exists a surjective linear transformation β in L(V,W ). Then
there exists γ ∈ M such that γα = β. This implies that α is surjective.

Lemma 2.7. Let α ∈ L(V,W ) be surjective but not injective.

(1) If (w)α−1 ∩W = ∅ for some w ∈ W , then α is not right magnifying.

(2) If |(w)α−1 ∩W | = 1 for all w ∈ W , then α is not right magnifying.

(3) If (w)α−1 ∩ W 6= ∅ for all w ∈ W and |(w)α−1 ∩ W | > 1 for some
w ∈ W , then α is right magnifying.

Proof. Let α ∈ L(V,W ) be surjective but not injective.
(1) Assume that (w)α−1 ∩W = ∅ for some w ∈ W . Let w0 ∈ W be such

that (w0)α
−1 ∩W = ∅. Let B be a basis of V and define β ∈ L(V,W ) on B

by (b)β = w0 for all b ∈ B. Then there is no γ ∈ L(V,W ) such that γα = β.
Then α is not right magnifying.

(2) Assume that |(w)α−1 ∩W | = 1 for all w ∈ W . Then α|W is bijective.
Suppose α is right magnifying. Then there exists a proper subset M of
L(V,W ) such that Mα = L(V,W ). Hence Mα = L(V,W )α. Since α|W is
bijective, M = L(V,W ), a contradiction. Therefore α is not right magnifying.

(3) Assume that (w)α−1 ∩W 6= ∅ for all w ∈ W and |(w)α−1 ∩W | > 1
for some w ∈ W . Let M = {γ : V → W | γ is not surjective}. Then
M 6= L(V,W ). Let β be any linear transformation in L(V,W ). Let B be
a basis of V . Since α is surjective and (w)α−1 ∩W 6= ∅ for all w ∈ W , we
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have for all b ∈ B, there exists wb ∈ W such that (wb)α = (b)β. Define
γ ∈ L(V,W ) on a basis B of V by (b)γ = wb for all b ∈ B. Since α is not
injective and |(w)α−1 ∩W | > 1 for some w ∈ W , γ is not surjective. Then
γ ∈ M and for all b ∈ B, we have (b)γα = ((b)γ)α = (wb)α = (b)β. Thus
γα = β, hence Mα = L(V,W ). Therefore α is right magnifying.

Example 2.2. Let V be a vector space over a field R such that dimV = ℵ0

and B = {bn | n ∈ N} is a basis of V . Let W =< {bn | n ∈ 2N} >.
Let α ∈ L(V,W ) by (b1)α = (b2)α = b2 and (b2n)α = (b2n−1)α = b2n−2 for
all positive integer n > 1. Then α is surjective but not injective such that
(w)α−1 ∩W 6= ∅ for all w ∈ W and |(w)α−1 ∩W | > 1 for some w ∈ W . Let
M = {γ ∈ L(V,W ) | γ is not surjective}. Let β ∈ L(V,W ) be any linear
transformation. By Lemma 2.7(3), we can define γ ∈ L(V,W ) such that
γ ∈ M and γα = β.

For example, if β is an element in L(V,W ) such that (bn)β = b2n for all
bn ∈ B. Define a linear transformation γ ∈ L(V,W ) by (bn)γ = b2n+2 for all
n ∈ N. So γ ∈ M and if n ∈ N, we have (bn)γα = ((bn)γ)α = (b2n+2)α =
b2n = (bn)β.

Theorem 2.8. α is right magnifying in L(V,W ) if and only if α is surjective
but not injective such that (w)α−1∩W 6= ∅ for all w ∈ W and |(w)α−1∩W | >
1 for some w ∈ W .

Proof. Assume that α is right magnifying. By Lemma 2.6, α is surjective.
Suppose α is injective. Since α is right magnifying, there exists a proper
subset M of L(V,W ) such that Mα = L(V,W ). This implies that Mα =
L(V,W )α. Since α is injective, M = L(V,W ), a contradiction. Hence α
is not injective. By Lemma 2.7, we have α is surjective but not injective
such that (w)α−1 ∩ W 6= ∅ for all w ∈ W and |(w)α−1 ∩ W | > 1 for some
w ∈ W . Conversely, assume that α is surjective but not injective such that
(w)α−1 ∩W 6= ∅ for all w ∈ W and |(w)α−1 ∩W | > 1 for some w ∈ W . By
Lemma 2.7, we have α is right magnifying.

Corollary 2.9. Let α ∈ L(V ). α is right magnifying in L(V ) if and only if
α is surjective but not injective.

Proof. This follows by Theorem 2.8 and the fact that if α is surjective but
not injective, then (v)α−1 ∩ V 6= ∅ for all v ∈ V and |(v)α−1 ∩ V | > 1 for
some v ∈ V .
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3 Conclusion

We give necessary and sufficient conditions for elements in L(V,W ) to be left
or right magnifying.

1. If dimW < dimV , then L(V,W ) has no left magnifying element.

2. If dimW = dimV and W 6= V , then α is left magnifying in L(V,W ) if
and only if α is injective.

3. α is left magnifying in L(V ) if and only if α is injective but not surjec-
tive.

4. α is right magnifying in L(V,W ) if and only if α is surjective but not
injective such that (w)α−1∩W 6= ∅ for all w ∈ W and |(w)α−1∩W | > 1
for some w ∈ W .

5. α is right magnifying in L(V ) if and only if α is surjective but not
injective.
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