International Journal of Mathematics and Computer Science, **14**(2019), no. 1, 1–8

Left and right magnifying elements in semigroups of linear transformations with restricted range

M CS

Samruam Baupradist¹, Thammarat Panityakul², Ronnason Chinram^{2,3}

¹Department of Mathematics and Computer Science Faculty of Science Chulalongkorn University Bangkok 10330, Thailand

²Department of Mathematics and Statistics Faculty of Science Prince of Songkla University Hat Yai, Songkhla 90110, Thailand

³Centre of Excellence in Mathematics CHE, Si Ayuthaya Road Bangkok 10400, Thailand

email: samruam.b@chula.ac.th, thammarat.p@psu.ac.th, ronnason.c@psu.ac.th

(Received April 2, 2018, Revised May 1, 2018, Accepted May 5, 2018)

Abstract

An element a of a semigroup S is called left [right] magnifying if there exists a proper subset M of S such that S = aM [S = Ma]. Let L(V) be the linear transformation semigroup on a vector space V. It is well-known that L(V) contains left [right] magnifying elements if and only if the dimension of V is infinite. In case its dimension is infinite, α is left magnifying if and only if α is surjective and not injective and α is right magnifying if and only if α is injective and not

Key words and phrases: magnifying elements, linear transformation semigroups, vector spaces, basis.

AMS (MOS) Subject Classifications: 20M10, 20M20. ISSN 1814-0432, 2019, http://ijmcs.future-in-tech.net surjective. To generalize this results, let W be a subspace of V and $L(V,W) = \{\alpha \in L(V) \mid \text{im } \alpha \subseteq W\}$. Then L(V,W) is a subsemigroup of L(V) and if W = V, then L(V,W) = L(V). Our purpose in this paper is to give necessary and sufficient conditions for elements in L(V,W) to be left or right magnifying.

1 Introduction and Preliminaries

The notions of left and right magnifying elements of a semigroup were introduced by Ljapin [6]. An element a of a semigroup S is called left [right] magnifying if there exists a proper subset M of S such that S = aM [S = Ma]. Some author determined several properties of left and right magnifying elements in semigroups. Migliorini [8] gave some remarkable properties of left and right magnifying elements in semigroups. Minimal subsets associated with the left [right] magnifying were introduced and studied by Migliorini [9]. Catino and Migliorini [1] gave necessary and sufficient conditions for any semigroup to contain left and right magnifying elements. Gutan [4] studied semigroups with strong and non strong magnifying elements. Gutan [5] showed that every semigroup containing magnifying elements is factorizable. Recently, Chinram and Baupradist gave necessary and sufficient conditions for elements in some generalized transformation semigroups in [2] and [3]. Let V be a vector space over a field F and let L(V) denote the set of all linear transformations from V into itself, that is, $L(V) = \{\alpha : V \to V \mid \alpha\}$ is a linear transformation. It is well-known that L(V) is a semigroup under the composition of maps and the semigroup L(V) is called the linear transformation semigroup on V. Magill, Jr. [7] studied left magnifying elements and right magnifying elements in transformation semigroups and applied to linear transformation semigroups over a vector space and semigroups of all continuous selfmaps of a topological space. Moreover, he gave necessary and sufficient conditions for elements in L(V) to be left or right magnifying.

Theorem 1.1. ([7]) L(V) contains left [right] magnifying elements if and only if the dimension of V is infinite. In case its dimension is infinite, $\alpha \in L(V)$ is a left magnifying element if and only if α is surjective and not injective and α is a right magnifying element if and only if α is injective and not surjective.

To generalize a semigroup L(V) and Theorem 1.1, let W be a subspace of V and $L(V, W) = \{ \alpha \in L(V) \mid \text{im } \alpha \subseteq W \}$. Then L(V, W) is a subsemigroup of L(V) and L(V, V) = L(V). Sulivan gave some remarkable properties of

Left and right magnifying elements in semigroups...

L(V, W) in [11]. Recently, Sommanee and Sanghanan [10] studied the regular part of L(V, W). Our purpose in this paper is to give necessary and sufficient conditions for elements in L(V, W) to be left or right magnifying.

2 Main Results

We will write functions from the right, $(v)\alpha$ rather than $\alpha(v)$ and compose from the left to the right, $(v)(\alpha\beta)$ rather than $(\beta \circ \alpha)(v)$, for $\alpha, \beta \in L(V)$ and $v \in V$.

2.1 Left magnifying elements

Lemma 2.1. If $\dim W < \dim V$, then L(V, W) has no left magnifying element.

Proof. If dim W = 0, then $W = \{0\}$ and |L(V, W)| = 1. This implies that L(V, W) has no left magnifying element. Assume that dim W > 0. Let α be a left magnifying element in L(V, W). So there exists a proper subset M of L(V, W) such that $\alpha M = L(V, W)$. Since dim $W < \dim V$, α is not injective. So there exist $w \in W$ and $v_1, v_2 \in V$ such that $\{v_1, v_2\}$ is linearly independent and $(v_1)\alpha = (v_2)\alpha = w$. Let $w' \in W$ be such that $w' \neq w$ and B be a basis of V containing v_1 and v_2 . Define $\beta \in L(V, W)$ on B by for $b \in B$,

$$(b)\beta = \begin{cases} w & \text{if } v = v_1, \\ w' & \text{if } v \neq v_1. \end{cases}$$

Then there is no $\gamma \in L(V, W)$ such that $\alpha \gamma = \beta$, a contradiction. Hence L(V, W) has no left magnifying element.

Lemma 2.2. Assume that $\dim W = \dim V$. If α is a left magnifying element in L(V, W), then α is injective.

Proof. Assume that α is a left magnifying element in L(V, W). Then there exists a proper subset M of L(V, W) such that $\alpha M = L(V, W)$. Since dim $W = \dim V$, there exists an injective linear transformation β in L(V, W). Therefore there exists $\gamma \in M$ such that $\alpha \gamma = \beta$. This implies α is injective. \Box

Lemma 2.3. Assume that $W \neq V$. Let $\alpha \in L(V, W)$. If α is injective, then α is a left magnifying element in L(V, W).

Proof. Assume that $W \neq V$ and α is injective. Let $M = \{\gamma \in L(V, W) \mid (v)\gamma = 0 \text{ for all } v \notin \operatorname{im} \alpha\}$. We claim that $\alpha M = L(V, W)$. Let $\beta \in L(V, W)$. Let B' be a basis of V. Since α is injective, $A = \{(b)\alpha \mid b \in B'\}$ is linearly independent and $\langle A \rangle = \operatorname{im} \alpha$. Let B be a basis of V containing A. Define $\gamma \in L(V, W)$ on B by for $x \in B$

$$(x)\gamma = \begin{cases} (b)\beta & \text{if } x \in A \text{ and } x = (b)\alpha, \\ 0 & \text{otherwise.} \end{cases}$$

Then $(v)\gamma = 0$ for all $v \notin \operatorname{im} \alpha$, and so $\gamma \in M$. For $b \in B'$, we have $(b)\alpha\gamma = ((b)\alpha)\gamma = (b)\beta$. Then $\alpha\gamma = \beta$, this implies that $\alpha M = L(V, W)$. Hence α is a left magnifying element in L(V, W).

Example 2.1. Let V be a vector space over a field \mathbb{R} such that dim $V = \aleph_0$ and $B = \{b_n \mid n \in \mathbb{N}\}$ is a basis of V. Let $W = \langle \{b_n \mid n \in 2\mathbb{N}\} \rangle$. Define $\alpha \in L(V, W)$ on B by $(b_n)\alpha = b_{2n}$ for all positive integers n. Then α is injective. Let $M = \{\gamma \in L(V, W) \mid (b_{2n-1})\gamma = 0 \text{ for all } n \in \mathbb{N}\}$. Let $\beta \in L(V, W)$. By Lemma 2.3, we define $\gamma \in L(V, W)$ by for all $n \in \mathbb{N}, (b_{2n})\gamma = (b_n)\beta$ and $(b_{2n-1})\gamma = 0$. So $\gamma \in M$ and $\alpha\gamma = \beta$.

For example, if $\beta \in L(V, W)$ such that $(b_n)\beta = b_{4n}$ for all $n \in \mathbb{N}$. Define $\gamma \in L(V, W)$ on B by $(b_{2n})\gamma = b_{4n}$ and $(b_{2n-1})\gamma = 0$ for all $n \in \mathbb{N}$. So $\gamma \in M$ and if $n \in \mathbb{N}$, we have $(b_n)\alpha\gamma = ((b_n)\alpha)\gamma = (b_{2n})\gamma = b_{4n} = (b_n)\beta$.

Theorem 2.4. Assume that $\dim W = \dim V$ and $W \neq V$. Then α is left magnifying of L(V, W) if and only if α is injective.

Proof. This follows from Lemma 2.2 and Lemma 2.3.

Corollary 2.5. Let $\alpha \in L(V)$. α is a left magnifying element in L(V) if and only if α is injective but not surjective.

Proof. Assume that α is injective but not surjective. Let $M = \{\gamma \in L(V) \mid (v)\gamma = 0 \text{ for all } v \notin \operatorname{im} \alpha\}$. We claim that $\alpha M = L(V)$. Let $\beta \in L(V)$. Let B' be a basis of V. Clearly, $A = \{(b)\alpha \mid b \in B'\}$ is linearly independent and so A is a basis of im α . Let B be a basis of V containing A. Define $\gamma \in L(V)$ on B by for $x \in B$

$$(x)\gamma = \begin{cases} (b)\beta & \text{if } x \in A \text{ and } x = (b)\alpha, \\ 0 & \text{if } x \notin A. \end{cases}$$

Left and right magnifying elements in semigroups...

Then $\gamma \in M$ and for $b \in B'$, we have $(b)\alpha\gamma = ((b)\alpha)\gamma = (b)\beta$. Thus $\alpha\gamma = \beta$, this implies that $\alpha M = L(V)$. Therefore α is a left magnifying element in L(V). Conversely, assume that α is a left magnifying element in L(V). By Lemma 2.2, we have α is injective. Suppose α is surjective. Since α is bijective, α^{-1} is defined and $\alpha^{-1} \in L(V)$. Since α is a left magnifying element in L(V), there exists a proper subset M of L(V) such that $\alpha M = L(V)$. We have $\alpha M = \alpha L(V)$ and so $M = \alpha^{-1}\alpha M = \alpha^{-1}\alpha L(V) = L(V)$, a contradiction, this implies that α is injective but not surjective.

2.2 Right magnifying elements

Lemma 2.6. If α is a right magnifying element in L(V, W), then α is surjective.

Proof. Assume that α is a right magnifying element in L(V, W). Therefore there exists a proper subset M of L(V, W) such that $M\alpha = L(V, W)$. Since $W \subseteq V$, there exists a surjective linear transformation β in L(V, W). Then there exists $\gamma \in M$ such that $\gamma \alpha = \beta$. This implies that α is surjective. \Box

Lemma 2.7. Let $\alpha \in L(V, W)$ be surjective but not injective.

- (1) If $(w)\alpha^{-1} \cap W = \emptyset$ for some $w \in W$, then α is not right magnifying.
- (2) If $|(w)\alpha^{-1} \cap W| = 1$ for all $w \in W$, then α is not right magnifying.
- (3) If $(w)\alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$ and $|(w)\alpha^{-1} \cap W| > 1$ for some $w \in W$, then α is right magnifying.

Proof. Let $\alpha \in L(V, W)$ be surjective but not injective.

(1) Assume that $(w)\alpha^{-1} \cap W = \emptyset$ for some $w \in W$. Let $w_0 \in W$ be such that $(w_0)\alpha^{-1} \cap W = \emptyset$. Let *B* be a basis of *V* and define $\beta \in L(V, W)$ on *B* by $(b)\beta = w_0$ for all $b \in B$. Then there is no $\gamma \in L(V, W)$ such that $\gamma \alpha = \beta$. Then α is not right magnifying.

(2) Assume that $|(w)\alpha^{-1} \cap W| = 1$ for all $w \in W$. Then $\alpha|_W$ is bijective. Suppose α is right magnifying. Then there exists a proper subset M of L(V, W) such that $M\alpha = L(V, W)$. Hence $M\alpha = L(V, W)\alpha$. Since $\alpha|_W$ is bijective, M = L(V, W), a contradiction. Therefore α is not right magnifying.

(3) Assume that $(w)\alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$ and $|(w)\alpha^{-1} \cap W| > 1$ for some $w \in W$. Let $M = \{\gamma : V \to W \mid \gamma \text{ is not surjective}\}$. Then $M \neq L(V,W)$. Let β be any linear transformation in L(V,W). Let B be a basis of V. Since α is surjective and $(w)\alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$, we have for all $b \in B$, there exists $w_b \in W$ such that $(w_b)\alpha = (b)\beta$. Define $\gamma \in L(V, W)$ on a basis B of V by $(b)\gamma = w_b$ for all $b \in B$. Since α is not injective and $|(w)\alpha^{-1} \cap W| > 1$ for some $w \in W$, γ is not surjective. Then $\gamma \in M$ and for all $b \in B$, we have $(b)\gamma\alpha = ((b)\gamma)\alpha = (w_b)\alpha = (b)\beta$. Thus $\gamma\alpha = \beta$, hence $M\alpha = L(V, W)$. Therefore α is right magnifying.

Example 2.2. Let V be a vector space over a field \mathbb{R} such that dim $V = \aleph_0$ and $B = \{b_n \mid n \in \mathbb{N}\}$ is a basis of V. Let $W = \langle \{b_n \mid n \in 2\mathbb{N}\} \rangle$. Let $\alpha \in L(V, W)$ by $(b_1)\alpha = (b_2)\alpha = b_2$ and $(b_{2n})\alpha = (b_{2n-1})\alpha = b_{2n-2}$ for all positive integer n > 1. Then α is surjective but not injective such that $(w)\alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$ and $|(w)\alpha^{-1} \cap W| > 1$ for some $w \in W$. Let $M = \{\gamma \in L(V, W) \mid \gamma \text{ is not surjective}\}$. Let $\beta \in L(V, W)$ be any linear transformation. By Lemma 2.7(3), we can define $\gamma \in L(V, W)$ such that $\gamma \in M$ and $\gamma\alpha = \beta$.

For example, if β is an element in L(V, W) such that $(b_n)\beta = b_{2n}$ for all $b_n \in B$. Define a linear transformation $\gamma \in L(V, W)$ by $(b_n)\gamma = b_{2n+2}$ for all $n \in \mathbb{N}$. So $\gamma \in M$ and if $n \in \mathbb{N}$, we have $(b_n)\gamma\alpha = ((b_n)\gamma)\alpha = (b_{2n+2})\alpha = b_{2n} = (b_n)\beta$.

Theorem 2.8. α is right magnifying in L(V, W) if and only if α is surjective but not injective such that $(w)\alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$ and $|(w)\alpha^{-1} \cap W| > 1$ for some $w \in W$.

Proof. Assume that α is right magnifying. By Lemma 2.6, α is surjective. Suppose α is injective. Since α is right magnifying, there exists a proper subset M of L(V, W) such that $M\alpha = L(V, W)$. This implies that $M\alpha = L(V, W)\alpha$. Since α is injective, M = L(V, W), a contradiction. Hence α is not injective. By Lemma 2.7, we have α is surjective but not injective such that $(w)\alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$ and $|(w)\alpha^{-1} \cap W| > 1$ for some $w \in W$. Conversely, assume that α is surjective but not injective such that $(w)\alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$ and $|(w)\alpha^{-1} \cap W| > 1$ for some $w \in W$. By Lemma 2.7, we have α is right magnifying.

Corollary 2.9. Let $\alpha \in L(V)$. α is right magnifying in L(V) if and only if α is surjective but not injective.

Proof. This follows by Theorem 2.8 and the fact that if α is surjective but not injective, then $(v)\alpha^{-1} \cap V \neq \emptyset$ for all $v \in V$ and $|(v)\alpha^{-1} \cap V| > 1$ for some $v \in V$.

Left and right magnifying elements in semigroups...

3 Conclusion

We give necessary and sufficient conditions for elements in L(V, W) to be left or right magnifying.

- 1. If dim $W < \dim V$, then L(V, W) has no left magnifying element.
- 2. If dim $W = \dim V$ and $W \neq V$, then α is left magnifying in L(V, W) if and only if α is injective.
- 3. α is left magnifying in L(V) if and only if α is injective but not surjective.
- 4. α is right magnifying in L(V, W) if and only if α is surjective but not injective such that $(w)\alpha^{-1} \cap W \neq \emptyset$ for all $w \in W$ and $|(w)\alpha^{-1} \cap W| > 1$ for some $w \in W$.
- 5. α is right magnifying in L(V) if and only if α is surjective but not injective.

Acknowledgments: This paper was supported by Algebra and Applications Research Unit, Prince of Songkla University.

References

- F. Catino, F. Migliorini, Magnifying elements in semigroups, Semigroup Forum, 44, 1992, 314-319.
- [2] R. Chinram, S. Baupradist, Magnifying elements in a semigroup of transformations with restricted range, Missouri Journal of Mathematical Sciences, **30**, (2018), 54–58.
- [3] R. Chinram, S. Baupradist, Magnifying elements in semigroups of transformations with invariant set, Asian-European Journal of Mathematics, 12, (2019), Article 1950056.
- [4] M. Gutan, Semigroups with strong and nonstrong magnifying elements, Semigroup Forum, 53, 1996, 384-386.
- [5] M. Gutan, Semigroups which contain magnifying elements are factorizable, Communications in Algebra, 25, 1997, 3953-3963.

- [6] E. S. Ljapin, Semigroups, Transl. Math. Monographs, Vol. 3, Providence Rhode Island, 1963.
- [7] K. D. Magill, Jr, Magnifying elements of transformation semigroups, Semigroup Forum, 48, 1994, 119-126.
- [8] F. Migliorini, Some research on semigroups with magnifying elements, Periodica Mathematica Hungarica, 1, 1971, 279-286.
- [9] F. Migliorini, Magnifying elements and minimal subsemigroups in semigroups, Periodica Mathematica Hungarica, 5, 1974, 279-288.
- [10] W. Sommanee, K. Sanghanan, The regular part of a semigroup of linear transformations with restricted range, Journal of the Australian Mathematical Society, 103, 2017, 402-419.
- [11] R. P. Sulivan, Semigroups of linear transformations with restricted range, Bulletin of the Australian Mathematical Society, 77, 2008, 441-453.