Finite groups in which nearly S-permutability is a transitive relation

Khaled Mustafa Aljamal1, Ahmad Termimi Ab Ghani1,
Khaled A. Al-Sharo2

1School of Informatics and Applied Mathematics
Universiti Malaysia Terengganu
21030 Kuala Nerus, Terengganu, Malaysia

2Department of Mathematics
Faculty of Science
Al al-Bayt University
Al-Mafraq, Jordan

e-mail: khaled_aljammal@yahoo.com, termimi@umt.edu.my,
sharo_kh@yahoo.com

(Received February 3, 2019, Accepted March 1, 2019)

Abstract

A subgroup H of G is called nearly S-permutable in G if for every prime p such that $(p, |H|) = 1$ and for every subgroup K of G containing H the normalizer $N_K(H)$ contains some Sylow p-subgroup of K. A group G is called an NSPT-group if nearly S-permutability is a transitive relation in G. A number of new characterizations of finite solvable NSPT-groups are given.

1 Introduction

Throughout this paper, we assume that all groups considered are finite. Our notation is standard and consistent with [3]. We introduce and study the class NSPT-group; that is, the class of all finite groups in which nearly S-permutability is a transitive relation. More specifically, we are interested in

Key words and phrases: solvable group, Sylow subgroup, permutable subgroup, nearly S-permutable subgroup.

AMS (MOS) Subject Classifications: 20D10, 20D20, 20D35.

ISSN 1814-0432, 2019, http://ijmcs.future-in-tech.net
subgroups, homomorphic images, and direct product of NSPT-groups and other related algebraic properties.

A subgroup H of a group G is said to permute with a subgroup K if HK is a subgroup of G. H is said to be permutable in G (or S-permutable) if it permutes with all the (Sylow) subgroups of G. One of the earliest results about permutable subgroups [7] states that every permutable subgroup... In [6] Kegel proved that S-permutable subgroups are necessarily subnormal. Actually a result stronger than permutable subgroups is that of subnormal subgroups. For a subgroup H of G, it is enough to know that H permutes with all of its conjugates to deduce that H is subnormal (see [5], p. 50). Nearly S-permutability have been introduced and studied in [2], while permutable and S-permutable subgroups are subnormal while a nearly S-permutable subgroup need not be subnormal in general. As an example one might consider D_{18} the dihedral group of order 18 which has three subgroups of order 6 and each of these subgroups will be nearly S-permutable but not subnormal. There has been several approaches to apply normality, permutability and S-permutability in the study of some finite group classes. To make our point clear we list some helping notations $H_{s-per}G$ denotes H is S-permutable in G, $H_{per}G$ denotes H is permutable in G, and $H_{nsp}G$ denotes H is nearly S-permutable in G. Let ρ be any of the properties {normality, permutability, Sylow permutability}. The property ρ is said to be transitive in a group G if for any two subgroups A and B in G the relations $A \rho B$, and $B \rho G$ always implies $A \rho G$. By T-groups, PT-groups, and PST-groups we denote the class of groups in which normality, (rept. permutability, and S-permutability) is transitive relation.

One of the generalizations for S-permutable subgroups we are interested in is the nearly S-permutable subgroups which was introduced in [2]. In this paper we introduce and study finite groups in which nearly S-permutability is transitive relation. Our main object is to determine some properties of finite solvable NSPT-groups.

We first consider the following definition:

Definition 1.1. (Al-Sharo [2]) A subgroup H of G is called nearly S-permutable in G if for every prime p such that $(p, |H|) = 1$ and for every subgroup K of G containing H the normalizer $N_K(H)$ contains some Sylow p-subgroup of K. We shall write $H_{nsp}G$ to denote that H is nearly S-permutable in G.

Motivated by the theory of T-groups (resp. PT-groups, PST-groups), we introduce the class of NSPT-groups.
Definition 1.2. A group G is called NSPT-group if nearly S-permutability is a transitive relation in G. That is, G is NSPT-group if for all subgroups H and K where $H \ nsp \ K \ nsp \ G$ we have $H \ nsp \ G$.

Since the concept of NSPT-groups relies on nearly S-permutability we fix some elementary properties of nearly S-permutable subgroups that follows directly from the definition.

Remark 1.3. Let H be a nearly S-permutable subgroup of a group G. If K is any subgroup of G such that $H \leq K \leq G$. Then H is nearly S-permutable in K.

Remark 1.4. If G is p-group then every subgroup of G is nearly S-permutable in G.

Remark 1.5. Let us denote by $\pi(G)$ the set of all prime divisors of the group G. If H is subgroup of G such that $\pi(H) = \pi(G)$ then H is nearly S-permutable in G.

It is clear that the class \mathfrak{A} of abelian groups is an example of NSPT-groups. Moreover, \mathfrak{M}_p-the class of all p-groups is another example of NSPT-group. One of the nice facts about the class of NSPT-groups is the following:

Theorem A. Every nilpotent group is NSPT-group.

As an example of non NSPT-group we have the following:

Example 1. Consider the alternating group $A_4 = \langle (1, 2, 3), (1, 2)(3, 4) \rangle$ of order 12. If we take $H = \langle (1, 3)(2, 4), (1, 2)(3, 4) \rangle$ to be the 2-Sylow subgroup of A_4 then H is normal in A_4. Hence, H is nearly S-permutable in A_4. Now H being a group of order 4 then H must abelian and every subgroup of H would be norm in H. Let us take $K = \langle (1, 3)(2, 4) \rangle$. Then $K \ nsp \ H \ nsp \ A_4$ but K is not $nsp \ A_4$. To see this note that $K \leq A_4$, and $g, c, d, (3, |K|) = 1$, and $N_{A_4}(K) = H$ which doesn’t contain any 3-Sylow subgroup of A_4. Therefore, K is not $nsp \ A_4$ and A_4 is not NSPT-group.

In the years 1953, 1964, and 1975, Gaschütz, Zacher, and Agrawal, respectively, proved the following definitive results on solvable T-groups, PT-groups, and PST-groups.

Theorem 1. (Gaschütz [4], Zacher [10], Agrawal [1]) A solvable T-group (PT-group, PST-group) is supersolvable.
The next theorem gives a similar result for NSPT-groups.

Theorem B. A solvable NSPT-group is supersolvable.

Theorem C. If G_1 and G_2 are two NSPT-groups and $(|G_1|, |G_2|) = 1$, then $G = G_1 \times G_2$ is also a NSPT-group.

Remark 1.6. In Theorem C., the condition that $(|G_1|, |G_2|) = 1$ is necessary. The following example shows this.

Example 2. Let $C_3 = \langle c : c^3 = e \rangle$ be the cyclic group of order 3 and $S_3 = \langle a, b : a^3 = b^2 = (ba)^2 = 1 \rangle$ be the symmetric group on 3 letters. Then C_3 -being abelian group- must be NSPT-group. In the group S_3 the only nearly S-permutable subgroups are $\langle e \rangle$, $A_3 = \langle a \rangle$, and S_3 itself. Hence S_3 is also a NSPT-group. Let $D = S_3 \times C_3$. We show that D is not NSPT-group. Let $B = \langle (a, e), (e, c) \rangle \cong A_3 \times C_3$, $B \in Syl_3(D)$. Then B has order 3^2 and index 2 in D. Therefore, B is abelian normal subgroup in D. The normality of B in D implies that B is nearly S-permutable in D. The fact that B is abelian implies that every subgroup of B is nearly S-permutable in B. In particular if we pick $A = \langle (a, c) \rangle$ then A nsp B, and B nsp D, but A is not nsp D. To see this we consider $A \leq G$ with $p = 2$ for which $(2, |A|) = 1$. Then the 2-Sylow subgroup of D has order 2 and is not contained in $N_D(A)$ and A is not nsp D. Hence D is not NSPT-group.

2 Preliminaries

In this section we list some results that are interesting in their own and some of which will be used in the proofs of the given theorem.

Lemma 2.1. (Frattini Argument, see [5, Lemma 1.13.]) Let $N \trianglelefteq G$ and suppose that $P \in Sul_p(N)$. Then $G = N_G(P)N$.

Lemma 2.2. Let G_1 and G_2 be two groups such that $(|G_1|, |G_2|) = 1$, and $G = G_1 \times G_2$. Then the following statements are true:

1) every p-Sylow subgroup of G is isomorphic to a p-Sylow either of G_1 or G_2.

2) for any subgroup $H \leq G$ we have and $N_G(H) \cong N_{G_1}(H_1) \times N_{G_2}(H_2)$. Where $H_i \leq G_i$, for $i \in \{1, 2\}$.
Proof. 1) Since \(G_1 \cap G_2 = 1 \), and \(G_i \trianglelefteq G \). Then \(G \simeq G_1 G_2 \). Now if \(P \in \text{Syl}_p(G) \) and \(P_i \in \text{Syl}_p(G_i) \) then \(P_i = P \cap G_i \), for \(i \in \{1, 2\} \) and 1) follows.

2) The second part of this statement follows from the first, and the first follows from \((|G_1|, |G_2|) = 1\).

Lemma 2.3. Let \(H \) be a subgroup of \(G \). If \(H \) is \(S \)-permutable in \(G \) then \(H \) is nearly \(S \)-permutable in \(G \).

Proof. Let \(H \) be nearly \(S \)-permutable in \(G \). If \(\pi(G) = \pi(H) \) then by Remark 1.5 \(H \) will be nearly \(S \)-permutable in \(G \). So we may assume that \(\pi(G) \setminus \pi(H) \neq \emptyset \). Let \(p \) be any prime in \(\pi(G) \setminus \pi(H) \). For any subgroup \(K \) of \(G \) such that \(H \leq K \leq G \) we pick \(P_K \in \text{Syl}_p(K) \). Since \(H \) is \(S \)-per \(G \), then \(H \) is \(S \)-per \(K \) and therefore \(HP_K \) is a subgroup of \(K \). Therefor, \(H \) is \(S \)-permutable in \(HP_K \). So, \(H \) is subnormal in \(HP_K \). Note that \(g.c.d.(|H|, |HP_K : H|) = 1 \). That is \(H \) is a subnormal Hall subgroup of \(HP_K \). Hence, \(H \) is normal in \(HP_K \). Therefore, \(P_K \leq N_K(H) \) and \(H \) is nearly \(S \)-permutable in \(G \).

Lemma 2.4. ([2, Lemma 2.2]) Let \(G \) be a group, \(H \leq G \) and \(N \) be a normal subgroup of \(G \).

(1) If \(H \) is nearly \(S \)-permutable in \(G \), then \(HN \) is nearly \(S \)-permutable in \(G \).

(2) If \(H \) is nearly \(S \)-permutable in \(G \) and \(H \) is a group of prime power order, then \(H \cap N \) is nearly \(S \)-permutable in \(G \).

(3) If \(H \) is nearly \(S \)-permutable in \(G \) and \(H \) is a group of prime power order, then \(HN/N \) is nearly \(S \)-permutable in \(G/N \) for any normal subgroup \(N \) of \(G \).

(4) If \(H \) is nearly \(S \)-permutable in \(G \) and \(|H| = p^n \) for some prime \(p \), then \(H \leq O_p(G) \).

3 The Proofs

Proof of Theorem A. Let \(G \) be a nilpotent group then every \(p \)-Sylow subgroup of \(G \) is normal in \(G \). Therefore, every \(p \)-Sylow subgroup permutes with every subgroup of \(G \). That means every subgroup of \(G \) is \(S \)-permutable in \(G \). By Lemma 2.3 every subgroup of \(G \) is nearly \(s \)-permutable in \(G \). Hence, \(G \) is \(NSPT \)-group.
Proof of Theorem B. Let G be a solvable group we prove that if G is not supersolvable then G is not $NSPT$-group. Since G is solvable and not supersolvable group then G has a chief factor A/B which is elementary abelian of order p^k for some prime p and an integer $k > 1$. Let P be a p-Sylow subgroup of A. From the Frattini argument (see Lemma 2.1) we get: $G = AN_G(P)$. Since P/B is normal in A/B then P is normal in A, consequently P is characteristic in A. Now P char $A \trianglelefteq G$ implies P normal in G. Hence $N_G(P) = G$. Let Q be a p-subgroup such that $PB \leq Q \leq P$ such that Q/B is in the center of a p-Sylow subgroup of G/B. First, we show that Q is not nearly S-permutable in G.

Since A/B is a chief factor of G, Q can not be normal in G. Since, $N_G(Q) \geq P \in Syl_p(G)$ and $N_G(Q) \neq G$ then there is a prime $r \neq p$ and an r-element $g \in G$ such that $g \notin N_G(Q)$. Let $K = \langle P, g \rangle$. So, $|K| = |P|r^t$ where g has order r^t. So, $N_K(Q)$ does not contain an r-Sylow subgroup R of K. That is Q is not nearly S-permutable in G. Hence, we have: Q nsp P, P nsp G, but Q is not nsp G. Therefore G is not $NSPT$-group. Contradiction, and the theorem follows.

Proof of Theorem C. Let G_1 and G_2 be two $NSPT$-groups with $(|G_1|, |G_2|) = 1$, and set $G = G_1 \times G_2$. Let $A \leq B$ be two subgroups of G such that A is nearly S-permutable in B, and B is nearly S-permutable in G. Assume that A is not nsp G. Then there exists a subgroup K of G such that $A \leq K \leq G$ and for some prime number p with $(p, |A|) = 1$ some p-Sylow subgroup P of K is not in $N_K(A)$. From Lemma 2.2 (1) $P = P_1P_2$ where $P_i \leq G_i$ for $i \in \{1, 2\}$. From $(|G_1|, |G_2|) = 1$ one of the the P_i’s must be 1. So, we may assume that $p \in \pi(G_1)$. It is clear that all the proof’s assumptions may be translated to the group G_1. Again, by Lemma 2.2 (2) and the assumption $(|G_1|, |G_2|) = 1$ we get: $A = A_1A_2$ nsp $B = B_1B_2$ nsp $G = G_1 \times G_2$ implies A_1 nsp B_1 nsp G_1 and A_1 is not nsp G_1. Contradiction with the assumption that G_1 is $NSPT$-group and the theorem is proved.

\[\square\]
References

