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Abstract

In this paper, we study the notions of fuzzy UP-subalgebras and
fuzzy UP-ideals of UP-algebras in term of upper t-(strong) level sub-
sets and lower t-(strong) level subsets of a fuzzy set, and some prop-
erties and results are discussed.

1 Introduction and Preliminaries

The concept of a fuzzy subset of a set was first considered by Zadeh [34] in
1965. The fuzzy set theories developed by Zadeh and others have found many
applications in the domain of mathematics and elsewhere. After the intro-
duction of the concept of fuzzy sets by Zadeh [34], several researches were
conducted on the generalizations of the notion of fuzzy set and application to
many logical algebras such as: In 2000, Jun et al. [15] studied fuzzy I-ideals
in IS-algebras. Roh et al. [24] gave a relation between a fuzzy I -ideal and a
fuzzy associative I -ideal, and investigated some related properties. In 2001,
Lele et al. [19] studied fuzzy ideals and weak ideals in BCK-algebras. Jun
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[11] introduced the notion of Q-fuzzy subalgebras of BCK/BCI-algebras, and
provided some appropriate examples. In 2002, Jun [12] studied the fuzzifica-
tion of sub-implicative ideals in BCI-algebras, and investigated some related
properties. Jun et al. [16] studied fuzzy B-algebras in B-algebras. Yonglin
and Xiaohong [33] introduced the notion of fuzzy a-ideals in BCI-algebras,
and investigated its properties. In 2004, Jun [13] introduced the concept
of (α, β)-fuzzy ideals of BCK/BCI-algebras. In 2005, Akram and Dar [1]
introduced the notions of T -fuzzy subalgebras and T -fuzzy H-ideals in BCI-
algebras and investigated some of their properties. Jun [17] introduced the
notion of (α, β)-fuzzy subalgebras of BCK/BCI-algebras. In 2007, Jun [14]
introduced the notion of fuzzy subalgebras with thresholds of BCK/BCI-
algebras, and obtained its characterizations. Akram and Dar [2] introduced
the notion of fuzzy ideals in K-algebras. In 2008, Saeid and Jun [26] intro-
duced the concept of anti fuzzy subalgebras of BCK/BCI-algebras by using
the notion of anti fuzzy points. In 2009, Saeid and Rezvani [27] introduced
the notion of fuzzy BF-algebra and fuzzy topological BF-algebras. Hadipour
[7] introduced the notion of (α, β)-fuzzy BF-algebras. In 2010, Song et al.
[31] introduced the notion of fuzzy ideals in BE-algebras, and investigated
related properties. In 2011, Mostafa et al. [22] introduced the notion of fuzzy
KU-ideals in KU-algebras. In 2012, Mostafa et al. [21] introduced the notion
of Q-ideals and fuzzy Q-ideals in Q-algebras, and studied their properties.
In 2014, Yamini and Kailasavalli [32] introduced the notion of B-ideals and
fuzzy B-ideals in B-algebras. Rajam and Chandramouleeswaran [23] intro-
duced the notion of L-fuzzy β-subalgebras on β-algebras, and investigated
some of their properties.

Iampan [8] now introduced a new algebraic structure, called a UP-algebra.
The notions of fuzzy subalgebras and fuzzy ideals play an important role
in studying the many logical algebras. Somjanta et al.[30] introduced and
studied fuzzy UP-subalgebras and fuzzy UP-ideals of UP-algebras, and in-
vestigated some of its properties. In this paper, we study the notions of
fuzzy UP-subalgebras and fuzzy UP-ideals of UP-algebras in term of upper
t-(strong) level subsets and lower t-(strong) level subsets of a fuzzy set, and
some properties and results are discussed.

Before we begin our study, we will introduce the definition of a UP-
algebra.

Definition 1.1. [8] An algebra A = (A, ·, 0) of type (2, 0) is called a UP-
algebra, where A is a nonempty set, · is a binary operation on A, and 0 is
a fixed element of A (i.e., a nullary operation) if it satisfies the following
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axioms: for any x, y, z ∈ A,

(UP-1) (y · z) · ((x · y) · (x · z)) = 0,

(UP-2) 0 · x = x,

(UP-3) x · 0 = 0, and

(UP-4) x · y = y · x = 0 implies x = y.

Example 1.2. [29] Let X be a universal set and let Ω ∈ P(X) where P(X)
means the power set of X . Let PΩ(X) = {A ∈ P(X) | Ω ⊆ A}. Define a
binary operation · on PΩ(X) by putting A ·B = B ∩ (AC ∪Ω) for all A,B ∈
PΩ(X) where AC means the complement of a subset A. Then (PΩ(X), ·,Ω)
is a UP-algebra and we shall call it the generalized power UP-algebra of type
1 with respect to Ω. Let PΩ(X) = {A ∈ P(X) | A ⊆ Ω}. Define a binary
operation ∗ on PΩ(X) by putting A∗B = B∪(AC∩Ω) for all A,B ∈ PΩ(X).
Then (PΩ(X), ∗,Ω) is a UP-algebra and we shall call it the generalized power
UP-algebra of type 2 with respect to Ω. In particular, (P(X), ·, ∅) is a UP-
algebra and we shall call it the power UP-algebra of type 1, and (P(X), ∗, X)
is a UP-algebra and we shall call it the power UP-algebra of type 2.

Example 1.3. [6] Let N be the set of all natural numbers with two binary
operations ◦ and • defined by for all x, y ∈ N,

x ◦ y =

{

y if x < y,
0 otherwise

and

x • y =

{

y if x > y or x = 0,
0 otherwise.

Then (N, ◦, 0) and (N, •, 0) are UP-algebras.

Example 1.4. [18] Let A = {0, 1, 2, 3, 4, 5} be a set with a binary operation
· defined by the following Cayley table:

· 0 1 2 3 4 5
0 0 1 2 3 4 5
1 0 0 2 3 2 5
2 0 1 0 3 1 5
3 0 1 2 0 4 5
4 0 0 0 3 0 5
5 0 0 2 0 2 0

Then (A, ·, 0) is a UP-algebra.
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For more examples of UP-algebras, see [3, 9, 28, 29].

In what follows, let A and B denote UP-algebras unless otherwise spec-
ified. The following proposition is very important for the study of UP-
algebras.

Proposition 1.5. [8, 9] In a UP-algebra A, the following properties hold:
for any a, x, y, z ∈ A,

1. x · x = 0,

2. x · y = 0 and y · z = 0 imply x · z = 0,

3. x · y = 0 implies (z · x) · (z · y) = 0,

4. x · y = 0 implies (y · z) · (x · z) = 0,

5. x · (y · x) = 0,

6. (y · x) · x = 0 if and only if x = y · x,

7. x · (y · y) = 0,

8. (x · (y · z)) · (x · ((a · y) · (a · z))) = 0,

9. (((a · x) · (a · y)) · z) · ((x · y) · z) = 0,

10. ((x · y) · z) · (y · z) = 0,

11. x · y = 0 implies x · (z · y) = 0,

12. ((x · y) · z) · (x · (y · z)) = 0, and

13. ((x · y) · z) · (y · (a · z)) = 0.

On a UP-algebra A = (A, ·, 0), we define a binary relation ≤ on A [8] as
follows: for all x, y ∈ A,

x ≤ y if and only if x · y = 0.

Definition 1.6. [8] A subset B of A is called a UP-ideal of A if it satisfies
the following properties:

1. the constant 0 of A is in B, and

2. for any x, y, z ∈ A, x · (y · z) ∈ B and y ∈ B imply x · z ∈ B.
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Definition 1.7. [8] A subset S of A is called a UP-subalgebra of A if the
constant 0 of A is in S, and (S, ·, 0) itself forms a UP-algebra.

Proposition 1.8. [8] A nonempty subset S of a UP-algebra A = (A, ·, 0) is
a UP-subalgebra of A if and only if S is closed under the · multiplication on
A.

Definition 1.9. [34] A fuzzy set in a nonempty set X (or a fuzzy subset of
X) is an arbitrary function f : X → [0, 1] where [0, 1] is the unit segment of
the real line.

Definition 1.10. [30] A fuzzy set f in A is called a fuzzy UP-ideal of A if
it satisfies the following properties: for any x, y, z ∈ A,

1. f(0) ≥ f(x), and

2. f(x · z) ≥ min{f(x · (y · z)), f(y)}.

Definition 1.11. [30] A fuzzy set f in A is called a fuzzy UP-subalgebra of
A if for any x, y ∈ A,

f(x · y) ≥ min{f(x), f(y)}.

Definition 1.12. [30] Let f be a fuzzy set in A. The fuzzy set f defined by
f(x) = 1− f(x) for all x ∈ A is called the complement of f in A.

Remark 1.13. For all fuzzy set f in A, we have f = f .

Definition 1.14. [30] Let f be a fuzzy set in A. For any t ∈ [0, 1], the sets

U(f ; t) = {x ∈ A | f(x) ≥ t} and U+(f ; t) = {x ∈ A | f(x) > t}

are called an upper t-level subset and an upper t-strong level subset of f ,
respectively. The sets

L(f ; t) = {x ∈ A | f(x) ≤ t} and L−(f ; t) = {x ∈ A | f(x) < t}

are called a lower t-level subset and a lower t-strong level subset of f , respec-
tively.

Definition 1.15. [10] Let f be a function from a nonempty set X to a
nonempty set Y . If µ is a fuzzy set in X, then fuzzy set β in Y defined
by

β(y) =

{

sup{µ(t)}t∈f−1(y) if f−1(y) 6= ∅,
0 otherwise

is said to be the image of µ under f . Similarly, if β is a fuzzy set in Y , then
the fuzzy set µ = β ◦ f in X (i.e., the fuzzy set defined by µ(x) = β(f(x))
for all x ∈ X) is called the preimage of β under f .
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Definition 1.16. [25] A fuzzy set f in A has sup property if for any nonempty
subset T of A, there exists t0 ∈ T such that f(t0) = sup{f(t)}t∈T .

Definition 1.17. [5] A fuzzy relation on a nonempty set X is an arbitrary
function f : X ×X → [0, 1] where [0, 1] is the unit segment of the real line.

Definition 1.18. [21] Let f and g be fuzzy sets in nonempty sets A and B,
respectively. The Cartesian product of f and g is f × g : A × B → [0, 1]
defined by

(f × g)(x, y) = max{f(x), g(y)} for all x ∈ A and y ∈ B.

The dot product of f and g is f · g : A×B → [0, 1] defined by

(f · g)(x, y) = min{f(x), g(y)} for all x ∈ A and y ∈ B.

Definition 1.19. [21] If f is a fuzzy set in a nonempty set X, the strongest
fuzzy relation on X is µf : X×X → [0, 1] defined by µf(x, y) = max{f(x), f(y)}
for all x, y ∈ X. For x, y ∈ X, we have f(x), f(y) ∈ [0, 1]. Thus µf(x, y) =
max{f(x), f(y)} ∈ [0, 1]. Hence, µf is a fuzzy relation on X. We note that
if f is a fuzzy set in a nonempty set X, then f × f = µf .

Definition 1.20. If f is a fuzzy set in a nonempty set X, the weakness fuzzy
relation on X is βf : X × X → [0, 1] defined by βf (x, y) = min{f(x), f(y)}
for all x, y ∈ X. For x, y ∈ X, we have f(x), f(y) ∈ [0, 1]. Thus βf (x, y) =
min{f(x), f(y)} ∈ [0, 1]. Hence, βf is a fuzzy relation on X. We note that
if f is a fuzzy set in a nonempty set X, then f · f = βf .

Definition 1.21. [20] Let X and Y be any two nonempty sets and let f : X →
Y be any function. A fuzzy set µ in X is called f -invariant if f(x) = f(y)
implies µ(x) = µ(y) for all x, y ∈ X.

Definition 1.22. [8] Let (A, ·, 0) and (A′, ·′, 0′) be UP-algebras. A mapping
f from A to A′ is called a UP-homomorphism if

f(x · y) = f(x) ·′ f(y) for all x, y ∈ A.

A UP-homomorphism f : A → A′ is called a

1. UP-endomorphism of A if A′ = A,

2. UP-epimorphism if f is surjective,

3. UP-monomorphism if f is injective, and
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4. UP-isomorphism if f is bijective. Moreover, we say A is UP-isomorphic
to A′, symbolically, A ∼= A′, if there is a UP-isomorphism from A to
A′.

Let f be a mapping from A to A′, and let B be a nonempty subset of A,
and B′ of A′. The set {f(x) | x ∈ B} is called the image of B under f ,
denoted by f(B). In particular, f(A) is called the image of f , denoted by
Im(f). Dually, the set {x ∈ A | f(x) ∈ B′} is said the inverse image of B′

under f , symbolically, f−1(B′). Especially, we say f−1({0′}) is the kernel of
f , written by Ker(f). That is,

Im(f) = {f(x) ∈ A′ | x ∈ A}

and
Ker(f) = {x ∈ A | f(x) = 0′}.

Theorem 1.23. [8] Let (A, ·, 0A) and (B, ∗, 0B) be UP-algebras and let f : A →
B be a UP-homomorphism. Then the following statements hold:

1. f(0A) = 0B, and

2. for any x, y ∈ A, if x ≤ y, then f(x) ≤ f(y).

2 Main Results

In this section, we study fuzzy UP-ideals and fuzzy UP-subalgebras of UP-
algebras.

Theorem 2.1. Every fuzzy UP-ideal of A is a fuzzy UP-subalgebra of A.

Proof. Let f be a fuzzy UP-ideal of A. Let x, y ∈ A. Then

f(x · y) ≥ min{f(x · (y · y)), f(y)} (Definition 1.10 2)

= min{f(x · 0), f(y)} (Proposition 1.5 1)

= min{f(0), f(y)} ((UP-3))

= f(y) (Definition 1.10 1)

≥ min{f(x), f(y)}.

Hence, f is a fuzzy UP-subalgebra of A.

Lemma 2.2. Let f be a fuzzy UP-ideal of A. If the inequality x ≤ y ·z holds
in A for all x, y, z ∈ A, then f(z) ≥ min{f(x), f(y)} for all x, y, z ∈ A.
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Proof. Assume x ≤ y · z for all x, y, z ∈ A. Then x · (y · z) = 0. By Definition
1.102, we have

f(x · z) ≥ min{f(x · (y · z)), f(y)}. (2.1)

By (2.1) and (UP-2), let x = 0, so

f(z) = f(0 · z) ≥ min{f(0 · (x · z)), f(x)} = min{f(x · z), f(x)}. (2.2)

By (2.1) and Definition 1.10 1, we have

f(x · z) ≥ min{f(x · (y · z)), f(y)} = min{f(0), f(y)} = f(y). (2.3)

By (2.2) and (2.3), we have

f(z) ≥ min{f(x · z), f(x)} ≥ min{f(y), f(x)} = min{f(x), f(y)}.

Lemma 2.3. If f is a fuzzy UP-ideal of A and if x, y ∈ A is such that x ≤ y
in A, then f(x) ≤ f(y).

Proof. Let x, y ∈ A be such that x ≤ y in A. Then x · y = 0. Thus

f(y) = f(0 · y) ((UP-2))

≥ min{f(0 · (x · y)), f(x)} (Definition 1.10 2)

= min{f(0 · 0), f(x)}

= min{f(0), f(x)} ((UP-2))

= f(x). (Definition 1.10 1)

We can easily prove the lemma.

Lemma 2.4. Let f be a fuzzy set in A. For any t ∈ [0, 1], the following
properties hold:

1. L(f ; t) = U(f ; 1− t),

2. L−(f ; t) = U+(f ; 1− t),

3. U(f ; t) = L(f ; 1− t), and

4. U+(f ; t) = L−(f ; 1− t).
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Theorem 2.5. [30] Let f be a fuzzy set in A. Then the following statements
hold:

1. f is a fuzzy UP-ideal of A if and only if it satisfies the condition (⋆):
for all t ∈ [0, 1], U(f ; t) 6= ∅ implies U(f ; t) is a UP-ideal of A,

2. f is a fuzzy UP-ideal of A if and only if it satisfies the condition (⋆):
for all t ∈ [0, 1], U+(f ; t) 6= ∅ implies U+(f ; t) is a UP-ideal of A,

3. f is a fuzzy UP-ideal of A if and only if it satisfies the condition (⋆):
for all t ∈ [0, 1], L(f ; t) 6= ∅ implies L(f ; t) is a UP-ideal of A, and

4. f is a fuzzy UP-ideal of A if and only if it satisfies the condition (⋆):
for all t ∈ [0, 1], L−(f ; t) 6= ∅ implies L−(f ; t) is a UP-ideal of A.

Theorem 2.6. [30] Let f be a fuzzy set in A. Then the following statements
hold:

1. f is a fuzzy UP-subalgebra of A if and only if it satisfies the condition
(⋆): for all t ∈ [0, 1], U(f ; t) 6= ∅ implies U(f ; t) is a UP-subalgebra of
A,

2. f is a fuzzy UP-subalgebra of A if and only if it satisfies the condition
(⋆): for all t ∈ [0, 1], U+(f ; t) 6= ∅ implies U+(f ; t) is a UP-subalgebra
of A,

3. f is a fuzzy UP-subalgebra of A if and only if it satisfies the condition
(⋆): for all t ∈ [0, 1], L(f ; t) 6= ∅ implies L(f ; t) is a UP-subalgebra of
A, and

4. f is a fuzzy UP-subalgebra of A if and only if it satisfies the condition
(⋆): for all t ∈ [0, 1], L−(f ; t) 6= ∅ implies L−(f ; t) is a UP-subalgebra
of A.

Proposition 2.7. If f is a fuzzy UP-ideal of A, then f(x · (x · y)) ≥ f(y)
for all x, y ∈ A.
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Proof. Let x, y ∈ A. Then

f(x · (x · y)) ≥ min{f(x · ((x · y) · (x · y))), f(x · y)} (Definition 1.10 2)

= min{f(x · 0), f(x · y)} (Proposition 1.5 1)

= min{f(0), f(x · y)} ((UP-3))

= f(x · y) (Definition 1.10 1)

≥ min{f(x · (y · y)), f(y)} (Definition 1.10 2)

= min{f(x · 0), f(y)} (Proposition 1.5 1)

= min{f(0), f(y)} ((UP-3))

= f(y). (Definition 1.10 1)

Corollary 2.8. Let f be a fuzzy set in A. Then the following statements
hold:

1. if f is a fuzzy UP-ideal of A, then for every t ∈ Im(f), U(f ; t) is a
UP-ideal of A, and

2. if f is a fuzzy UP-ideal of A, then for every t ∈ Im(f), L(f ; t) is a
UP-ideal of A.

Proof. 1 Assume that f is a fuzzy UP-ideal of A and let t ∈ Im(f). Then
t = f(x) for some x ∈ A, so f(x) ≥ t. Thus x ∈ U(f ; t), so U(f ; t) 6= ∅. By
Theorem 2.5 1, we have U(f ; t) is a UP-ideal of A.

2 Assume that f is a fuzzy UP-ideal of A and let t ∈ Im(f). Then
t = f(x) for some x ∈ A, so f(x) ≤ t. Thus x ∈ L(f ; t), so L(f ; t) 6= ∅. By
Theorem 2.5 3, we have L(f ; t) is a UP-ideal of A.

Corollary 2.9. Let f be a fuzzy set in A. Then the following statements
hold:

1. if f is a fuzzy UP-subalgebra of A, then for every t ∈ Im(f), U(f ; t) is
a UP-subalgebra of A, and

2. if f is a fuzzy UP-subalgebra of A, then for every t ∈ Im(f), L(f ; t) is
a UP-subalgebra of A.

Proof. 1 Assume that f is a fuzzy UP-subalgebra of A and let t ∈ Im(f).
Then t = f(x) for some x ∈ A, so f(x) ≥ t. Thus x ∈ U(f ; t), so U(f ; t) 6= ∅.
By Theorem 2.61, we have U(f ; t) is a UP-subalgebra of A.
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2 Assume that f is a fuzzy UP-subalgebra of A and let t ∈ Im(f). Then
t = f(x) for some x ∈ A, so f(x) ≤ t. Thus x ∈ L(f ; t), so L(f ; t) 6= ∅. By
Theorem 2.63, we have L(f ; t) is a UP-subalgebra of A.

Corollary 2.10. Let I be a UP-ideal of A. Then the following statements
hold:

1. for any k ∈ (0, 1], there exists a fuzzy UP-ideal g of A such that
L(g; t) = I for all t < k and L(g; t) = A for all t ≥ k, and

2. for any k ∈ [0, 1), there exists a fuzzy UP-ideal f of A such that
U(f ; t) = I for all t > k and U(f ; t) = A for all t ≤ k.

Proof. 1 Define a fuzzy set f : A → [0, 1] by

f(x) =

{

0 if x ∈ I,
k if x /∈ I.

Case 1 : To show that L(f ; t) = I for all t < k, let t ∈ [0, 1] be such that
t < k. Let x ∈ L(f ; t). Then f(x) ≤ t < k, so f(x) 6= k. Thus f(x) = 0, so
x ∈ I. That is L(f ; t) ⊆ I. Let x ∈ I. Then f(x) = 0 ≤ t, so x ∈ L(f ; t).
That is I ⊆ L(f ; t). Hence, L(f ; t) = I for all t < k.

Case 2 : To show that L(f ; t) = A for all t ≥ k, let t ∈ [0, 1] be such that
t ≥ k. Clearly, L(f ; t) ⊆ A. Let x ∈ A. Then

f(x) =

{

0 < t if x ∈ I,
k ≤ t if x /∈ I,

so x ∈ L(f ; t). That is A ⊆ L(f ; t). Hence, L(f ; t) = A for all t ≥ k.
It follows from Theorem 2.53 that f is a fuzzy UP-ideal of A. By Remark

1.13, we have L(f ; t) = L(f ; t) = I for all t < k and L(f ; t) = L(f ; t) = A
for all t ≥ k. Putting f = g. Then g is a fuzzy UP-ideal of A such that
L(g; t) = I for all t < k and L(g; t) = A for all t ≥ k.

2 Define a fuzzy set f : A → [0, 1] by

f(x) =

{

1 if x ∈ I,
k if x /∈ I.

Case 1 : To show that U(f ; t) = I for all t > k, let t ∈ [0, 1] be such that
t > k. Let x ∈ U(f ; t). Then f(x) ≥ t > k, so f(x) 6= k. Thus f(x) = 1, so
x ∈ I. That is U(f ; t) ⊆ I. Let x ∈ I. Then f(x) = 1 ≥ t, so x ∈ U(f ; t).
That is I ⊆ U(f ; t). Hence, U(f ; t) = I for all t > k.
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Case 2 : To show that U(f ; t) = A for all t ≤ k, let t ∈ [0, 1] be such that
t ≤ k. Clearly, U(f ; t) ⊆ A. Let x ∈ A. Then

f(x) =

{

1 > t if x ∈ I,
k ≥ t if x /∈ I,

so x ∈ U(f ; t). That is A ⊆ U(f ; t). Hence, U(f ; t) = A for all t ≤ k.
It follows from Theorem 2.51 that f is a fuzzy UP-ideal of A.

Corollary 2.11. Let I be a UP-subalgebra of A. Then the following state-
ments hold:

1. for any k ∈ (0, 1], there exists a fuzzy UP-subalgebra g of A such that
L(g; t) = I for all t < k and L(g; t) = A for all t ≥ k, and

2. for any k ∈ [0, 1), there exists a fuzzy UP-subalgebra f of A such that
U(f ; t) = I for all t > k and U(f ; t) = A for all t ≤ k.

Proof. 1 Define a fuzzy set f : A → [0, 1] by

f(x) =

{

0 if x ∈ I,
k if x /∈ I.

In the proof of Corollary 2.101, we have L(f ; t) = I for all t < k and L(f ; t) =
A for all t ≥ k.

It follows from Theorem 2.63 that f is a fuzzy UP-subalgebra of A. By

Remark 1.13, we have L(f ; t) = L(f ; t) = I for all t < k and L(f ; t) =
L(f ; t) = A for all t ≥ k. Putting f = g. Then g is a fuzzy UP-subalgebra
of A such that L(g; t) = I for all t < k and L(g; t) = A for all t ≥ k.

2 Define a fuzzy set f : A → [0, 1] by

f(x) =

{

1 if x ∈ I,
k if x /∈ I.

In the proof of Corollary 2.102, we have U(f ; t) = I for all t > k and
U(f ; t) = A for all t ≤ k.

It follows from Theorem 2.61 that f is a fuzzy UP-subalgebra of A.

Theorem 2.12. Let f be a fuzzy set in A and s < t for s, t ∈ [0, 1]. Then
the following statements hold:

1. L(f ; s) = L(f ; t) if and only if there is no x ∈ A such that s < f(x) ≤ t,
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2. L−(f ; s) = L−(f ; t) if and only if there is no x ∈ A such that s ≤
f(x) < t,

3. U(f ; s) = U(f ; t) if and only if there is no x ∈ A such that s ≤ f(x) <
t, and

4. U+(f ; s) = U+(f ; t) if and only if there is no x ∈ A such that s <
f(x) ≤ t.

Proof. 1 Assume that L(f ; s) = L(f ; t). Suppose that there is x ∈ A such
that s < f(x) ≤ t. Thus x ∈ L(f ; t) but x /∈ L(f ; s), so L(f ; s) 6= L(f ; t)
which is a contradiction. Hence, there is no x ∈ A such that s < f(x) ≤ t.

Conversely, assume that there is no x ∈ A such that s < f(x) ≤ t. Let
x ∈ L(f ; s). Then f(x) ≤ s < t, so x ∈ L(f ; t). Thus L(f ; s) ⊆ L(f ; t).
Suppose that L(f ; t) 6⊆ L(f ; s). Then there is x ∈ L(f ; t) but x /∈ L(f ; s).
Thus f(x) ≤ t and f(x) > s, so s < f(x) ≤ t which is a contradiction. Thus
L(f ; t) ⊆ L(f ; s). Hence, L(f ; t) = L(f ; s).

2 Assume that L−(f ; s) = L−(f ; t). Suppose that there is x ∈ A such that
s ≤ f(x) < t. Thus x ∈ L−(f ; t) but x /∈ L−(f ; s), so L−(f ; s) 6= L−(f ; t)
which is a contradiction. Hence, there is no x ∈ A such that s ≤ f(x) < t.

Conversely, assume that there is no x ∈ A such that s ≤ f(x) < t.
Let x ∈ L−(f ; s). Then f(x) < s < t, so x ∈ L−(f ; t). Thus L−(f ; s) ⊆
L−(f ; t). Suppose that L−(f ; t) 6⊆ L−(f ; s). Then there is x ∈ L−(f ; t) but
x /∈ L−(f ; s). Thus f(x) < t and f(x) ≥ s, so s ≤ f(x) < t which is a
contradiction. Thus L−(f ; t) ⊆ L−(f ; s). Hence, L−(f ; t) = L−(f ; s).

3 Similarly to as in the proof of 1.
4 Similarly to as in the proof of 2.

Corollary 2.13. Let f be a fuzzy set in A and s, t ∈ [0, 1]. Then the follow-
ing statements hold:

1. L(f ; s) = L(f ; t) if and only if U+(f ; s) = U+(f ; t), and

2. U(f ; s) = U(f ; t) if and only if L−(f ; s) = L−(f ; t).

Proof. 1 It follows from Theorem 2.12 1 and Theorem 2.12 4.
2 It follows from Theorem 2.12 2 and Theorem 2.12 3.

Theorem 2.14. Let (A, ·, 0A) and (B, ∗, 0B) be UP-algebras and let f : A →
B be a UP-epimorphism. Then the following statements hold:

1. for every fuzzy UP-ideal β of B, µ is a fuzzy UP-ideal of A, and
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2. for every fuzzy UP-subalgebra β of B, µ is a fuzzy UP-subalgebra of A.

Proof. 1 Let β be a fuzzy UP-ideal of B. Let x ∈ A. Then

µ(0A) = (β ◦ f)(0A)

= β(f(0A))

≥ β(f(x)) ((UP-3), Theorem 1.23 2, Lemma 2.3)

= (β ◦ f)(x)

= µ(x).

Let x, y, z ∈ A. Then

µ(x · z) = (β ◦ f)(x · z)

= β(f(x · z))

= β(f(x) ∗ f(z))

≥ min{β(f(x) ∗ (f(y) ∗ f(z))), β(f(y))} (Definition 1.10 2)

= min{β(f(x · (y · z))), β(f(y))}

= min{(β ◦ f)(x · (y · z)), (β ◦ f)(y)}

= min{µ(x · (y · z)), µ(y)}.

Hence, µ is a fuzzy UP-ideal of A.

2 Let β be a fuzzy UP-subalgebra of B. Let x, y ∈ A. Then

µ(x · y) = (β ◦ f)(x · y)

= β(f(x · y))

= β(f(x) ∗ f(y))

≥ min{β(f(x)), β(f(y))} (Definition 1.11)

= min{(β ◦ f)(x), (β ◦ f)(y)}

= min{µ(x), µ(y)}.

Hence, µ is a fuzzy UP-subalgebra of A.

Lemma 2.15. Let (A, ·, 0A) and (B, ∗, 0B) be UP-algebras and let f : A → B
be a UP-epimorphism. Let µ be an f -invariant fuzzy set in A with sup
property. For any a, b ∈ B, there exist a0 ∈ f−1(a) and b0 ∈ f−1(b) such that
β(a) = µ(a0), β(b) = µ(b0) and β(a · b) = µ(a0 · b0).
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Proof. Let a, b ∈ B. Since f is surjective, we have f−1(a), f−1(b) and f−1(a∗
b) are nonempty subsets of A. By Definition 1.15, we obtain

β(a) = sup{µ(t)}t∈f−1(a)

= µ(a0) for some a0 ∈ f−1(a), (Definition 1.16)

β(b) = sup{µ(t)}t∈f−1(b)

= µ(b0) for some b0 ∈ f−1(b) (Definition 1.16)

and

β(a · b) = sup{µ(t)}t∈f−1(a·b)

= µ(c) for some c ∈ f−1(a ∗ b). (Definition 1.16)

Since f(c) = a ∗ b = f(a0) ∗ f(b0) = f(a0 · b0) and µ is f -invariant, we have
µ(c) = µ(a0 · b0). Hence, β(a · b) = µ(a0 · b0).

Theorem 2.16. Let (A, ·, 0A) and (B, ∗, 0B) be UP-algebras and let f : A →
B be a UP-epimorphism. Then the following statements hold:

1. for every f -invariant fuzzy UP-ideal µ of A with sup property, β is a
fuzzy UP-ideal of B, and

2. for every f -invariant fuzzy UP-subalgebra µ of A with sup property, β
is a fuzzy UP-subalgebra of B.

Proof. 1 Let µ be an f -invariant fuzzy UP-ideal of A with sup property. By
Definition 1.10 1, we have µ(0A) ≥ µ(x) for all x ∈ A. By Theorem 1.23 1, we
have 0A ∈ f−1(0B) and so f−1(0B) 6= ∅. Thus β(0B) = sup{µ(t)}t∈f−1(0B) ≥
µ(0A). Let y ∈ B. Since f is surjective, we have f−1(y) 6= ∅. By Definition
1.10 1, we have µ(0A) ≥ µ(t) for all t ∈ f−1(y). Thus µ(0A) is an upper bound
of {µ(t)}t∈f−1(y), so µ(0A) ≥ sup{µ(t)}t∈f−1(y) = β(y). By Proposition 1.5
2, we have β(0B) ≥ β(y). Let a, b, c ∈ B. By Lemma 2.15, there exist
a0 ∈ f−1(a), b0 ∈ f−1(b) and c0 ∈ f−1(c) such that β(b) = µ(b0), β(a ∗ c) =
µ(a0 · c0) and β(a ∗ (b ∗ c)) = µ(a0 · (b0 · c0)). Thus

β(a ∗ c) = µ(a0 · c0)

≥ min{µ(a0 · (b0 · c0)), µ(b0)} (Definition 1.10 2)

= min{β(a ∗ (b ∗ c)), β(b)}.

Hence, β is a fuzzy UP-ideal of B.
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2 Let µ be an f -invariant fuzzy UP-subalgebra of A with sup property.
Let a, b ∈ B. Since f is surjective, we have f−1(a), f−1(b) and f−1(a ∗ b) are
nonempty subsets of A. By Lemma 2.15, there exist a0 ∈ f−1(a), b0 ∈ f−1(b)
such that β(a) = µ(a0), β(b) = µ(b0) and β(a ∗ b) = µ(a0 · b0). Thus

β(a ∗ b) = µ(a0 · b0)

≥ min{µ(a0), µ(b0)} (Definition 1.11)

= min{β(a), β(b)}.

Hence, β is a fuzzy UP-subalgebra of B.

Remark 2.17. Let (A, ·, 0A) and (B, ∗, 0B) be UP-algebras. We can easily
prove that A×B is a UP-algebra defined by

(x1, x2) ⋄ (y1, y2) = (x1 · y1, x2 ∗ y2)

for all x1, y1 ∈ A and x2, y2 ∈ B.

Lemma 2.18. Let f be a fuzzy set in A and g a fuzzy set in B. For any
t ∈ [0, 1], the following properties hold:

1. f × f is a fuzzy relation on A,

2. L(f × g; t) = L(f ; t)× L(g; t), and

3. L−(f × g; t) = L−(f ; t)× L−(g; t).

Proof. 1 Let (x, y) ∈ A×A. Since f is a fuzzy set in A, we have f(x), f(y) ∈
[0, 1]. Thus there exists a unique max{f(x), f(y)} ∈ [0, 1] such that (f ×
f)(x, y) = max{f(x), f(y)}. Hence, f × f is a fuzzy relation on A.

2 For any (x, y) ∈ A×B,

(x, y) ∈ L(f × g; t) ⇔ (f × g)(x, y) ≤ t

⇔ max{f(x), g(y)} ≤ t

⇔ f(x) ≤ t and g(y) ≤ t

⇔ x ∈ L(f ; t) and y ∈ L(g; t)

⇔ (x, y) ∈ L(f ; t)× L(g; t).

Hence, L(f × g; t) = L(f ; t)× L(g; t).
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3 For any (x, y) ∈ A× B,

(x, y) ∈ L−(f × g; t) ⇔ (f × g)(x, y) < t

⇔ max{f(x), g(y)} < t

⇔ f(x) < t and g(y) < t

⇔ x ∈ L−(f ; t) and y ∈ L−(g; t)

⇔ (x, y) ∈ L−(f ; t)× L−(g; t).

Hence, L−(f × g; t) = L−(f ; t)× L−(g; t).

Lemma 2.19. Let f be a fuzzy set in A and g a fuzzy set in B. For any
t ∈ [0, 1], the following properties hold:

1. f · f is a fuzzy relation on A,

2. U(f · g; t) = U(f ; t)× U(g; t), and

3. U+(f · g; t) = U+(f ; t)× U+(g; t).

Proof. Similarly to as in the proof of Lemma 2.18.

Lemma 2.20. Let f be a fuzzy set in A. For any t ∈ [0, 1], the following
properties hold:

1. L(µf ; t) = L(f ; t)× L(f ; t),

2. L−(µf ; t) = L−(f ; t)× L−(f ; t),

3. U(βf ; t) = U(f ; t)× U(f ; t), and

4. U+(βf ; t) = U+(f ; t)× U+(f ; t).

Proof. 1 For any (x, y) ∈ A× A,

(x, y) ∈ L(µf ; t) ⇔ µf(x, y) ≤ t

⇔ max{f(x), f(y)} ≤ t

⇔ f(x) ≤ t and f(y) ≤ t

⇔ x ∈ L(f ; t) and y ∈ L(f ; t)

⇔ (x, y) ∈ L(f ; t)× L(f ; t).

Hence, L(µf ; t) = L(f ; t)× L(f ; t).
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2 For any (x, y) ∈ A×A,

(x, y) ∈ L−(µf ; t) ⇔ µf(x, y) < t

⇔ max{f(x), f(y)} < t

⇔ f(x) < t and f(y) < t

⇔ x ∈ L−(f ; t) and y ∈ L−(f ; t)

⇔ (x, y) ∈ L−(f ; t)× L−(f ; t).

Hence, L−(µf ; t) = L−(f ; t)× L−(f ; t).
3 Similar to the proof of 1.
4 Similar to the proof of 2.

Theorem 2.21. Let f be a fuzzy set in A. Then the following statements
hold:

1. if µf is a fuzzy UP-ideal of A×A, then f is a fuzzy UP-ideal of A, and

2. if βf is a fuzzy UP-ideal of A× A, then f is a fuzzy UP-ideal of A.

Proof. 1 Assume that µf is a fuzzy UP-ideal of A× A. Let x ∈ A. Then

f(0) = max{f(0), f(0)}

= µf(0, 0)

≥ µf(x, x) (Definition 1.10 1)

= max{f(x), f(x)}

= f(x).

Let x, y, z ∈ A. Then

f(x · z) = max{f(x · z), f(x · z)}

= µf(x · z, x · z)

= µf((x, x) ⋄ (z, z))

≥ min{µf((x, x) ⋄ ((y, y) ⋄ (z, z))), µf (y, y)} (Definition 1.10 2)

= min{µf(x · (y · z), x · (y · z)), µf (y, y)}

= min{max{f(x · (y · z)), f(x · (y · z))},max{f(y), f(y)}

= min{f(x · (y · z)), f(y)}.

Hence, f is a fuzzy UP-ideal of A.
2 Similar to the proof of 1.
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Theorem 2.22. Let f be a fuzzy set in A. Then the following statements
hold:

1. if µf is a fuzzy UP-subalgebra of A×A, then f is a fuzzy UP-subalgebra
of A, and

2. if βf is a fuzzy UP-subalgebra of A×A, then f is a fuzzy UP-subalgebra
of A.

Proof. 1 Assume that µf is a fuzzy UP-subalgebra of A × A. Let x, y ∈ A.
Then

f(x · z) = max{f(x · z), f(x · z)}

= µf(x · z, x · z)

= µf((x, x) ⋄ (z, z))

≥ min{µf((x, x), µf(y, y)} (Definition 1.11)

≥ min{max{f(x), f(x)},max{f(y), f(y)}}

= min{f(x), f(y)}.

Hence, f is a fuzzy UP-subalgebra of A.
2 Similarly to as in the proof of 1.

Lemma 2.23. [4] For any a, b, c, d ∈ R, the following properties hold:

1. max{max{a, b},max{c, d}} = max{max{a, c},max{b, d}}, and

2. min{min{a, b},min{c, d}} = min{min{a, c},min{b, d}}.

Theorem 2.24. Let (A, ·, 0A) and (B, ∗, 0B) be UP-algebras. Then the fol-
lowing statements hold:

1. if f is a fuzzy UP-ideal of A and g is a fuzzy UP-ideal of B, then f · g
is a fuzzy UP-ideal of A×B, and

2. if f is a fuzzy UP-subalgebra of A and g is a fuzzy UP-subalgebra of B,
then f · g is a fuzzy UP-subalgebra of A× B.

Proof. 1 Assume that f is a fuzzy UP-ideal of A and g is a fuzzy UP-ideal
of B. Let (x, y) ∈ A×B. Then

(f · g)(0, 0) = min{f(0), g(0)}

≥ min{f(x), g(y)} (Definition 1.10 1)

= (f · g)(x, y).



666 P. Poungsumpao, W. Kaijae, S. Arayarangsi, A. Iampan

Now, let (x1, x2), (y1, y2), (z1, z2) ∈ A×B. Then

(f · g)((x1, x2) ⋄ (z1, z2))

= (f · g)(x1 · z1, x2 ∗ z2)

= min{f(x1 · z1), g(x2 ∗ z2)}

≥ min{min{f(x1 · (y1 · z1)), f(y1)},

min{g(x2 ∗ (y2 ∗ z2)), g(y2)}} (Definition 1.10 2)

= min{min{f(x1 · (y1 · z1)), {g(x2 ∗ (y2 ∗ z2))}},

min{f(y1), g(y2)}} (Lemma 2.23 2)

= min{(f · g)(x1 · (y1 · z1), x2 ∗ (y2 ∗ z2)), (f · g)(y1, y2)}

= min{(f · g)((x1, x2) ⋄ ((y1, y2) ⋄ (z1, z2))), (f · g)(y1, y2)}.

Hence, f · g is a fuzzy UP-ideal of A×B.
2 Let (x1, x2), (y1, y2) ∈ A×B. Then

(f · g)((x1, x2) ⋄ (y1, y2))

= (f · g)(x1 · y1, x2 ∗ y2)

= min{f(x1 · y1), g(x2 ∗ y2)}

≥ min{min{f(x1), f(y1)},min{g(x2), g(y2)}} (Definition 1.11)

= min{min{f(x1), g(x2)},min{f(y1), g(y2)}} (Lemma 2.23 2)

= min{(f · g)(x1, x2), (f · g)(y1, y2)}.

Hence, f · g is a fuzzy UP-subalgebra of A× B.

Give examples of conflict that f and g are fuzzy UP-ideals (resp., fuzzy
UP-subalgebras) of A but f × g is not a fuzzy UP-ideal (resp., fuzzy UP-
subalgebra) of A× A.

Example 2.25. Let A = {0, 1} be a set with a binary operation · defined
by the following Cayley table:

· 0 1
0 0 1
1 0 0

Then (A, ·, 0) is a UP-algebra. We define a fuzzy set f and g in A as follows:

f(0) = 0.5, f(1) = 0.1, g(0) = 0.6 and g(1) = 0.2.
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Using this data, we can show that f and g are fuzzy UP-ideals of A. Let
x1 = 0, x2 = 0, y1 = 1, y2 = 0, z1 = 1, z1 = 1. Then

(f × g)((x1, x2) ⋄ (z1, z2)) = 0.2 ≥ 0.5 =
min{(f × g)((x1, x2) ⋄ ((y1, y2) ⋄ (z1, z2))), (f × g)(y1, y2)}.

Thus Definition 1.10 2 is false. Hence, f×g is not a fuzzy UP-ideal of A×A.

Example 2.26. Let A = {0, a, b} be a set with a binary operation · defined
by the following Cayley table:

· 0 a b
0 0 a b
a 0 0 a
b 0 0 0

Then (A, ·, 0) is a UP-algebra. We define a fuzzy set f and g in A as follows:

f(0) = 0.5, f(a) = 0.1, f(b) = 0.2, g(0) = 0.5, g(a) = 0.1 and g(b) = 0.2.

Using this data, we can show that f and g are fuzzy UP-subalgebras of A.
Let x1 = 0, x2 = 1, y1 = 1, y2 = 2. Then

(f × g)((x1, x2) ⋄ (y1, y2)) = 0.1 ≥ 0.2 = min{(f × g)(x1, x2), (f × g)(y1, y2)}.

Thus Definition 1.11 is false. Hence, f × g is not a fuzzy UP-subalgebra of
A.

Theorem 2.27. Let (A, ·, 0A) and (B, ∗, 0B) be UP-algebras and let f be a
fuzzy set in A and g be a fuzzy set in B. If f ·g is a fuzzy UP-ideal of A×B,
then the following statements hold:

1. either f(0A) ≥ f(x) for all x ∈ A or g(0B) ≥ g(y) for all y ∈ B,

2. if f(0A) ≥ f(x) for all x ∈ A, then either g(0B) ≥ g(y) for all y ∈ B
or g(0B) ≥ f(x) for all x ∈ A,

3. if g(0B) ≥ g(y) for all y ∈ B, then either f(0A) ≥ f(x) for all x ∈ A
or f(0A) ≥ g(y) for all y ∈ B, and

4. either f is a fuzzy UP-ideal of A or g is a fuzzy UP-ideal of B.



668 P. Poungsumpao, W. Kaijae, S. Arayarangsi, A. Iampan

Proof. 1 Suppose that f(0A) < f(x) for some x ∈ A and g(0B) < g(y) for
some y ∈ B. Then (f · g)(x, y) = min{f(x), g(y)} > min{f(0A), g(0B)} =
(f · g)(0A, 0B) which is a contradiction. Hence, either f(0A) ≥ f(x) for all
x ∈ A or g(0B) ≥ g(y) for all y ∈ B

2 Assume that f(0A) ≥ f(x) for all x ∈ A. Suppose that g(0B) < g(y) for
some y ∈ B and g(0B) < f(x) for some x ∈ A. Then g(0B) < f(x) ≤ f(0A).
Thus

(f · g)(x, y) = min{f(x), g(y)}

> min{g(0B), g(0B)}

= g(0B)

= min{f(0A), g(0B)}

= (f · g)(0A, 0B)

which is a contradiction. Hence, either g(0B) ≥ g(y) for all y ∈ B or g(0B) ≥
f(x) for all x ∈ A.

3 Assume that g(0B) ≥ g(y) for all y ∈ B. Suppose that f(0A) < f(x) for
some x ∈ A and f(0A) < g(y) for some y ∈ B. Then f(0A) < g(y) ≤ g(0B).
Thus

(f · g)(x, y) = min{f(x), g(y)}

> min{f(0A), f(0A)}

= f(0A)

= min{f(0A), g(0B)}

= (f · g)(0A, 0B)

which is a contradiction. Hence, either f(0A) ≥ f(x) for all x ∈ A or
f(0A) ≥ g(y) for all y ∈ B.

4 Suppose that f is not a fuzzy UP-ideal of A and g is not a fuzzy UP-ideal
of B. By 1, assume that f(0A) ≥ f(x) for all x ∈ A. Then from 2, either
g(0B) ≥ g(y) for all y ∈ B or g(0B) ≥ f(x) for all x ∈ A. If g(0B) ≥ f(x) for
all x ∈ A, then for all x ∈ A,

(f · g)(x, 0B) = min{f(x), g(0B)} = f(x). (2.4)
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Since f · g is a fuzzy UP-ideal of A×B, we have for any x, y, z ∈ A,

f(x · z) = (f · g)(x · z, 0B) ((2.4))

= (f · g)(x · z, 0B ∗ 0B) ((UP-3))

= (f · g)((x, 0B) ⋄ (z, 0B))

≥ min{(f · g)((x, 0B) ⋄ [(y, 0B) ⋄ (z, 0B)]),

(f · g)(y, 0B)} (Definition 1.10 2)

= min{(f · g)(x · (y · z), 0B ∗ (0B ∗ 0B)), (f · g)(y, 0B)}

= min{(f · g)(x · (y · z), 0B), (f · g)(y, 0B)} ((UP-3))

= min{min{f(x · (y · z)), g(0B)},min{f(y), g(0B)}}

= min{f(x · (y · z)), f(y)}.

Hence, f is a fuzzy UP-ideal of A which is a contradiction. Assume that
g(0B) ≥ g(y) for all y ∈ B. Then from 3, either f(0A) ≥ f(x) for all x ∈ A
or f(0A) ≥ g(y) for all y ∈ B. If f(0A) ≥ g(y) for all y ∈ B, then for all
y ∈ B,

(f · g)(0A, y) = min{f(0A), g(y)} = g(y). (2.5)

Since f · g is a fuzzy UP-ideal of A×B, we have for any x, y, z ∈ B,

g(x ∗ z) = (f · g)(0A, x ∗ z) ((2.5))

= (f · g)(0A · 0A, x ∗ z) ((UP-3))

= (f · g)((0A, x) ⋄ (0A, z))

≥ min{(f · g)((0A, x) ⋄ [(0A, y) ⋄ (0A, z)]),

(f · g)(0A, y)} (Definition 1.10 2)

= min{(f · g)(0A · (0A · 0A)), (x ∗ (y ∗ z)), (f · g)(0A, y)}

= min{(f · g)(0A, x ∗ (y ∗ z)), (f · g)(0A, y)} ((UP-3))

= min{min{f(0A), g(x ∗ (y ∗ z))},min{f(0A), g(y)}}

= min{g(x ∗ (y ∗ z)), g(y)}.

Hence, g is a fuzzy UP-ideal of B which is a contradiction. Since f is not a
fuzzy UP-ideal of A and g is not a fuzzy UP-ideal of B, and f(0A) ≥ f(x)
for all x ∈ A and g(0B) ≥ g(y) for all y ∈ B, there exist x, y, z ∈ A and
x′, y′, z′ ∈ B such that

f(x · z) < min{f(x · (y · z)), f(y)}

and
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g(x′ ∗ z′) < min{g(x′ ∗ (y′ ∗ z′)), g(y′)}.

Thus

min{f(x · z), g(x′ ∗ z′)} <
min{min{f(x · (y · z)), f(y)},min{g(x′ ∗ (y′ ∗ z′)), g(y′)}}.

Since f · g is a fuzzy UP-ideal of A× B, we have

min{f(x · z), g(x′ ∗ z′)} = (f · g)(x · z, x′ ∗ z′)

= (f · g)((x, x′) ⋄ (z, z′))

≥ min{(f · g)((x, x′) ⋄ [(y, y′) ⋄ (z, z′)]),

(f · g)(y, y′)} (Definition 1.10 2)

= min{(f · g)(x · (y · z), x′ ∗ (y′ ∗ z′)), (f · g)(y, y′)}

= min{min{f(x · (y · z)), g(x′ ∗ (y′ ∗ z′))},

min{f(y), g(y′)}}.

Thus min{f(x · z), g(x′ ∗ z′)} ≮ min{min{f(x · (y · z)), f(y)},min{g(x′ ∗ (y′ ∗
z′)), g(y′)}} which is a contradiction. Similarly, by 1, if g(0B) ≥ g(y) for all
y ∈ B, we have a contradiction. Hence, either f is a fuzzy UP-ideal of A or
g is a fuzzy UP-ideal of B.

Theorem 2.28. Let (A, ·, 0A) and (B, ∗, 0B) be UP-algebras and let f be a
fuzzy set in A and g be a fuzzy set in B. If f · g is a fuzzy UP-subalgebra
of A × B, then either f is a fuzzy UP-subalgebra of A or g is a fuzzy UP-
subalgebra of B.

Proof. Suppose that f is not a fuzzy UP-subalgebra of A and g is not a fuzzy
UP-subalgebra of B. Then there exist x, y ∈ A and a, b ∈ B such that

f(x · y) < min{f(x), f(y)}

and

g(a ∗ b) < min{g(a), g(b)}.

Thus min{f(x · y), g(a ∗ b)} < min{min{f(x), f(y)},min{g(a), g(b)}}. Since
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f · g is a fuzzy UP-subalgebra of A× B, we have

min{f(x · y), g(a ∗ b)}

= (f · g)(x · y, a ∗ b)

= (f · g)((x, a) ⋄ (y, b))

≥ min{(f · g)(x, a), (f · g)(y, b)} (Definition 1.11)

= min{min{f(x), g(a)},min{f(y), g(b)}}

= min{min{f(x), f(y)},min{g(a), g(b)}}. (Lemma 2.23 2)

Thus min{f(x · y), g(a ∗ b)} ≮ min{min{f(x), f(y)},min{g(a), g(b)}} which
is a contradiction. Hence, either f is a fuzzy UP-subalgebra of A or g is a
fuzzy UP-subalgebra of B.

Theorem 2.29. Let f be a fuzzy set in A. Then the following statements
hold:

1. f is a fuzzy UP-ideal of A if and only if βf is a fuzzy UP-ideal of A×A,
and

2. f is a fuzzy UP-subalgebra of A if and only if βf is a fuzzy UP-
subalgebra of A×A.

Proof. 1 Assume that f is a fuzzy UP-ideal of A. By Theorem 2.241, we
have βf = f · f is a fuzzy UP-ideal of A× A.

Conversely, assume that βf is a fuzzy UP-ideal of A×A. Since f ·f = βf ,
it follows from Theorem 2.27 4 that f is a fuzzy UP-ideal of A.

2 Assume that f is a fuzzy UP-subalgebra of A. By Theorem 2.24 2, we
have βf = f · f is a fuzzy UP-subalgebra of A× A.

Conversely, assume that βf is a fuzzy UP-subalgebra of A × A. Since
f · f = βf , it follows from Theorem 2.28 that f is a fuzzy UP-subalgebra of
A.

3 Conclusions

In the present paper, we have studied the notions of fuzzy UP-subalgebras
and fuzzy UP-ideals of UP-algebras in term of upper t-(strong) level subsets
and lower t-(strong) level subsets of a fuzzy set and investigated some of its
essential properties. We think this work would enhance the scope for further
study in this field of fuzzy sets. It is our hope that this work would serve as
a foundation for the further study in this field of fuzzy sets in UP-algebras.



672 P. Poungsumpao, W. Kaijae, S. Arayarangsi, A. Iampan

Acknowledgment

The authors wish to express their sincere thanks to the referees for the valu-
able suggestions which led to an improvement of this paper.

References

[1] M. Akram, K. H. Dar, t-fuzzy ideals in BCI-algebras, Int. J. Math. Math.
Sci., 18, (2005), 1899–1907.

[2] M. Akram, K. H. Dar, Fuzzy ideals of K-algebras, An. Univ. Craiova
Ser. Mat. Inform., 34, (2007), 11–20.

[3] M. A. Ansari, A. Haidar, A. N. A. Koam, On a graph associated to
UP-algebras, Math. Comput. Appl., 23, (2018), no. 4, 61.

[4] N. P. Bali, Golden Real Analysis, Laxmi Publications, India, 2005.

[5] P. Bhattacharye, N. P. Mukheriee, Fuzzy relations and fuzzy group, Inf.
Sci., 36, (1985), 267–282.

[6] N. Dokkhamdang, A. Kesorn, A. Iampan, Generalized fuzzy sets in UP-
algebras, Ann. Fuzzy Math. Inform., 16, (2018), no. 2, 171–190.

[7] A. R. Hadipour, Generalized fuzzy BF-algebras, Sci. Magna, 5, (2009),
no. 2, 39–53.

[8] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra
Relat. Top., 5, (2017), no. 1, 35–54.

[9] A. Iampan, Introducing fully UP-semigroups, Discuss. Math., Gen. Al-
gebra Appl., 38, (2018), no. 2, 297–306.

[10] Y. B. Jun, Closed fuzzy ideals in BCI-algebras, Math. Japon., 38, (1993),
no. 1, 199–202.

[11] Y. B. Jun, q-fuzzy subalgebras of BCK/BCI-algebras, Sci. Math. Jpn.
Online, 4, (2001), 197–202.

[12] Y. B. Jun, Fuzzy sub-implicative ideals of BCI-algebras, Bull. Korean
Math. Soc.,, 39 (2002), no. 2, 185–198.



Fuzzy UP-ideals and fuzzy UP-subalgebras... 673

[13] Y. B. Jun, On (α, β)-fuzzy ideals of BCK/BCI-algebras, Sci. Math. Jpn.
Online, 7, (2004), 101–105.

[14] Y. B. Jun, Fuzzy subalgebras with thresholds in BCK/BCI-algebras,
Commun. Korean Math. Soc., 22, (2007), no. 2, 173–181.

[15] Y. B. Jun, S. S. Ahn, H. S. Kim, Fuzzy I-ideals in IS-algerbas, Commun.,
Korean Math. Soc. 15, (2000), no. 3, 499–509.

[16] Y. B. Jun, E. H. Roh, H. S. Kim, On fuzzy B-algebras, Czechoslovak
Math. J., 52, (2002), no. 127, 375–384.

[17] Y. B. Jun, S. Song, Intuitionistic fuzzy semi-preopen sets and intuition-
istic fuzzy semi-precontinuous mappings, J. Appl. Math. Comput., 19,
(2005), 467–474.

[18] T. Klinseesook, S. Bukok, A. Iampan, Rough set theory applied to UP-
algebras, Manuscript accepted for publication in J. Inf. Optim. Sci.,
November 2018.

[19] C. Lele, C. Wu, P. Weke, T. Mamadou, and G. E. Njock, Fuzzy ideals
and weak ideals in BCK-algebras, Sci. Math. Jpn. Online, 4, (2001),
599–612.

[20] J. N. Mordeson, D. S. Malik, Fuzzy commutative algebra, World Scien-
tific, Singapore, 1998.

[21] S. M. Mostafa, M. A. Abdel Naby, M. M. M. Yousef, Anti-fuzzy KU-
ideals of KU-algebras, Int. J. Algebra Stat., 1, (2012), no. 1, 92–99.

[22] S. M. Mostafa, M. A. Abdel Naby, O. R. Elgendy, Intuitionistic fuzzy
KU-ideals in KU-algebras, Int. J. Math. Sci. Appl., 1, (2011), no. 3,
1379–1384.

[23] K. Rajam, M. Chandramouleeswaran, L-fuzzy β-subalgebras of β-
algebras, Appl. Math. Sci., 8, (2014), no. 85, 4241–4248.

[24] E. H. Roh, Y. B. Jun, W. H. Shim, Fuzzy associative I -ideals of IS-
algebras, Int. J. Math. Math. Sci., 24, (2000), no. 11, 729–735.

[25] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35, (1971), 512–517.

[26] A. B. Saeid, Y. B. Jun, Redefined fuzzy subalgebras of BCK/BCI-
algebras, Iran. J. Fuzzy Syst., 5, (1994), no. 2, 63–70.



674 P. Poungsumpao, W. Kaijae, S. Arayarangsi, A. Iampan

[27] A. B. Saeid, M. A. Rezvani, On fuzzy in BF-algebras, Int. Math. Forum,
4, (2009), no. 1, 13–25.

[28] A. Satirad, P. Mosrijai, A. Iampan, Formulas for finding UP-algebras,
Int. J. Math. Comput. Sci., 14, (2019), no. 2, 403–409.

[29] A. Satirad, P. Mosrijai, A. Iampan, Generalized power UP-algebras, Int.
J. Math. Comput. Sci., 14 (2019), no. 1, 17–25.

[30] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, A. Iampan, Fuzzy sets
in UP-algebras, Ann. Fuzzy Math. Inform. 12, (2016), no. 6, 739–756.

[31] S. Z. Song, Y. B. Jun, K. J. Lee, Fuzzy ideals in BE-algebras, Bull.
Malays. Math. Sci. Soc. (2) 33, (2010), no. 1, 147–153.

[32] C. Yamini, S. Kailasavalli, Fuzzy B-ideals on B-algebras, Int. J. Math.
Arch., 5, (2014), no. 2, 227–233.

[33] L. Yonglin, Z. Xiaohong, Fuzzy a-ideals of BCI-algebras, Adv. in
Math.(China), 31, no. 1, (2002), 65–73.

[34] L. A. Zadeh, Fuzzy sets, Inf. Cont., 8, (1965), 338–353.


