On The Diophantine Equation $(132 k)^{x}+(4355 k)^{y}=(4357 k)^{z}$

Abdulrahman Balfaqih, Hailiza Kamarulhaili

School of Mathematical Sciences
Universiti Sains Malaysia
11800, Penang, Malaysia
email: mathsfriend417154@hotmail.com, hailiza@usm.my
(Received April 4, 2019, Accepted May 29, 2019)

Abstract

The Jeśmanowicz's conjecture written in 1956 states that for any primitive Pythagorean triple (a, b, c) with $a^{2}+b^{2}=c^{2}$ and any positive integer k, the only solution of equation $(a k)^{x}+(b k)^{y}=(c k)^{z}$ in positive integers is $(x, y, z)=(2,2,2)$. In this paper, we show that the special Diophantine equation $(132 k)^{x}+(4355 k)^{y}=(4357 k)^{z}$ has the only positive integer solution $(x, y, z)=(2,2,2)$ for every positive integer k.

1 Introduction

In 1956, Sierpiński [6] showed that the only positive integer solution of the Diophantine Equation

$$
\begin{equation*}
(a k)^{x}+(b k)^{y}=(c k)^{z} \tag{1.1}
\end{equation*}
$$

is $(x, y, z)=(2,2,2)$, for $k=1$ and $(a, b, c)=(3,4,5)$, and Jeśmano wicz [2] proved that the conjecture is true when $k=1$ and $(a, b, c) \in$ $\{(5,12,13),(7,24,25),(9,40,41),(11,60,61)\}$. Jeśmanowicz also conjectured that the Diophantine equation (1.1) has the only positive integer solution $(x, y, z)=(2,2,2)$ for any positive integer k. There are many special cases

Key words and phrases: Jeśmanowicz's conjecture, Diophantine equation, Pythagorean triple.
AMS (MOS) Subject Classification: 11D61.
ISSN 1814-0432, 2019, http://ijmcs.future-in-tech.net
of Jeśmanowicz's conjecture solved for $k=1$. In 2012, Yang and Tang [11] proved that the only solution of the Diophantine Equation

$$
\begin{equation*}
(8 k)^{x}+(15 k)^{y}=(17 k)^{z} \tag{1.2}
\end{equation*}
$$

is $(x, y, z)=(2,2,2)$, for $k \geqslant 1$. Several authors had shown that Jeśmanowicz's conjecture is true for $n \in\{2,3,4,8\}$ where $(a, b, c)=\left(4 n, 4 n^{2}-1,4 n^{2}+1\right)$, see [9] and [12]. Yang and Jianxin [12] proved that the only solution of

$$
\begin{equation*}
(12 k)^{x}+(35 k)^{y}=(37 k)^{z} \tag{1.3}
\end{equation*}
$$

is $(x, y, z)=(2,2,2)$ for $k \geqslant 1$. In 2015, Ma and $\mathrm{Wu}[5]$ proved that the only solution of the Diophantine Equation

$$
\begin{equation*}
\left(\left(4 n^{2}-1\right) k\right)^{x}+(4 n k)^{y}=\left(\left(4 n^{2}+1\right) k\right)^{z} \tag{1.4}
\end{equation*}
$$

is $(x, y, z)=(2,2,2)$ when $P\left(4 n^{2}-1\right) \mid k$, (where $P(m)$ denote the product of distinct prime of m). They showed that if k is a positive integer, and $P(k) \nmid$ $\left(4 n^{2}-1\right)$, then the only solution for the equation (1.4) is $(x, y, z)=(2,2,2)$, in this case they considered $n=p^{m}, p$ prime and $m \geqslant 0$ with $p \equiv-1(\bmod 4)$. In 2017, Gökhan Soydan, Musa Demirci, Ismail Naci Cangul, and Alain Togbé [7] considered(1.1) with $(a, b, c)=(20,99,101)$ and they proved the Diophantine equation

$$
\begin{equation*}
(20 k)^{x}+(99 k)^{y}=(101 k)^{z} \tag{1.5}
\end{equation*}
$$

has only the solution $(x, y, z)=(2,2,2)$. In this paper, we consider the case $n=33$ and for $(a, b, c)=\left(4 n, 4 n^{2}-1,4 n^{2}+1\right)$ for (1.1). For other results, see for instance [10], [8], [3] and [1]. Our main result is the following theorem.

Theorem 1.1. The only positive integer solution of the Diophantine equation

$$
\begin{equation*}
(132 k)^{x}+(4355 k)^{y}=(4357 k)^{z} \tag{1.6}
\end{equation*}
$$

is $(x, y, z)=(2,2,2)$, for every positive integer k.

2 Proof Of Theorem 1.1

In this section, we begin with three useful results as follows:
Lemma 2.1. (see [3]) If (x, y, z) is a solution of (1.1) with $(x, y, z) \neq$ $(2,2,2)$, then x, y and z are distinct.

Lemma 2.2. (see [4]) The only positive integer solution of the Diophantine equation $\left(2 n^{2}-1\right)^{x}+(4 n)^{y}=\left(4 n^{2}+1\right)^{z}$ is $(x, y, z)=(2,2,2)$.
Lemma 2.3. (see [1]) If $z \geqslant \max \{x, y\}$, then the Diophantine equation $a^{x}+$ $b^{y}=c^{z}$ where a, b and c are any positive integers (not necessarily relatively prime) such that $a^{2}+b^{2}=c^{2}$, has no solution other than $x=y=z=2$.

Proof. (Theorem 1.1)
When $k=1$ the equation (1.6) becomes

$$
\begin{equation*}
(132)^{x}+(4355)^{y}=(4357)^{z} \tag{2.7}
\end{equation*}
$$

from lemma 2.2, the Diophantine equation (2.7) has the only positive integer solution $(x, y, z)=(2,2,2)$. Suppose that (1.6) has at least another solution $(x, y, z) \neq(2,2,2)$ then, by lemma 2.3 we have $z<\max \{x, y\}$ and from lemma 2.1, we have $x \neq y, y \neq z$ and $x \neq z$. Thus, we consider two cases as follows.

Case 1 If $(x<y)$, then we obtain two subcases $z<x<y$ and $x<z<y$.
Subcase 1.1 If $(z<x<y)$ then, rewrite equation (1.6) as

$$
\begin{equation*}
k^{x-z}\left(132^{x}+4355^{y} k^{y-z}\right)=4357^{z} \tag{2.8}
\end{equation*}
$$

So if $(k, 4357)=1$, then $x=z$, where $k \geqslant 2$, which is a contradiction. And if $(k, 4357)=4357$, then we can write $k=4357^{m} n_{1}$, where $m \geqslant 1$ and $4357 \nmid n_{1}$, So rewrite equation (2.8) as

$$
\begin{equation*}
4357^{m(x-z)} n_{1}^{x-z}\left(132^{x}+4355^{y} 4357^{m(y-x)} n_{1}^{y-x}\right)=4357^{z} \tag{2.9}
\end{equation*}
$$

thus $n_{1}^{x-z} \mid 4357^{z}$ and so $n_{1}=1$. Therefore (2.9), becomes

$$
\begin{equation*}
132^{x}+4355^{y} 4357^{m(y-x)}=4357^{z-m(z-x)} \tag{2.10}
\end{equation*}
$$

implies $4357 \mid 132^{x}$ and this is impossible.
Subcase 1.2 If $(x<z<y)$ then, rewrite (1.6) as

$$
\begin{equation*}
132^{x}+4355^{y} k^{y-x}=4357^{z} k^{z-x} \tag{2.11}
\end{equation*}
$$

So if $(k, 132)=1$, then $x=z$, where $k \geqslant 2$, which is a contradiction. And if $(k, 132)>1$, then we can write $k=2^{r} 3^{s} 11^{q} n_{1}$, where $r+s+q \geqslant 1$ and $\left(66, n_{1}\right)=1$, So rewrite (2.11) as
$132^{x}=2^{r(z-x)} 3^{s(z-x)} 11^{q(z-x)} n_{1}^{z-x}\left[4357^{z}-4355^{y} 2^{r(y-z)} 3^{s(y-z)} 11^{q(y-z)} n_{1}{ }^{y-z}\right]$

A. Balfaqih, H. Kamarulhaili

Then we get seven cases as the following :

1. If $k=2^{r} n_{1}$, where $r \geqslant 1, s=q=0$ and $\left(60, n_{1}\right)=1$, then (2.12) becomes

$$
\begin{equation*}
132^{x}=2^{r(z-x)} n_{1}{ }^{z-x}\left[4357^{z}-4355^{y} 2^{r(y-z)} n_{1}^{y-z}\right] \tag{2.13}
\end{equation*}
$$

thus $2 x=r(z-x)$ and $33^{x}=n_{1}^{z-x}\left[4357^{z}-4355^{y} 2^{r(y-z)} n_{1}^{y-z}\right]$, hence $n_{1}=1$ and

$$
\begin{equation*}
4357^{z}-33^{x}=4355^{y} 2^{r(y-z)} \tag{2.14}
\end{equation*}
$$

where $\left(60, n_{1}\right)=1$, So

$$
\begin{equation*}
4357^{z}-33^{x} \equiv 2^{z}-7^{x} \equiv 0(\bmod 13) \tag{2.15}
\end{equation*}
$$

Thus $z \equiv 0(\bmod 2)$ and $x \equiv 0(\bmod 2)$ or $z \equiv 1(\bmod 2)$ and $x \equiv 1(\bmod$ 2). Thus, if $z=2 z_{1}$ and $x=2 x_{1}, z_{1}, x_{1}>0$. Hence (2.14) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-33^{x_{1}}\right)\left(4357^{z_{1}}+33^{x_{1}}\right)=4355^{y} 2^{r(y-z)} \tag{2.16}
\end{equation*}
$$

So,

$$
\begin{equation*}
67^{y} \mid 4357^{z_{1}}-33^{x_{1}} \text { or } 67^{y} \mid 4357^{z_{1}}+33^{x_{1}} \tag{2.17}
\end{equation*}
$$

where $\left(4357^{z_{1}}-33^{x_{1}}, 4357^{z_{1}}+33^{x_{1}}\right)=2$. But

$$
\begin{aligned}
67^{y}>67^{z}=4489^{z_{1}} & >(4357+33)^{z_{1}} \\
& >4357^{z_{1}}+33^{z_{1}} \\
& >4357^{z_{1}}+33^{x_{1}} \\
& >4357^{z_{1}}-33^{x_{1}}
\end{aligned}
$$

and this contradicts (2.17). Also, if $z=2 z_{1}+1$ and $x=2 x_{1}+1$, $z_{1}, x_{1}>0$ then from equation (2.14) we obtain

$$
4357^{z}-33^{x} \equiv 0(\bmod 4324)
$$

But,

$$
4355^{y} 2^{(y-z)} \not \equiv 0 \bmod (4324)
$$

2. If $k=3^{s} n_{1}$ where $s \geqslant 1, r=q=0$ and $\left(60, n_{1}\right)=1$, then, (2.12) becomes

$$
\begin{equation*}
132^{x}=3^{s(z-x)} n_{1}{ }^{z-x}\left[4357^{z}-4355^{y} 3^{s(y-z)} n_{1}^{y-z}\right] \tag{2.18}
\end{equation*}
$$

Thus $x=s(z-x)$ and $44^{x}=n_{1}{ }^{z-x}\left[4357^{z}-4355^{y} 3^{s(y-z)} n_{1}{ }^{y-z}\right]$, hence $n_{1}=1$ and

$$
\begin{equation*}
4357^{z}-44^{x}=4355^{y} 3^{s(y-z)} \tag{2.19}
\end{equation*}
$$

where $\left(60, n_{1}\right)=1$, So, $4357^{z}-44^{x} \equiv 2^{z}-44^{x} \equiv 0(\bmod 67)$. Thus $z \equiv 0(\bmod 2)$ and $x \equiv 0(\bmod 2)$ or $z \equiv 1(\bmod 2)$ and $x \equiv 1(\bmod 2)$. Thus, If $z=2 z_{1}$ and $x=2 x_{1}, z_{1}, x_{1}>0$. Hence (2.19) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-44^{x_{1}}\right)\left(4357^{z_{1}}+44^{x_{1}}\right)=4355^{y} 3^{s(y-z)} \tag{2.20}
\end{equation*}
$$

So,

$$
\begin{equation*}
67^{y} \mid 4357^{z_{1}}-44^{x_{1}} \text { or } 67^{y} \mid 4357^{z_{1}}+44^{x_{1}} \tag{2.21}
\end{equation*}
$$

where $\left(4357^{z_{1}}-44^{x_{1}}, 4357^{z_{1}}+44^{x_{1}}\right)=1$. But

$$
\begin{aligned}
67^{y}>67^{z}=4489^{z_{1}} & >(4357+44)^{z_{1}} \\
& >4357^{z_{1}}+44^{z_{1}} \\
& >4357^{z_{1}}+44^{x_{1}} \\
& >4357^{z_{1}}-44^{x_{1}}
\end{aligned}
$$

and this contradicts (2.21). Also if $z=2 z_{1}+1$ and $x=2 x_{1}+1$, $z_{1}, x_{1}>0$ then from equation (2.19) we obtain

$$
4357^{z}-44^{x} \equiv 0(\bmod 4313)
$$

But

$$
4355^{y} 3^{s(y-z)} \not \equiv 0 \bmod (4313)
$$

3. If $k=11^{q} n_{1}$ where $q \geqslant 1, r=s=0$ and $\left(66, n_{1}\right)=1$ then, from (2.12) we get the equation

$$
\begin{equation*}
132^{x}=11^{q(z-x)} n_{1}^{z-x}\left[4357^{z}-4355^{y} 11^{q(y-z)} n_{1}^{y-z}\right] \tag{2.22}
\end{equation*}
$$

A. Balfaqih, H. Kamarulhaili

thus, $n_{1}=1$. Therefore

$$
\begin{equation*}
4357^{z}-12^{x}=4355^{y} 11^{q(y-z)} \tag{2.23}
\end{equation*}
$$

Since, $4357^{z}-12^{x} \equiv 2^{z}-12^{x} \equiv 0(\bmod 67)$, hence $z \equiv 0(\bmod 2)$ and $x \equiv 0(\bmod 2)$ or $z \equiv 1(\bmod 2)$ and $x \equiv 1(\bmod 2)$. Thus if $z=2 z_{1}$ and $z=2 x_{1}, z_{1}, x_{1}>0$ then equation (2.23) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-12^{x_{1}}\right)\left(4357^{z_{1}}+12^{x_{1}}\right)=4355^{y} 11^{q(y-z)} \tag{2.24}
\end{equation*}
$$

So

$$
\begin{equation*}
67^{y} \mid 4357^{z_{1}}-12^{x_{1}} \text { or } 67^{y} \mid 4357^{z_{1}}+12^{x_{1}} \tag{2.25}
\end{equation*}
$$

where $\left(4357^{z_{1}}-12^{x_{1}}, 4357^{z_{1}}+12^{x_{1}}\right)=1$. But

$$
\begin{aligned}
67^{y}>67^{z}=4489^{z_{1}} & >(4357+12)^{z_{1}} \\
& >4357^{z_{1}}+12^{z_{1}} \\
& >4357^{z_{1}}+12^{x_{1}} \\
& >4357^{z_{1}}-12^{x_{1}}
\end{aligned}
$$

and this contradicts (2.25). Also if $z=2 z_{1}+1$ and $x=2 x_{1}+1$, $z_{1}, x_{1}>0$ then from equation (2.23) we obtain

$$
4357^{z}-12^{x} \equiv 0(\bmod 4345)
$$

But

$$
4355^{y} 11^{q(y-z)} \not \equiv 0 \bmod (4345)
$$

4. If $k=2^{r} 3^{s} n_{1}$ where $r \geqslant 1, s \geqslant 1, q=0$ and $\left(66, n_{1}\right)=1$ then, from (2.12) we get the equation

$$
\begin{equation*}
132^{x}=2^{r(z-x)} 3^{s(z-x)} n_{1}{ }^{z-x}\left[4357^{z}-4355^{y} 2^{r(y-z)} 3^{s(y-z)} n_{1}^{y-z}\right] . \tag{2.26}
\end{equation*}
$$

Thus $2 x=r(z-x), x=s(z-x)$ and

$$
\begin{equation*}
11^{x}=n_{1}{ }^{z-x}\left[4357^{z}-4355^{y} 2^{r(y-z)} 3^{s(y-z)} n_{1}{ }^{y-z}\right] \tag{2.27}
\end{equation*}
$$

Since, $\left(66, n_{1}\right)=1$ then, $n_{1}=1$. Therefore,

$$
\begin{equation*}
4357^{z}-11^{x}=4355^{y} 2^{r(y-z)} 3^{s(y-z)} \tag{2.28}
\end{equation*}
$$

Since, $4357^{z}-11^{x} \equiv 2^{z}-11^{x} \equiv 0(\bmod 67)$, hence $z \equiv 0(\bmod 2)$ and $x \equiv 0(\bmod 2)$ or $z \equiv 1(\bmod 2)$ and $x \equiv 1(\bmod 2)$. Thus if $z=2 z_{1}$ and $z=2 x_{1}, z_{1}, x_{1}>0$ then equation (2.28) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-11^{x_{1}}\right)\left(4357^{z_{1}}+11^{x_{1}}\right)=4355^{y} 2^{r(y-z)} 3^{s(y-z)} \tag{2.29}
\end{equation*}
$$

So,

$$
\begin{equation*}
67^{y} \mid 4357^{z_{1}}-11^{x_{1}} \text { or } 67^{y} \mid 4357^{z_{1}}+11^{x_{1}} \tag{2.30}
\end{equation*}
$$

where $\left(4357^{z_{1}}-11^{x_{1}}, 4357^{z_{1}}+11^{x_{1}}\right)=2$. But

$$
\begin{aligned}
67^{y}>67^{z}=4489^{z_{1}} & >(4357+11)^{z_{1}} \\
& >4357^{z_{1}}+11^{z_{1}} \\
& >4357^{z_{1}}+11^{x_{1}} \\
& >4357^{z_{1}}-11^{x_{1}}
\end{aligned}
$$

and this contradicts (2.30). Also if $z=2 z_{1}+1$ and $x=2 x_{1}+1$, $z_{1}, x_{1}>0$ then from equation (2.28) we obtain,

$$
4357^{z}-11^{x} \equiv 0(\bmod 4346)
$$

But

$$
4355^{y} 2^{r(y-z)} 3^{s(y-z)} \not \equiv 0 \bmod (4346)
$$

5. If $k=2^{r} 11^{q} n_{1}$ where $r \geqslant 1, q \geqslant 1, s=0$ and $\left(66, n_{1}\right)=1$ then, from (2.12) we get the equation

$$
\begin{equation*}
132^{x}=2^{r(z-x)} 11^{q(z-x)} n_{1}{ }^{z-x}\left[4357^{z}-4355^{y} 2^{r(y-z)} 11^{q(y-z)} n_{1}{ }^{y-z}\right] \tag{2.31}
\end{equation*}
$$

Thus $2 x=r(z-x), x=q(z-x)$ and

$$
\begin{equation*}
3^{x}=n_{1}{ }^{z-x}\left[4357^{z}-4355^{y} 2^{r(y-z)} 11^{q(y-z)} n_{1}{ }^{y-z}\right] \tag{2.32}
\end{equation*}
$$

Since, $\left(66, n_{1}\right)=1$ then, $n_{1}=1$. Therefore,

$$
\begin{equation*}
4357^{z}-3^{x}=4355^{y} 2^{r(y-z)} 11^{q(y-z)} \tag{2.33}
\end{equation*}
$$

A. Balfaqih, H. Kamarulhaili

Since, $4357^{z}-3^{x} \equiv 2^{z}-3^{x} \equiv 0(\bmod 67)$, hence, $z \equiv 0(\bmod 2)$ and $x \equiv 0(\bmod 2)$ or $z \equiv 1(\bmod 2)$ and $x \equiv 1(\bmod 2)$. Thus, if $z=2 z_{1}$ and $z=2 x_{1}, z_{1}, x_{1}>0$ then equation (2.33) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-3^{x_{1}}\right)\left(4357^{z_{1}}+3^{x_{1}}\right)=4355^{y} 2^{r(y-z)} 11^{q(y-z)} \tag{2.34}
\end{equation*}
$$

So,

$$
\begin{equation*}
67^{y} \mid 4357^{z_{1}}-3^{x_{1}} \text { or } 67^{y} \mid 4357^{z_{1}}+3^{x_{1}} \tag{2.35}
\end{equation*}
$$

where $\left(4357^{z_{1}}-3^{x_{1}}, 4357^{z_{1}}+3^{x_{1}}\right)=2$. But

$$
\begin{aligned}
67^{y}>67^{z}=4489^{z_{1}} & >(4357+3)^{z_{1}} \\
& >4357^{z_{1}}+3^{z_{1}} \\
& >4357^{z_{1}}+3^{x_{1}} \\
& >4357^{z_{1}}-3^{x_{1}}
\end{aligned}
$$

and this contradicts (2.35). Also if $z=2 z_{1}+1$ and $x=2 x_{1}+1$, $z_{1}, x_{1}>0$ then from equation (2.33) we obtain

$$
4357^{z}-3^{x} \equiv 0(\bmod 4354)
$$

But

$$
4355^{y} 2^{r(y-z)} 11^{q(y-z)} \not \equiv 0 \bmod (4354)
$$

6. If $k=3^{s} 11^{q} n_{1}$ where $s \geqslant 1, q \geqslant 1, r=0$ and $\left(66, n_{1}\right)=1$ then, from (2.12) we get the equation

$$
\begin{equation*}
132^{x}=3^{s(z-x)} 11^{q(z-x)} n_{1}^{z-x}\left[4357^{z}-4355^{y} 3^{s(y-z)} 11^{q(y-z)} n_{1}^{y-z}\right], \tag{2.36}
\end{equation*}
$$

Thus $x=s(z-x)=q(z-x)$ and

$$
\begin{equation*}
4^{x}=n_{1}{ }^{z-x}\left[4357^{z}-4355^{y} 3^{s(y-z)} 11^{q(y-z)} n_{1}{ }^{y-z}\right] \tag{2.37}
\end{equation*}
$$

Since, $\left(66, n_{1}\right)=1$ then, $n_{1}=1$. Therefore,

$$
\begin{equation*}
4357^{z}-4^{x}=4355^{y} 3^{s(y-z)} 11^{q(y-z)} \tag{2.38}
\end{equation*}
$$

Since, $4357^{z}-4^{x} \equiv 2^{z}-4^{x} \equiv 0(\bmod 67)$, hence $z \equiv 0(\bmod 2)$. Thus $z=2 z_{1}, z_{1}>0$ then equation (2.38) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-2^{x_{1}}\right)\left(4357^{z_{1}}+2^{x_{1}}\right)=4355^{y} 3^{s(y-z)} 11^{q(y-z)} \tag{2.39}
\end{equation*}
$$

So,

$$
\begin{equation*}
67^{y} \mid 4357^{z_{1}}-3^{x_{1}} \text { or } 67^{y} \mid 4357^{z_{1}}+2^{x_{1}} \tag{2.40}
\end{equation*}
$$

where $\left(4357^{z_{1}}-2^{x_{1}}, 4357^{z_{1}}+2^{x_{1}}\right)=1$. But

$$
\begin{aligned}
67^{y}>67^{z}=4489^{z_{1}} & >(4357+4)^{z_{1}} \\
& >4357^{z_{1}}+4^{z_{1}} \\
& >4357^{z_{1}}+4^{x_{1}} \\
& >4357^{z_{1}}-4^{x_{1}}
\end{aligned}
$$

and this contradicts (2.40).
7. If $k=2^{r} 3^{s} 11^{q} n_{1}$ where $s \geqslant 1, s \geqslant 1, q \geqslant 1$, and $\left(66, n_{1}\right)=1$ then, from (2.12) we get the equation

$$
\begin{equation*}
n_{1}{ }^{z-x}\left[4357^{z}-4355^{y} 2^{r(y-z)} 11^{q(y-z)} 3^{s(y-z)} n_{1}{ }^{y-z}\right]=1 \tag{2.41}
\end{equation*}
$$

Since, $x \neq z$ then $n_{1}=1$. Therefore

$$
\begin{equation*}
4357^{z}-1=4355^{y} 2^{r(y-z)} 11^{q(y-z)} 3^{s(y-z)} \tag{2.42}
\end{equation*}
$$

Since $4357^{z}-1 \equiv 2^{z}-1(\bmod 5)$ hence $z \equiv 0(\bmod 2)$. Thus $z=$ $2 z_{1}, z_{1}>0$. But $4357^{2} \equiv 1(\bmod 2179)$ implies $4357^{z}-1 \equiv 0(\bmod$ 2179). Then from (2.42) we obtain

$$
4355^{y} 2^{r(y-z)} 11^{q(y-z)} 3^{s(y-z)} \equiv 0(\bmod 2179)
$$

which is impossible. This completes the proof for the first case.

Case 2 If $(x>y)$, then we obtain two subcases $z<y<x$ and $y<z<x$.
Subcase 2.1 If $(z<y<x)$ then, rewrite equation (1.6) as

$$
\begin{equation*}
k^{y-z}\left(132^{x} k^{x-y}+4355^{y}\right)=4357^{z} \tag{2.43}
\end{equation*}
$$

So if $(k, 4357)=1$, then $y=z$, where $k \geqslant 2$, which is a contradiction. And if $(k, 4357)=4357$, then we can write $k=4357^{m} n_{1}$, where $m \geqslant 1$ and $4357 \nmid n_{1}$, So rewrite equation (2.43) as

$$
\begin{equation*}
4357^{m(y-z)} n_{1}^{y-z}\left(132^{x} 4357^{m(x-y)} n_{1}{ }^{x-y}+4355^{y}\right)=4357^{z} \tag{2.44}
\end{equation*}
$$

A. Balfaqih, H. Kamarulhaili

Since,

$$
\left(n_{1}, 4357\right)=\left(132^{x} 4357^{m(x-y)} n_{1}^{x-y}+4355^{y}, 4357\right)=1
$$

hence,

$$
n_{1}{ }^{y-z}\left(132^{x} 4357^{m(x-y)} n_{1}^{x-y}+4355^{y}\right)=1
$$

which is impossible.
Subcase 2.2 If ($y<z<x$) then, rewrite (1.6) as

$$
\begin{equation*}
k^{z-y}\left(4357^{z}-132^{x} k^{x-z}\right)=4355^{y} \tag{2.45}
\end{equation*}
$$

So if $(k, 4355)=1$, then $y=z$, where $k \geqslant 2$, which is a contradiction. And if $(k, 4355)>1$, then we can write $k=5^{r} 13^{q} 67^{q} n_{1}$, where $r+q+q \geqslant 1$ and $\left(4355, n_{1}\right)=1$, So rewrite (2.45) as
$5^{r(z-y)} 13^{p(z-y)} 67^{q(z-y)} n_{1}{ }^{z-y}\left(4357^{z}-132^{x} 5^{r(x-z)} 13^{p(x-z)} 67^{q(x-z)} n_{1}{ }^{x-z}\right)=4355^{y}$
Since,

$$
\left(n_{1}, 4355\right)=n_{1}{ }^{z-y}\left(4357^{z}-132^{x} 5^{r(x-z)} 13^{p(x-z)} 67^{q(x-z)} n_{1}{ }^{x-z}\right)=1
$$

Then,

$$
n_{1}{ }^{z-y}\left(4357^{z}-132^{x} 5^{r(x-z)} 13^{p(x-z)} 67^{q(x-z)} n_{1}^{x-z}\right)=1
$$

and $r(z-y)=p(z-y)=q(z-y)=y$ then, $r=p=q$ also $n_{1}=1$. Thus equation (2.46) becomes

$$
\begin{equation*}
4357^{z}-1=132^{x} 4355^{r(x-z)} \tag{2.47}
\end{equation*}
$$

Since $4357^{z}-1 \equiv 2^{z}-1(\bmod 5)$ hence $z \equiv 0(\bmod 2)$. But $4357^{2} \equiv 1(\bmod$ 2179) implies $4357^{z}-1 \equiv 0(\bmod 2179)$, so from (2.47) we obtain

$$
132^{x} 4355^{r(x-z)} \equiv 0(\bmod 2179)
$$

which is impossible. Thus, completes the proof for the second case and then this completes the proof of theorem (1.1).

3 conclusion

We have obtained a new Pythagorean triple for Jeśmanowicz's conjecture and proved that the special Diophantine equation $(132 k)^{x}+(4355 k)^{y}=(4357 k)^{z}$ has the only positive integer solution $(x, y, z)=(2,2,2)$ for every positive integer k.

Acknowledgments

This work is supported by the Research University (RU) funding, account number 1001 /PMATHS/ 811337, Universiti Sains Malaysia.

References

[1] Moujie Deng, G. L. Cohen, On the conjecture of jesmanowicz concerning Pythagorean triples, Bulletin of the Australian Mathematical Society, 57, (1998), no. 3, 515-524.
[2] L. Jeśmanowicz, Several remarks on Pythagorean numbers, Wiadom. Mat. (2) 1, (1955/1956), 196-202.
[3] Maohua Le, A note on Jeśmanowicz'conjecture concerning Pythagorean triples, Bulletin of the Australian Mathematical Society, 59, (1999), no. 3, 477-480.
[4] Wen-twan Lu, On the Pythagorean numbers $4 n^{2}-1,4 n$ and $4 n^{2}+1$, Acta Sci. Natur. Univ. Szechuan,(1959), 2: 39-42. (in Chinese)
[5] Mi-Mi Ma, Jian-Dong Wu, On the Diophantine equation $(a n)^{x}+(b n)^{y}=$ $(c n)^{z}$, Bulletin of the Korean Mathematical Society, 52, no. 4, (2015), 1133-1138.
[6] W. Sierpiński, On the equation $3^{x}+4^{y}=5^{z}$, Wiadom. Mat. (2) 1, (1955/1956), 194-195.
[7] Soydan, Göokhan Soydan, Musa Demirci,Ismail Naci Cangul, Alain Togbé, On the conjecture of Jeśmanowicz, International Journal of Applied Mathematics and Statistics, 56, (2017), no. 6, 46-72.
[8] Cuifang Sun, Zhi Cheng, On Jeśmanowicz' conjecture concerning pythagorean triples, Journal of Mathematical Research with Applications, 35, no. 2, (2015), 143-148.
[9] Min Tang, Jian-Xin Weng, Jeśmanowicz' conjecture with Fermat numbers, Taiwanese J. Math., 18, no. 3, (2014), 925-930.
[10] Min Tang, Zhi-Juan Yang, Jeśmanowicz' conjecture revisited, Bulletin of the Australian Mathematical Society, 88, no. 3, (2013), 486-491.
[11] Zhi-Juan Yang, Min Tang, On the Diophantine equation $(8 n)^{x}+$ $(15 n)^{y}=(17 n)^{z}$, Bulletin of the Australian Mathematical Society, 86, no. 2, (2012), 348-352.
[12] Zhi-Juan Yang, W. Jianxin, On the Diophantine equation $(12 n)^{x}+$ $(35 n)^{y}=(37 n)^{z}$, Pure and App. Math. (Chinese), 28, (2012), 698-704.

