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Abstract

Given a positive integer m � p1p2, p1, p2 primes, we give necessary conditions for

the existence of an integer n ~� m which has the same abundancy index as m. This

work is then applied to give more stringent conditions in the case m � 33. Then we give

a similar treatment of the cases m � 4p, p an odd prime, with application to m � 20.

1 Introduction

Definition 1.1. Let n be a positive integer. The abundancy index I�n� �
σ�n�

n
is the quotient

of the divisor function, σ�n� �
PdA0,dSn d, and n.

Let m and n be positive integers and consider only positive primes p.

1. I�n� C 1, with equality iff n � 1.

2. If mSn, then I�m� B I�n� with equality iff m � n.
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3. If p1, ..., pk are distinct primes and e1, ..., ek are positive integers, then
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which follows from the relation for σ
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4. I is weakly multiplicative (if gcd(m,n) = 1, then I�mn� � I�m�I�n�).

5. Suppose that p1, ..., pk are distinct primes, q1, ..., qk are distinct primes, e1, ..., ek are
positive integers, and for all j > �1, ..., k�, pj B qj. Then

I �
k

M

j�1

p
ej
j � C I �

k

M

j�1

q
ej
j �

with equality iff pj � qj, for all j > �1, ..., k�.

6. If the distinct prime factors of n are p1, ..., pk, then

k

M

j�1

pj � 1

pj
B I�n� �

k

M

j�1

pj

pj � 1
.

Proofs of above properties and other related references can be found in [1], [2], and [3].

Definition 1.2. Positive integers m and n are friends if m x n and I�m� � I�n�.

Observe that properties 2 and 3 above imply that prime powers have no friends.
Suppose that p is a prime and k is a positive integer. If n is a positive integer and

σ�n�

n
� I�n� � I�pk� �

pk�1 � 1

pk�p � 1�
,

then pk�p � 1�σ�n� � �pk�1 � 1�n. Since pk and pk�1 � 1 are relatively prime, it follows that
pkSn, and then property 2 implies that pk � n.

The next question, which inspired [1], [2], and [3], to which we are indebted, is: if m has
exactly two prime divisors, can m have a friend? The simple answer is : yes; 6 � 2 � 3 is the
first of the perfect numbers, which are integers n for which I�n� � 2. By a theorem of Euler,
6 is the friend of every n � 2q�1�2q � 1� when q is a prime and 2q � 1 is also a prime — these
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are called Mersenne primes — and only of such n. Thus the friends of 6 are all themselves
products of two prime powers — a power of 2 times a related Mersenne prime.
It was known in antiquity that integers of this form are perfect. Euler’s contribution was
to prove the converse, that every even perfect number is of that form. It is still not known
if there are infinitely many of them. It is not known if there are any odd perfect numbers,
but it is known that any odd perfect number will have many more than two distinct prime
factors.

In the process of extracting necessary conditions for an integer n to be a friend of 12,
Kim [2] actually found such a friend, 234. This discovery, as well as the form of the even
perfect numbers, should excite interest in the friendliness of integers 2kp when k is a positive
integer and p is an odd prime.

We will generalize some of the results in [1] and [3] to the case m � p1p2 ~� 6, p1 � p2,
prime, and then apply our results to the case m � 33. Then we will generalize some of the
results in [2] to the case m � 4p, p an odd prime, p x 7, and apply these results to the case
m � 20.

2 Friends of p1p2

Throughout this section, m � p1p2, p1, p2 prime, p1 � p2, �p1, p2� ~� �2,3�. We have I�m� �

�1�p1��1�p2�

p1p2
. If I�n� � σ�n�

n
� I�m�, then p1p2σ�n� � �1�p1��1�p2�n. Assume that I�n� � I�m�

and n ~�m.

Proposition 2.1. p2Sn.

Proof. Since p2 A p1 and �p1, p2� x �2,3�, p2 C p1 � 2 A p1 � 1. Therefore, p2 Ñ �1� p1��1� p2�.
Thereby, p2Sn.

Proposition 2.2. All prime factors of n are greater than p1.

Proof. Let k be a prime, k B p1 and suppose kSn. Then kp2Sn, which implies I�n� C I�kp2� C

I�p1p2� (by property 5 from section 1) with equality only at n � p1p2. Thereby, k Ñ n.
Thereby, all prime factors of n must be greater than p1.

Corollary 2.1. p1 Ñ n.

Proposition 2.3. p1S�1 � p2�.

Proof. Since p1 Ñ �1 � p1�n, we must have p1S�1 � p2�.

Proposition 2.4. n has at least 3 distinct prime divisors, except, possibly, when p1 � 2, in
which case n � qbpa

2
is a friend of m � 2p2, where q is a prime, q x p2, and a, b are positive

integers, if and only if
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1. q � 3,

2. a � 2, and

3. 3b�1 � 1 � p2�1 � p2�.

Remarks : Recall our blanket assumption that if p1 � 2 then p2 A 3. We do not know of
any prime p A 3 such that for some positive integer b, n � 3bp2 is a friend of m � 2p — i.e.,
we know of no such p and b such that 3b�1 � 1 � p�1 � p� — but we have not been able to
prove non-existence.

Proof. To be a friend of m,n must have at least two distinct prime divisors, because a prime
power has no friends. If n has only 2 distinct prime divisors, then one of them is p2, by
Proposition 2.1. Suppose that q x p2 is a prime such that n � pa

2
qb is a friend of m � p1p2.

Then q A p1 by Proposition 2.2.
By property 6 from the Introduction,

I�m� � I�n� �
p1 � 1

p1

p2 � 1

p2
�

q

q � 1

p2

p2 � 1

�
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q � 1
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p2
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� 1

p2
2

If q C p1 � 2, then p1�2

p1�1
C

q

q�1
A

p1�1

p1

p2
2
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p2
2

. Thus

1 �
1

�p1 � 1�2
�

p2
1
� 2p1

�p1 � 1�2
A

p2
2
� 1

p2
2

� 1 �
1

p2
2

.

As a result
p2 � p1 � 1, contrary to our supposition about p1 and p2.

Therefore, what we have supposed about p1, p2 and q imply that q � p1 � 1, which, since p1
and q are primes, implies that p1 � 2 and q � 3.

In the remainder of the proof, let p2 � p. Thus, m � 2p,n � 3bpa, and

I�m� � I�n� �
3

2

p � 1

p
�

3b�1 � 1

2 � 3b
pa�1 � 1

pa�p � 1�

�

3b�1

3b�1 � 1
�

pa�1 � 1

pa�1�p2 � 1�
. (1)

If a � 1, then this last equation becomes 3
b�1

3b�1�1
� 1, clearly false for every positive integer b.

Therefore, a C 2.
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Subtracting 1 from both sides of eq. 1, we obtain

1

3b�1 � 1
�

pa�1 � 1

pa�1�p2 � 1�
. (2)

Clearly the fraction 1

3b�1�1
is in lowest terms. If a � 1 � 2t for some integer t C 1, then

pa�1 � 1

pa�1�p2 � 1�
�

P

t�1
k�0 p

2k

pa�1
,

also in lowest terms. The two fractions in (2) cannot be equal, because 3b�1 � 1 is even and
pa�1 is odd.

We conclude that a � 1 � 2t � 1 for some integer t C 1. Then

pa�1 � 1

pa�1�p2 � 1�
�

pa�2 � � � � � 1

pa�1�p � 1�
�

P

2t�2
k�0 pk

pa�1�p � 1�
.

If t A 1, then
P

2t�2
k�0 pk � �p � 1��

P

t�1
r�1 p

2r�1
� � 1. Therefore

1

3b�1 � 1
�

�p � 1��
P

t�1
r�1 p

2r�1
� � 1

pa�1�p � 1�
,

and both sides of this equation are fractions in lowest terms. But then they cannot be equal,
because

�p � 1�
t�1

Q

r�1

p2r�1 � 1 A 1.

Therefore, t � 1, a � 2t � 2, and we have 1

3b�1�1
�

p�1

p�p2�1�
�

1

p�p�1�
.

Consequently, p�p � 1� � 3b�1 � 1.
Conversely, if p A 3 is prime, b is a positive integer, and p�p� 1� � 3b�1 � 1, then it can be

straightforwardly verified that I�2p� � I�3b � p2�.

3 An Application to m = 33

33 � 3 � 11: thereby if 33 has a friend n, we know that:

� 11Sn by Proposition 2.1.

� 2 Ñ n,3 Ñ n by Proposition 2.2.

� n has k C 3 distinct prime factors by Proposition 2.4.
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Note I�33� � 16

11
. Assume that n ~� 33 is a friend of 33. So 11σ�n� � 16n.

Proposition 3.1. 3 Ñ σ�n�.

Proof. Suppose 3Sσ�n�. Then σ�n� � 3x for some integer x. Thus, 33x � 16n; but this would
require 3Sn, whereas we know 3 Ñ n. Therefore our supposition was false and 3 Ñ σ�n�.

Proposition 3.2. All prime factors of n congruent to 2 modulo 3 have an even power in

the factorization of n.

Proof. By Proposition 3.1, we know that 3 Ñ σ�n�. Let us consider each prime factor of n
congruent to 2 modulo 3. Suppose that q � 2 mod 3 is a prime, e is a positive integer, and
qeSSn. Then σ�qe�Sσ�n�. If e is odd, then σ�qe� � 1 � q � � � � � qe � 1 � 2 � � � � � 2 �

e�1
2

� 3 � 0
mod 3, which would imply that 3Sσ�n�. Therefore, e is even.

Proposition 3.3. n has k C 4 distinct prime factors.

Proof. Suppose n has only 3 prime factors. Then let n � 11a � pb
2
� pc

3
. Let p2 � p3. Suppose

p2 C 7; then I�n� � 7

6

11

10

13

12
�

16

11
. Therefore, p2 � 5. We will now constrain p3. We must have

11

10

5

4

p3
p3�1

A

16

11
. Therefore p3 � 19 and thus p3 > �7,13,17�. If p3 � 7, then I�n� C I�52�7�112� A 16

11

by Proposition 3.2. Therefore, p3 x 7. By the same logic, p3 x 13. Therefore, p3 � 17. If the
exponent of 5 is 2, then I�n� B I�52�11

10

17

16
�

16

11
. Therefore, the exponent of 5 is greater than

or equal to 4. However, this causes I�n� C I�54 � 112 � 172� A 16

11
. Therefore, p3 x 17. Thus

p2 x 5, and k A 3.

Corollary 3.1. If n is friend of 33, then n A 209,209.

Proof. We know that n has at least 4 prime factors, including 11, and excluding 2 and 3.
As well, all primes congruent to 2 modulo 3 must be raised to an even power. Therefore,
n C 7 � 112 � 13 � 19 � 209,209.

4 Friends of 4p

Suppose m � 4p, where p is an odd prime. When p � 7 � 23 � 1, the second Mersenne prime
(after 3), we have m � 23�1�23 �1� is a perfect number, which has many friends, as discussed
in the Introduction.

In the rest of this section,p is an odd prime, p x 7, and n xm � 4p is friend ofm. Therefore

I�m� �

7�1 � p�

4p
� I�n�

which implies
4pσ�n� � 7�1 � p�n.
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Proposition 4.1. pSn

Proof. Since p x 7, p and 7�1 � p� are relatively prime. Since pS7�1 � p�n, pSn.

Proposition 4.2. 4 ~S n

Proof. Suppose 4Sn. Then, 4pSn. Therefore, I�n� C I�m�, with equality only at m � n.
Therefore, our supposition was false and 4 ~S n.

Proposition 4.3. 7Sσ�n�

Proof. Since p is prime and p x 7, 7 ~S p. In addition, 7 ~S 4. Therefore, 7Sσ�n�.

We will use k to denote the number of distinct prime factors of n.

Proposition 4.4. k A 2

Proof. k A 1 because no prime power can have a friend. Suppose n has only two prime
divisors. By Proposition 4.1, one of them is p. Let q be the other one. Let a, b be positive
integers such that n � paqb.

Case 1. p � 3. Then m � 12, so

I�m� �

7.4

12
�

7

3
�

3

2

q

q � 1
� q �

14

5
� q � 2.

By Proposition 4.2 we then have n � 2 � pa � 2 � 3a for some integer a A 0. Then

7

3
� I�n� �

3

2

3a � � � � � 1

3a
� 7 �

3a�1 � � � � � 3

2 � 3a�1
.

There are many reasons why there is no integer a that could satisfy this last equation. We
leave it to the reader to finish the proof that this case is impossible.

Case 2. p � 5. The argument is similar to that in Case 1:

m � 20� I�m� �

7.6

20
�

21

10
� I�n� �

5

4

q

q � 1
� q �

42

17
� q � 2.

Again invoking Proposition 4.2, we have n � 2 � 5a for some integer a A 0, whence

21

10
� I�n� �

3

2

5a � � � � � 1

5a
� 21 �

3�5a � � � � � 1�

5a�1
� a � 1,

on the grounds that the fractions on both sides of the equation above are in lowest terms.
But then the equation becomes 21 � 3 � 6, which is not true.
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Case 3. p C 11. (Since p is an odd prime and p x 7, disposal of this case will finish the
proof). The subcase q � 2 can be disposed of as above: q � 2 � n � 2 � pa for some integer
a A 0�

7�p � 1�

4p
� I�n� �

3

2

pa � � � � � 1

pa
� 7

p � 1

2
�

3�pa � � � � � 1�

pa�1
� a � 1� 7 � 6,

which is not true. If q C 3, then

I�4p� �
7�p � 1�

4p
� I�n� �

q

q � 1

p

p � 1
B

3

2

11

10
�

7

4
� I�4� � I�4p�.

This contradiction concludes the proof.

Kim’s discovery [2], that 234 � 2 � 32 � 13 is a friend of 12 � 4 � 3 shows that the conclusion
of Proposition 4.4 is “sharp”. We strongly suspect that 3 is the only odd prime p not equal
to 7 such that there is a friend of 4p with exactly 3 distinct prime divisors, but a proof of
such a general statement is beyond us, at present. However, we shall verify our conjecture
in the case p � 5 in the next section.

By the way, Kim proved that any friend of 12 other than 234 would have to have at least
five distinct prime divisors, four others besides 3.

5 Application to Friends of 20

Theorem 5.1. If n is a friend of 20, then n has k C 5 distinct prime factors, including 2

and 5. As well, 3 and 7 are not factors of n. Lastly, all odd prime factors of n must be raised

to an even power in the factorization of n.

The proof will be the outcome of a series of propositions.

Proposition 5.2. 2Sn and 5Sn, but 3 ~S n and 4 ~S n.

Proof. Since I�20� � 21

10
, 10σ�n� � 21n and therefore 10Sn. Since 10Sn, both 2Sn and 5Sn must

hold. 4 ~S n by proposition 4.2. If 3Sn, then 30Sn and by Property 2, I�n� C I�30� � 12

5
C

21

10
�

I�20�, so 3 ~S n.

Proposition 5.3. 2 ~S σ�n�.

Proof. Suppose 2Sσ�n�, then σ�n� � 2x for some integer x. Thus, 20x � 21n but this would
require 4Sn; however we know 4 ~S n. Therefore our supposition was false and 2 ~S σ�n�.
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Proposition 5.4. All odd prime factors of n have an even power in the factorization of n.

Proof. By Proposition 5.3, we know that σ�n� � 1 �mod 2�. Suppose that q is an odd prime,
e is a positive integer, and qeSSn. Then σ�qe�Sσ�n�, so σ�qe� is odd. Since σ�qe� � qe�� � ��1 �
e � 1 mod 2, e must be even.

Proposition 5.5. 7 ~S n.

Proof. Suppose 7Sn. Then n must have 2�52 �72 � 2450 as a factor. Therefore I�n� C I�2450� �
2.16 A 21

10
and thus n would not be a friend of 20. Therefore, 7 ~S n.

Proposition 5.6. k A 2.

Proof. Application from the general case in Proposition 4.5.

Proposition 5.7. k A 3.

Proof. Suppose instead n has only 3 prime factors. Then I�n� �

3

2

5

4

11

10
�

21

10
. Therefore, n

must have more than 3 prime factors.

Proposition 5.8. k A 4.

Proof. Let n � 2 � 5a � pb
3
� pc

4
, where p3 and p4 are primes, and 7 � p3 � p4. If p3 C 19, then

I�n� B 3

2

5

4

19

18

23

22
� 2.07. Therefore, p3 > �11,13,17�. Let us now consider the three cases:

Case 1. p3 � 11. Let us consider all p4 for which 3

2

5

4

11

10

p4
p4�1

C

21

10
. We note that for p4 to

satisfy this condition, p4 � 56. Therefore, p4 > �13,17,19,23,29,31,37,41,43,47,53�. We
also must have I�2 � 52 � 112 � p2

4
� B

21

10
. This implies p4 C 41. Therefore, p4 > �41,43,47,53�.

Suppose the exponent of 5 is 2. Then for all p4 C 41, I�n� � I�2 �52� � 11
10

�

p4
p4�1

�

21

10
. Therefore,

the exponent of 5 is at least 4. With that condition, I�n� C I�2 �54 �112 �532� A 21

10
. Therefore,

there is no possible value of p4 for which n is a friend. Therefore, p3 x 11.

Case 2. p3 � 13. Let us again consider all p4 for which 3

2

5

4

13

12

p4
p4�1

A

21

10
. We note that for

p4 to satisfy this condition, p4 � 31. Therefore, p4 > �17,19,23,29�. We also must have
I�2 � 52 � 132 � p2

4
� B

21

10
. This implies that p4 A 23. Therefore, we must have p4 � 29. Suppose

the exponent of 5 is 2. Then I�n� � I�2 � 52� � 13
12

29

28
�

21

10
. Therefore, the exponent of 5 is at

least 4. Then I�n� C I�2 � 54 � 132 � 292� A 21

10
. Therefore, there is no possible value of p4 for

which n is a friend. Therefore p3 x 13.

Case 3. p3 � 17. Let us suppose p4 C 23, then I�n� � 3

2

5

4

17

16

23

22
� 2.08. Therefore, the only

option is p4 � 19. Let us now consider n � 2 � 52e5 � 172e17 � 192e19. Suppose the exponent of 5 is
at least 4, then I�n� C I�2 � 54 � 172 � 192� � 2.101 A 21

10
. Therefore, the exponent of 5 is 2 and

we can consider n � 2 � 52 � 172e17 � 192e19. I�n� � 3

2

31

25

17

16

19

18
� 2.086. Therefore, I�n� � 21

10
and

thus we have reached a contradiction. Therefore, p3 x 17.
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Case 4. p3 � 11. Let us consider all p4 for which 3

2

5

4

11

10

p4
p4�1

C

21

10
. We note that for p4 to

satisfy this condition p4 � 56. Therefore, p4 > �13,17,19,23,29,31,37,41,43,47,53�. We also
must have I�2 �52 �112 �p2

4
� B

21

10
. This implies p4 C 41. Therefore, p4 > �41,43,47,53�. Suppose

the exponent of 5 is 2. Then for all p4 C 41, I�n� � I�2 � 52� � 11

10

p4
p4�1

�

21

10
. Therefore, the

exponent of 5 is at least 4. With that condition, I�n� C I�2 � 54 � 112 � 532� A 21

10
. Therefore,

there is no possible value of p4 for which n is a friend. Therefore, p3 x 11.

Case 5. p3 � 13. Let us again consider all p4 for which 3

2

5

4

13

12

p4
p4�1

A

21

10
. We note that for

p4 to satisfy this condition, p4 � 31. Therefore, p4 > �17,19,23,29�. We also must have
I�2 � 52 � 132 � p2

4
� B

21

10
. This implies that p4 A 23. Therefore, we must have p4 � 29. Suppose

the exponent of 5 is 2. Then I�n� � I�2 � 52�13
12

29

28
�

21

10
. Therefore, the exponent of 5 is at

least 4. Then I�n� C I�2 � 54 � 132 � 292� A 21

10
. Therefore, there is no possible value of p4 for

which n is a friend. Therefore p3 x 13.

Case 6. p3 � 17. Let us suppose p4 C 23, then I�n� � 3

2

5

4

17

16

23

22
� 2.08. Therefore, the only

option is p4 � 19. Let us now consider n � 2 � 52e5 � 172e17 � 192e19. Suppose the exponent of 5 is
at least 4, then I�n� C I�2 � 54 � 172 � 192� � 2.101 A 21

10
. Therefore the exponent of 5 is at least

2 and we can consider n � 2 � 52 � 172e17 � 192e19. I�n� � 3

2

31

25

17

16

19

18
� 2.086. Therefore, I�n� � 21

10

and thus we have reached a contradiction. Therefore, p3 x 17.

Corollary 5.2. If 20 has a friend n, then n C 295,488,050.

Proof. We know that n has at least 5 prime factors, including 2 and 5, and excluding 3 and
7. As well, all odd primes must be raised to an even power. Therefore, n C 2 �52 �112 �132 �172 �
295,488,050.

Quote. In the words of G. Randolf, “Good friends are hard to find, harder to leave, and
impossible to forget.”
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