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Abstract

In this paper, we prove some fixed point theorems for certain

rational-type contractive maps in ordered metric spaces. An exam-

ple is given to support our results which extend some works in the

literature

1 Introduction and Preliminaries

In mathematical analysis, a versatile result that is widely applied to solve
functional equations in several branches of mathematics and especially in
metric fixed point theory was initiated by Banach [1] in 1922. There are
many extensions and generalizations of Banach contraction principle in the
literature (see: [2- 8]).
Frechet in 1906, introduced the notions of metric space. This space is gen-
eralized by endowing it with a partial ordering. Turinici [10] is the pioneer
researcher who established some results in ordered metrizable uniform space.
Later, Ran and Reurings [11] established fixed point results in partially or-
dered metric spaces with application to solving matrix equations. Nieto and
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Rodriguez-Lopez [12] proved fixed point results in partially ordered metric
spaces and applied the result to obtain solutions of certain partial differential
equations with periodic boundary conditions. Many works have been carried
out in this regard (see:[13-15]).
Recently, Dass and Gupta [16] extended the Banach contraction mapping
by introducing the concept of rational expressions in contraction mappings.
The rational-type contractive map

d(Tx, Ty) ≤ α
d(y,Ty)(1+d(x,Tx))

1+d(x,y))
+ βd(x, y)

∀x, y ∈ X , for α, β ∈ [0, 1) such that α+β < 1 and T continuous is employed
to prove fixed point theorem in a complete metric space.
Jaggi and Dass [17] established the unique fixed point for any continuous
mapping T : X → X on a complete metric space (X, d) that satisfies the
rational-type contractive condition

d(Tx, Ty) ≤ α
d(y,Ty)d(x,Tx)

d(x,y)+d(x,Ty)+d(y,Tx)
+ βd(x, y)

∀x, y ∈ X .

In 2018, Olatinwo and Ishola [18] proved the unique fixed point for a ra-
tional type contractive mapping in a complete metric space that satisfies

d(Tx, Ty) ≤ α
[p+d(x,Tx)][d(y,Ty)]r[d(y,Tx)]q

d(x,y)+νd(x,Ty)+µd(y,Tx)
+ βd(x, y)

∀x, y ∈ X

Cabrera et al. [19] established the result of Dass and Gupta [16] in the con-
text of partially ordered metric spaces. Chandok et al. [20] proved the unique
fixed point of (φ, ψ)-rational type contractive mappings in a complete metric
spaces endowed with partial ordered by employing an altering distance func-
tion.
In this paper, some fixed point theorems satisfying rational type contractive
mapping of Olatinwo and Ishola [18] are proved in the setting of ordered
metric spaces.
The following definitions are needed for our proofs.
Definition 1.1. [11] Suppose (X,≤) is a partially ordered set and T :
X → X . T is said to be monotone nondecreasing if for all x, y ∈ X ,
x ≤ y =⇒ Tx ≤ Ty.
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2 Main Results

Theorem 2.1. Let (X,≤) be a partially ordered set and suppose that
there is a metric d on X such that (X, d) is a complete metric space. Let
T : X → X be a continuous and nondecreasing mapping such that for all
x, y ∈ X and x ≤ y there exist α, p, q, r, ν, µ ∈ R+ and β ∈ [0, 1) satisfying

d(Tx, Ty) ≤ α
[p+d(x,Tx)][d(y,Ty)]r[d(y,Tx)]q

d(x,y)+νd(x,Ty)+µd(y,Tx)
+βd(x, y) (1)

with d(x, y) + νd(x, Ty) + µd(y, Tx) > 0.

For x0 ∈ X , let {xn}
∞

n=0 ⊂ X defined by xn+1 = Txn, n = 0, 1, 2, · · · be
the Picard iteration associated to T . If there exists x0 ∈ X with x0 ≤ Tx0,
then T has a fixed point.
Proof. If Tx0 = x0, then x0 is the fixed point of T . Suppose that x0 < Tx0.

Construct a sequence {xn} in X such that xn+1 = Txn for every n ≥ 0. Since
T is a nondecreasing mapping, by induction we obtain
x0 ≤ Tx0 = x1 ≤ Tx1 = x2 ≤ · · ·Txn−1 = xn ≤ Txn = xn+1 ≤ · · ·
If there is n ≥ 1 such that xn+1 = xn, then xn is the fixed point of T . Let
xn+1 6= xn. Using (1) we have
d(xn, xn+1) = d(Txn−1, Txn)

≤ α
[(p+ d(xn−1, Txn−1)][d(xn, Txn)]

r[d(xn, Txn−1)]
q

d(xn−1, xn) + νd(xn−1, Txn) + µd(xn, Txn−1)
+βd(xn−1, xn)

= α
[p + d(xn−1, xn)][d(xn, xn+1)]

r[d(xn, xn)]
q

d(xn−1, xn) + νd(xn−1, xn+1) + µd(xn, xn)
+ βd(xn−1, xn) ≤ βd(xn−1, xn)

Consequently, we have d(xn, xn+1) ≤ βnd(x0, x1).
For n > m and using the triangle inequality we obtain,

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + · · ·+ d(xn−1, xn)

≤ βmd(x0, x1) + βm+1d(x0, x1) + βm+2d(x0, x1)

+ · · ·+ βm+n−1d(x0, x1)

≤ (βm + βm+1 + βm+2 + · · ·+ βm+n−1)d(x0, x1)

≤
βm

1− β
d(x0, x1).

Taking the limit as m → ∞ shows that the sequence {xn} is Cauchy. Since
(X, d) is a complete metric space, then {xn} converges to some point u ∈ X .
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The continuity of T implies that Tu = T (limn→∞ xn) = limn→∞ Txn =
limn→∞ xn+1 = u. Thus, u is a fixed point of T .

We prove the next theorem by relaxing the continuity assumption of the
mapping T in Theorem 2.1 and imposing the following ordered conditions of
the metric spaces X .
If {xn} is a non-decreasing sequence in X such that xn → x, then xn ≤ x for
all n ∈ N .

Theorem 2.2. Let (X,≤) be a partially ordered set and suppose that there
is a metric d on X such that (X, d) is a complete metric space. Assume that
if {xn} is a nondecreasing sequence in X such that xn → x, then xn ≤ x for
all n ∈ N . Let T : X → X be a nondecreasing mapping. Suppose (1) holds
as in Theorem 2.1. If there exists x0 ∈ X with x0 ≤ Tx0, then T has a fixed
point.
Proof. We take the same sequence {xn} as in the proof of Theorem 2.1.
Then we have x0 ≤ x1 ≤ x2 ≤ · · ·xn ≤ xn+1 ≤ · · · that is , {xn} is a nonde-
creasing sequence. Also, this sequence converges to u. Then xn ≤ u for all
n ∈ N . Suppose that u 6= Tu, that is d(u, Tu) > 0. Using(1) we have

d(Txn, Tu) ≤ α
[p + d(xn, Txn)][d(u, Tu)]

r[d(u, Txn)]
q

d(xn−1, u) + νd(xn−−1, Tu) + µd(u, Txn)
+ βd(xn−1, u)

= α
[p+ d(xn, xn+1)][d(u, Tu)]

r[d(u, xn+1)]
q

d(xn−1, u) + νd(xn−−1, Tu) + µd(u, xn+1)
+ βd(xn−1, u)

d(u, Tu) ≤ 0 as n→ ∞.

Since d(u, Tu) is non-negative then d(u, Tu) = 0. This implies that u = Tu.

Theorem 2.3. In addition to the hypotheses of Theorem 2.1 (or Theo-
rem 2.2), suppose that for every x, y ∈ X , there is u ∈ X such that u ≤ x

and u ≤ y. Then T has a unique fixed point.
Proof. It has been established in Theorem 2.1 (or Theorem 2.2) that the
set of fixed points for T is non-empty. We shall prove that if x∗ and y∗ are
two fixed point of T , that is x∗ = Tx∗ and y∗ = Ty∗, then x∗ = y∗.
By our assumption, there exists u0 ∈ X such that u0 ≤ x∗ and u0 ≤ y∗.
Similarly as in the proof of Theorem 2.1, we define the sequence {un} such
that un+1 = Tun = T n+1u0, n = 0, 1, 2, · · · . Monotonicity of T implies that
T u
0 = un ≤ x∗ = T nx∗ and T u

0 = un ≤ y∗ = T ny ∗ .
If there exists a positive integer m such that x∗ = un, then x∗ = Tx∗ =



Some fixed point theorems for rational-type contractive maps... 69

Tun = un+1, for all n ≥ m. Then un → x∗ as n→ ∞. Now we suppose that
x∗ 6= un, for all n ≥ 0. Then d(un, x∗) 6= 0 for all n ≥ 0.
Since un < x∗, for all n ≥ 0, applying (1) yields

d(un+1, x∗) = d(Tun, Tx∗) ≤ α
[p+d(un,Tun)][d(x∗,Tx∗)]r [d(x∗,Tun)]q

d(un,x∗)+µd(x∗,Tun)+νd(uu,Tx∗)
+ βd(un, x∗)

Taking the limit as n→ ∞ yields d(un+1, x∗) → 0 that un → x∗ as n→ ∞.
Using similar argument, we can prove that un → y∗ as n → ∞. By the
uniqueness of limit we have x∗ = y∗. Thus T has a unique fixed point.

Remark 2.4. Theorem 2.1 and Theorem 2.2 are generalizations of the re-
sult of Olatinwo and Ishola [18] (Theorem 6) in the setting of ordered metric
spaces. Theorems 2.1, 2.2 and 2.3 are generalizations of Theorems 2, 3 and
4 of Cabrera et al. [19] with respect to the maps.

For α = 0 in (1) we obtain the following corollaries.
Corollary 2.4. Let (X,≤) be a partially ordered set and suppose that
there is a metric d on X such that (X, d) is a complete metric space. Let
T : X → X be a continuous and nondecreasing mapping such that for all
x, y ∈ X and x ≤ y there exists β ∈ [0, 1) satisfying

d(Tx, Ty) ≤ βd(x, y) (2)

For x0 ∈ X , let {xn}
∞

n=0 ⊂ X defined by xn+1 = Txn, n = 0, 1, 2, · · · be
the Picard iteration associated to T . If there exists x0 ∈ X with x0 ≤ Tx0,
then T has a fixed point.

Corollary 2.5. Let (X,≤) be a partially ordered set and suppose that there
is a metric d on X such that (X, d) is a complete metric space. Assume that if
{xn} is a nondecreasing sequence in X such that xn → x, then xn ≤ x for all
n ∈ N . Let T : X → X be a nondecreasing mapping. Suppose (2) holds as in
Corollary 2.4. If there exists x0 ∈ X with x0 ≤ Tx0, then T has a fixed point.

Corollary 2.6. In addition to the hypotheses of Corollary 2.4 (or Corol-
lary 2.5), suppose that for every x, y ∈ X , there is u ∈ X such that u ≤ x

and u ≤ y. Then T has a unique fixed point.

Example 2.4. Let X = [0, 1] with partial ordered ” ≤ ” and usual metric
”d” be a partially ordered metric space. Let T : X → X be defined by
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T (x) =

{

1
2

if x ∈ [0, 1
4
)

x− 1
4

if x ∈ [1
4
, 1]

To show that T satisfies the contractive conditions (1) of Theorem 2.2 for
x = 1

2
, y = 1

6
, p = 0, r = q = ν = µ = 1 and α = 1, we have

Tx = 1
4
, Ty = 1

2
, d(y, Tx) = 1

12
, d(x, Ty) = 0, d(x, Tx) = 1

4
, d(y, Ty) = 1

3
,

d(x, y) = 1
3
, d(Tx, Ty) = 1

4
.

Thus

1

4
= d(Tx, Ty)

≤
d(x, Tx)d(y, TY )d(y, Tx)

d(y, TX) + d(x, TY ) + d(x, y)
+ βd(x, y)

=
1
4
× 1

3
× 1

12
1
12

+ 0 + 1
3

+
1

3
β

=
1

60
+

1

3
β,

It follows that β ≥ 7
10
. Hence β ∈ [0, 1). Therefore T satisfies the contractive

condition (1) and other hypotheses of Theorem 2.2. The unique fixed point
of T is 1

2
.

3 Conclusion

In this research the existence and uniqueness of certain rational-type con-
tractive mappings is established in an ordered metric spaces. This result is
validated by an example . The potentality of this work is that it can be
prove in different abstract spaces and can also be used to find the solution
of integral equations.
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