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Abstract

The purpose of this paper is to provide statistical properties of

the estimator given by a new calibration method, named the ”PLS-

calibration”, that is used particularly in the context of multicollinear

auxiliary variables.

An application on real data and some simulations will show the ef-

ficiency of the PLS-calibration estimator compared to the Horvitz-

Thompson estimator when the ordinary calibration couldn’t work be-

cause of the multicollinearity.

Introduction

The aim of survey sampling is to get a consistent estimator by using a sam-
ple that is supposed to be a photo-reduction of the population. For this
reason, different estimating methods have been proposed in the literature.
At first, Horvitz and Thompson (1952) [16] have proposed an unbiased one
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in the class of linear estimates (Godambe and Joshi, 1965 [11]). After that,
the regression estimator has been suggested to increase the precision of the
Horvitz-Thompson estimator. However, the unbiasedness property to be re-
placed by the asymptotic unbiasedness (Sárnadl, Swensson and Wretman,
1992 [19]) was lost. Later, the calibration estimator (Deville and Särndal,
1992 [7]) has appeared saving the same properties of the regression esti-
mator without refering to the regression model. Unfortunately, the nature
of real data imposes the problem of multicollinearity between the auxiliary
variables, which disrupts the calibration method. Therefore, the calibration
estimator will lose its precision or won’t be able to be calculated. So some
remedies have been suggested in the literature; namely, the Ridge calibration
(Bardsley and Chambers, 1984[3]), the PC calibration (Goga, Shehzad and
Vanheuverzwyn, 2011[12]), the lasso calibration (Chen, 2016[5]) and more
recently the PLS-calibration (Nahchel, Allal and Zarrouk, 2018 [18]).
The purpose of this article is to study the statistical properties of the PLS-
calibration estimator. Thereby, it will be structured as follows: after remind-
ing the reader about the calibration method and the PLS-calibration, we will
study for the first time the bias and the variance of the estimator given by the
new method. Then, the results found will be tested through an application
on real data in addition to some simulations.

1 Calibration

Calibration, as defined by Deville and Särndal in 1992 [7], is a technique
that takes into account additional auxiliary information other than those
used at the sampling phase in order to adjust the sample structure. So,
the sample will match the population structure. In other terms, calibration
uses auxiliary information to assign some weights to each individual in the
sample in a way that makes the sample a photo-reduction of the population.
In consequence, the calibration estimator will ensure better precision than
the Horvitz-Thompson estimator (1952).

Mathematically, if s is a sample of size n drawn from a finite population
U that contains N individuals, y = (y1, ..., yN)

′

is the variable of interest
and xk = (xk1, ..., xkm)

′

is the vector of m auxiliary variables observed on
the kth element and dk is the sample weight that is equal to the inverse of
the inclusion probability πk, the calibration procedure (Deville and Särndal,
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1992 [7]) is defined by






min
∑

k∈s

H(dk, wk)

∑

k∈s

wkxk =
∑

k∈U

xk







(1)

where wk are the calibration weights that we are looking for and H(., .) is a

pseudo-distance on R defined by H(dk, wk) = dkG

(
wk

dk

)

, where G() is one of

the convex distance functions proposed in the literature (for further details
see Nahchel, Allal and Zarrouk (2018)[18], Deville and Särndal (1992)[7],
Husain (1969)[15] and Deville, Ireland and Kullback (1968)[17]).
So, the calibration estimator will be written as follows

Ŷcal =
∑

k∈s

wkyk. (2)

By using the asymptotic equivalence between the calibration estimator and
the regression estimator (Deville and Särndal, 1992 [7]), the calibration
weights wk can be written as

wk = dk +

(
∑

k∈U

x
′

k −
∑

k∈s

dkx
′

k

)(
∑

k∈s

dkqkxkx
′

k

)−1(
∑

k∈s

dkqkxk

)

(3)

where qk =
1

σ2

k

and σ2

k is the variance of yk with respect to the model ξ : y =

Xβ + e such that X = (x
′

k)k∈U , β = (β1, ..., βm)
′

=

(
∑

k∈U

xkx
′

k

σ2

k

)
2
∑

k∈U

xkyk

σ2

k

and e = (e1, ...eN)
′

the residual vector.
To evaluate the precision of the calibration estimator, the following expres-
sion of the asymptotic variance (Deville and Särndal, 1992 [7]) can be used

AV
(

Ŷcal

)

=
∑

l∈U

∑

k∈U

∆kl(dlel)(dkek) (4)

with ek = yk − x
′

kβ and ∆kl = πkl − πkπl = Prob(k, l ∈ s) − Prob(k ∈
s)Prob(l ∈ s). But the ek for k ∈ U are unknown. For that reason the
asymptotic variance will be estimated by

ÂV
(

Ŷcal

)

=
∑

l∈s

∑

k∈s

∆̃kl(dlẽl)(dkẽk) (5)
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such that ẽk = yk − x
′

kβ̂, β̂ is the estimate of the unknown parameter β and

∆̃kl =
∆kl

πkl

.

2 PLS-calibration

2.1 Definition

The PLS-calibration (Nahchel, Allal and Zarrouk, 2018 [18]) refers simply
to the combination of the PLS regression (Wold, 1966) and the calibration
procedure. More precisely, the PLS-calibration has two phases: The first one
consists of applying the PLS regression between the variable of interest and
the auxiliary variables all observed on the sample s while the second one is
preserved to calibrate s on the PLS components saved before. Therefore,
the PLS-calibration reduces the dimension of the auxiliary variables based
on the Akaike information criterion (Akaike, 1973 [1]), eliminates the multi-
collinearity and then calibrates the sample s without any problems.
Mathematically, the PLS calibration is defined by







min
∑

k∈s

H(dk, wk)

∑

k∈s

wklk =
∑

k∈U

lk,







(6)

where lk = (l1, ..., lv)
′

is the vector of the first v PLS components for the kth
element.
Due to the asymptotic equivalence between the calibration estimator and the
regression estimator the new calibration, weights can be written as

wPLS,k = dk +

(
∑

k∈U

l
′

k −
∑

k∈s

dkl
′

k

)(
∑

k∈s

dkqklkl
′

k

)−1(
∑

k∈s

dkqklk

)

. (7)

In consequence, the PLS-calibration estimator can be expressed by

ŶPLS =
∑

k∈s

wPLS,kyk

=
∑

k∈s

dkyk+

(
∑

k∈U

l
′

k −
∑

k∈s

dkl
′

k

)(
∑

k∈s

dkqklkl
′

k

)−1(
∑

k∈s

dkqklkyk

)
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= ŶHT +

(
∑

k∈U

l
′

k −
∑

k∈s

dkl
′

k

)

β̂PLS (8)

where ŶHT =
∑

k∈s dkyk is the Horvitz-Thompson estimator (Horvitz and

Thompson, 1952 [16]) and β̂PLS =
(∑

k∈s dkqklkl
′

k

)−1 (∑

k∈s dkqklkyk
)
.

Since the PLS-calibration estimator is asymptotically equivalent to the re-
gression estimator ξ returns to

ξ
′

: y = LvβPLS + ǫv = XαPLS + ǫv (9)

with

• Lv = (l
′

k)k∈U

• βPLS =
(∑

k∈U lkl
′

k

)−1 (∑

k∈U lkyk
)
estimated by β̂PLS

• ǫv = (ǫv,1, ..., ǫv,N) the residual vector
αPLS = MvβPLS

• and Mv = (m1, ..., mv) the matrix of the PLS coefficients.

2.2 Statistical properties

Due to the asymptotic equivalence between the PLS-calibration estimator
and the regression estimator that uses the PLS regression, both estimators
share the same statistical properties.

Proposition 1

The PLS-calibration estimator is unbiased under the model ξ if the sum of the
PLS components are perfectly estimated on s using the Horvitz-Thompson
estimator (i.e

∑

k∈s dklk =
∑

k∈U lk), or if the matrix of PLS coefficients Mv,s

provided by the PLS regression between ys = (y1, ..., yn)
′

and Xs = (x
′

k)k∈s
is the same as the Mv in ξ

′

because

Eξ

(

ŶPLS − ty

)

=
(

1
′

ULv − d
′

sLv,s

)(

M
′

v,s −M
′

v

)

β (10)

with 1U = ( 1, ..., 1
︸ ︷︷ ︸

N times

)
′

and ds = (d1, ..., dn)
′

.

Proof:
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Using the formula (8) of ŶPLS, we get

ŶPLS − ty = ŶHT +
(

1
′

ULv − d
′

sLv,s

)

β̂PLS − ty

=
∑

k∈s

yk

πk

+
∑

k∈U

l
′

kβ̂PLS −
∑

k∈s

l
′

kβ̂PLS

πk

−
∑

k∈U

yk

=
∑

k∈s

l
′

kβPLS + εk

πk

−
∑

k∈s

l
′

kβ̂PLS

πk

+
∑

k∈U

l
′

kβ̂PLS−
∑

k∈U

(l
′

kβPLS + εk)

=
∑

k∈s

l
′

k

πk

(

βPLS − β̂PLS

)

+
∑

k∈U

l
′

k

(

β̂PLS − βPLS

)

+
∑

k∈s

εk

πk

−
∑

k∈U

εk

=

(
∑

k∈U

l
′

k −
∑

k∈s

l
′

k

πk

)
(

β̂PLS − βPLS

)

+
∑

k∈s

εk

πk

−
∑

k∈U

εk (11)

Then,

Eξ

(

ŶPLS − ty

)

=

(
∑

k∈U

l
′

k −
∑

k∈s

l
′

k

πk

)

Eξ

(

β̂PLS − βPLS

)

=

(
∑

k∈U

l
′

k −
∑

k∈s

l
′

k

πk

)

Bias
(

β̂PLS

)

. (12)

To calculate the bias of β̂PLS, we have to start by computing Eξ

(

β̂PLS

)

.

Since β̂PLS =
(
L

′

v,sΠ
−1

s Lv,s

)−1

L
′

v,sΠ
−1

s ys and Xs = Lv,sM
′

v,s,

we obtain that

Eξ

(

β̂PLS

)

=
(

L
′

v,sΠ
−1

s Lv,s

)−1

L
′

v,sΠ
−1

s Eξ (ys)

=
(

L
′

v,sΠ
−1

s Lv,s

)−1

L
′

v,sΠ
−1

s Xsβ

=
(

L
′

v,sΠ
−1

s Lv,s

)−1

L
′

v,sΠ
−1

s Lv,sM
′

v,sβ

= M
′

v,sβ (13)

So, the bias of β̂PLS is given by

Eξ

(

β̂PLS − βPLS

)

= Eξ

(

β̂PLS

)

− βPLS



Some statistical properties of the PLS-calibration estimator 281

= M
′

v,sβ −M
′

vβ

=
(

M
′

v,s −M
′

v

)

β (14)

Finally,

Eξ

(

ŶPLS − ty

)

=
(

1
′

ULv − d
′

sLv,s

)(

M
′

v,s −M
′

v

)

β.

Proposition 2:

We now use theorem 1 of H. Chun and S. Keleş (2010, page 6)[6]. If
m

n
→ 0 ,

then β̂PLS −βPLS = O

(√
m

n

)

. Therefore, the asymptotic variance of ŶPLS

is expressed by

AVp

(

ŶPLS

)

=
∑

i∈U

∑

k∈U

(πki − πkπi)
yk − l

′

kβPLS

πk

yi − l
′

iβPLS

πi

(15)

with βPLS =
(
L

′

vLv

)−1

L
′

vy .

Since AVp

(

ŶPLS

)

is unknown, it is suggested to estimate it by

ˆV ar
(

ŶPLS

)

=
∑

i∈s

∑

k∈s

(πki − πkπi)

πki

yk − l
′

kβ̂PLS

πk

yi − l
′

iβ̂PLS

πi

. (16)

Proof:

Let α̂PLS be the estimate of αPLS the PLS regression estimator such that
α̂PLS = Mvβ̂PLS and αPLS = MvβPLS.

Next we use the closed form of α̂PLS given by Helland (1990)[14]

α̂PLS = R̂
(

R̂TSXXR̂
)−1

R̂TSXY (17)

where R̂ =
(
SXY , ..., S

v−1

XXSXY

)
, SXX and SXY are the estimations of the

variance
∑

XX of X and of the covariance σXY of X and Y respectively.
We get,

‖α̂PLS − αPLS‖2 = ‖R̂
(

R̂TSXXR̂
)−1

R̂TSXY − R(RT
∑

XX

R)−1RTσXY ‖2

= ‖R̂
(

R̂TSXXR̂
)−1

R̂TSXY +R
(

R̂TSXXR̂
)−1

R̂TSXY
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−R
(

R̂TSXXR̂
)−1

R̂TSXY − R
(
RTΣXXR

)−1

RTσXY ‖2

= ‖
(

R̂− R
)(

R̂TSXXR̂
)−1

R̂TSXY+R

[(

R̂TSXXR̂
)−1

R̂TSXY −
(
RTΣXXR

)−1

RTσXY

]

‖2

= ‖
(

R̂− R
)(

R̂TSXXR̂
)−1

R̂TSXY+R

[(

R̂TSXXR̂
)−1

R̂TSXY −
(
RTΣXXR

)−1

R̂TσXY

]

‖2

+R
[(
RTΣXXR

)−1

R̂TσXY −
(
RTΣXX

)−1

RTσXY

]

‖2

6 ‖R̂−R‖2‖
(

R̂TSXXR̂
)−1

RTSXY ‖2+
[

‖R‖2‖
(

R̂TSXXR̂
)−1

− (RT
∑

XX

R)−1‖2‖R̂TSXY ‖2
]

+ ‖R‖2‖(RT
∑

XX

R)−1‖2‖
(

R̂TSXY −RTσXY

)

‖2 (18)

because ‖R̂−R‖2 = O

(√
m

n

)

, ‖
(

R̂TSXXR̂
)

−
(
RT
∑

XX R
)
‖2 = O

(√
m

n

)

and ‖R̂TSXY −RTσXY ‖2 = O

(√
m

n

)

due to lemmas 2 and 3 from H. Chun

and S. Keleş (2010, page 21)[6].

Actually, by using the definition of a matrix norm, we have

‖R̂− R‖2 6
√
v max16k6r‖Sk−1

XX SXY −
∑k−1

XX
σXY ‖2 (19)

Because of the lemma 3 from H. Chun and S. Keleş (2010, page 21)[6], we
have

‖R̂− R‖2 = O

(√
m

n

)

(20)

Refering to Golub and Van Loan (1987)[13] we apply

‖ (A+ E)−1 − A−1‖2 6 ‖E‖2‖A−1‖2‖ (A+ E)−1 ‖2

to ‖
(

R̂TSXXR̂
)−1

−(RT
∑

XXR)−1‖2 where A = RT
∑

XXR and E = R̂TSXXR̂−
RT
∑

XXR

Then, we obtain

‖
(

R̂TSXXR̂
)−1

− (RT
∑

XX
R)−1‖2

6 ‖R̂TSXXR̂− RT
∑

XX
R‖2‖(RT

∑

XX
R)−1‖2‖

(

R̂TSXXR̂
)−1

‖2 (21)
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We know that

‖R̂TSXXR̂−RT
∑

XX
R‖2 = ‖R̂TSXXR̂−RTSXXR̂+RTSXXR̂−RT

∑

XX
R‖2

= ‖
(

R̂T +RT
)(

SXXR̂
)

−RT (SXXR̂−
∑

XX
R)‖2

= ‖
(

R̂T +RT
)(

SXXR̂
)

−RT (SXXR̂−
∑

XX
R̂+
∑

XX
R̂−
∑

XX

R)‖2

= ‖
(

R̂T +RT
)(

SXXR̂
)

−RT [(SXX−
∑

XX
)R̂+

∑

XX
(R̂−R)]‖2

6 ‖R̂T − RT‖2
︸ ︷︷ ︸

=O

(

√

m

n

)

‖SXXR̂‖2+‖RT‖2 ‖SXX −
∑

XX
‖2

︸ ︷︷ ︸

=O

(

√

m

n

)

‖R̂‖2+‖RT‖2‖
∑

XX
‖2 ‖R̂− R‖2
︸ ︷︷ ︸

=O

(

√

m

n

)

= O

(√
m

n

)

(22)

‖SXX −∑XX‖2 = O

(√
m

n

)

since the lemma 2 from H. Chun and S. Keleş

(2010, page 21) [6]. By formula (21), we get

‖
(

R̂TSXXR̂
)−1

−
(
RTΣXXR

)−1 ‖2 = O

(√
m

n

)

(23)

Finally,

‖R̂TSXY − RTσXY ‖2 = ‖R̂TSXY −RTSXY + RTSXY −RTσXY ‖2
6 ‖R̂T − RT‖2
︸ ︷︷ ︸

=O

(
√

m

n

)

‖SXY ‖2 + ‖RT‖2 ‖SXY − σXY ‖2
︸ ︷︷ ︸

=O

(
√

m

n

)

= O

(√
m

n

)

(24)

‖SXY − σXY ‖2 = O

(√
m

n

)

due to lemma 2 from H. Chun and S. Keleş

(2010, page 21) [6].
By (20), (23) and (24), we get

‖α̂PLS − αPLS‖ = O

(√
m

n

)

. (25)
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Since

β̂PLS − βPLS = M
′

vα̂PLS −M
′

vαPLS

= M
′

v (α̂PLS − αPLS) (26)

we get,

β̂PLS − βPLS = O

(√
m

n

)

(27)

Consequently,

(

ŶPLS − ty

)

= ŶHT +
(

1
′

ULv − d
′

sLv,s

)

β̂PLS − ty

= ŶHT+
(

1
′

ULv − d
′

sLv,s

)

βPLS−ty−
(

1
′

ULv − d
′

sLv,s

)

βPLS+
(

1
′

ULv − d
′

sLv,s

)

β̂PLS

=
[

ŶHT +
(

1
′

ULv − d
′

sLv,s

)

βPLS − ty

]

+
(

1
′

ULv − d
′

sLv,s

)(

β̂PLS − βPLS

)

=
[

ŶHT +
(

1
′

ULv − d
′

sLv,s

)

βPLS − ty

]

+OP

(√
m

n

)

(28)

so,

AVp

(

ŶPLS

)

= V ar
(

ŶHT +
(

1
′

ULv − d
′

sLv,s

)

βPLS

)

=
∑

i∈U

∑

k∈U

(πki − πkπi)
yk − l

′

kβ :PLS

πk

yi − l
′

iβPLS

πi

.

3 Simulation

This section is composed of three subsections. The first one is dedicated to
the direct application of the PLS-calibration on real data given by Marocme-
trie (a Moroccan company specialized in the TV audience measurement).
The second one uses a sample from the same real data considered as a pop-
ulation in order to be able to evaluate the bias. In the third subsection, a
simulation on non-real-data will be made to confirm the previous results and
to be able to use the bias expression given by the formula (10). Finally, it
is necessary to mention that self programming functions in the R software
were adopted for all the calibration methods used.
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3.1 Application on real data

The data contains 23 calibration variables (6 qualitative variables and 17
quantitative variables) observed on 10121 individuals. By using the condi-
tion number (see Erkel-Rousse, 1995[9]) it was verified that the data suffers
from severe multicollinearity. Therefore, the ordinary calibration couldn’t
work. So, only the PLS-calibration and the Horvitz and Thompson esti-
mator were calculated with their statistical properties. We recall that the

Horvitz-Thompson Estimator variance is given by

V (ŶHT ) =
∑

k∈U

x
′

kxk

(
1− πk

πk

)

+
∑

k 6=l∈U

x
′

kxl

(
πkl − πkπl

πkπl

)

(29)

and estimated by

V̂ (ŶHT ) =
∑

k∈s

x
′

kxk

(
1− πk

(πk)2

)

+
∑

k 6=l∈s

x
′

kxl

(
πkl − πkπl

πklπkπl

)

(30)

The table hereafter summarizes the results:

Table 1: The application on real data results

Direct application
PLS-calibration Horvitz-Thompson

Total estimation 75774351.5 78639148.1
Estimated variance 759143945.9 611866918446.0

As table 1 shows, the PLS-calibration is doing better than the Horvitz-
Thompson estimator according to the variance estimation. However, the bias
is unknown. So, the Mean Square Error (MSE) can’t be calculated to judge
the performance of our method. This is why, the following subsections are
necessary.

3.2 Simulation using real data

In this simulation the data introduced before is considered as the whole pop-
ulation and a sample s of size 1013 is drawn using the stratified random
sampling with proportional allocation strategy to insure the representability



286 S. Nahchel, J. Allal, Z. Zarrouk

(Gerville-Rache and Couallier, 2011[10]). The sample size was chosen to have
a sample that represents 10% of the universe as the real data do. The mul-
ticollinearity problem still persists in the sample s. In consequence, only the
PLS-calibration estimator and the Horvitz-Thompson estimator with their
statistical properties were calculated.
In order to make our results reliable, we need to use the bootstrap proce-
dure (Efron and Tibshini, 2000 [8]). As we are using the stratified random
sampling with proportional allocation strategy we work with the stratified
bootstrap technique with B = 1000.

Table 2: The simulation with real data results

Total=114338 Direct application Bootstrap
PLS-cali. Horvitz-Thompson PLS-cali. Horvitz-Thompson

Total estimation 114475.9 114477.4 114350.9 114359.8
Asymptotic var. 9861094.3 33230717.3 9861094.3 33230717.3
Estimated var, 9495278.3 33292453.4 9492193.9 33238682.3
Observed bias 137.9 139.4 12.9 21.8
MSE 9880110.7 33250149.7 9861260.7 33231192.5

As table 2 shows, the estimated variance given by formulas (16) and (30)
approaches the real variance calculated through formulas (15) and (29). So,
they reflect the real precision. On the other hand, the PLS-calibration es-
timator gives an estimation with lower bias and much lower variance than
the Horvitz-Thompson estimator. In other terms, The Mean Square Er-
ror (MSE=Asymptotic variance + Observed Bias2) allows us to say that
the PLS-calibration estimator is the best. Finally, the Bootstrap procedure
confirms all the results and shows the consistency of the PLS-calibration
estimator.

3.3 Simulation with non-real-data

To double check the previous results (see subsections 3.1 and 3.2), a simu-
lation on non-real-data has been done. A data X of 15 variables (10 quan-
titative variables (Gaussian variables N (0, 1)) and 5 qualitative variables)
and 10000 individuals suffering from strong multicollinearity was built by
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using the Cholesky decomposition (Cholesky, 2005[4], Angeletti and Bernay,
2010[2]) . Furthermore, the coefficient vector β was generated using the
uniform distribution (U(0, 1)) and the error vector e was generated using
the Gaussian distribution (N (0, 1)). After that, the variable of interest Y

was calculated through equation Y = Xβ + e. Then, a sample of size 1000
was drawn by the stratified random sampling with proportional allocation
strategy. Finally, the PLS-calibration estimator and the Horvitz-Thompson
estimator with their statistical properties were calculated. The ordinary cali-
bration couldn’t work due to the multicollinearity and the stratified bootstrap
was used as in the previous subsection. The following table outlines the re-

sults:
As it can be seen in table 3, the PLS-calibration still performs better

Table 3: The simulation with non-real-data results

Real Total= 24283.4 Direct application Bootstrap
PLS-cali. Horvitz-Thompson PLS-cali. Horvitz-Thompson

Total estimation 24364.2 24455.1 24218.8 24287.8
Asymptotic variance 91003.9 3141533.6 91003.9 3141533.6
Estimated variance 86009.3 3064207.2 88333.8 3143618.8
Observed bias 80.7 171.6 -64.6 4.3
Bias through the formula -14.8 NA 2.9 NA
MSE 97516.39 3170980.16 95177.06 3141552.09

than the Horvitz-Thompson one according to the MSE. Actually, the PLS-
calibration reduces deeply the variance of the Horvitz-Thompson estimator
which covered the little loss in the bias after using the bootstrap while the
direct application shows that the PLS-calibration does very well and provides
a nice gain for the precision and the bias at the same time. Finally, the bias
calculated through formula (10) gives lower values than the observed ones
as it is for the Horvitz-Thompson estimator that is supposed to be unbiased
when the observed bias is different from 0.

Conclusion

In conclusion, the PLS-calibration is a nice remedy to overcome the multi-
collinearity problem when the ordinary calibration couldn’t work. Moreover,
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it conserves the benefits of the calibration method by insuring better preci-
sion than the Horvitz-Thompson estimator. So, it will be very beneficial to
compare our method with the other remedies that are in the literature (the
Ridge calibration (Bardsley and Chambers, 1984 [3]), the Principal Com-
ponent calibration (Goga, Shehzad and Vanheuverzwyn, 2011 [12]) and the
LASSO calibration (Chen, 2016[5])) in order to show its performance.
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