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Abstract

In this paper, the numerical solution to the regularized long wave
(GRLW) equation is investigated numerically applying two different
techniques a Parabolic Monge Ampere (PMA) moving mesh and uni-
form mesh. The PMA moving mesh is a method for generating a
moving mesh which moves as the solution moves with time. The gen-
erated mesh is obtained by having the gradient of a grid potential
function. I use here the centred finite differences for both schemes.
The comparison between these schemes is shown in the last table and
figure. The analytical solution is derived in Appendix A. I find a so-
lution when it has only one solitary wave. Next, I show when it has
two or three solitary waves. Figures 2D and 3D shows all of these nu-
merical results using the mentioned schemes compared with the exact
solution.

1 Introduction

The generalized regularized long wave (GRLW) equation can be written in
non-dimensional form as
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ut − µutxx + p
(

up+1
)

x
+ ux = 0. (1.1)

Here, u = u(x, t) is the amplitude, x is the spatial coordinate and t is time.
The dimensionless parameters p ≥ 1, and µ are positive constants. The
GRLW equation Eq. (1.1) is based on the regularized long wave (RLW)
equation, taken p = 1 in Eq.(1.1), is given by

ut − µutxx + p
(

u2
)

x
+ ux = 0. (1.2)

This equation has been employed to model ion acoustic waves in plasmas,
longitudinal diffusive waves in elastic rods, pressure waves in liquid gas bub-
bles, and nonlinear transverse waves in shallow water (the interested reader
can be referred to [1] –[15]). Peregrine, Bona and Mahony [1] introduced pri-
marily the RLW equation after that Benjamin [16] essentially derived it from
the behavior of long waves in positive x-direction as a model for small ampli-
tude long waves on the surface of the water in a channel. The RLW equation
was proposed as an alternative model to the KdV equation by Benjamin [16].
This equation represents the great length of waves and the long waves with
opinions of small wave amplitude in numerous physical systems. The RLW
equation has been solved in both analytically and numerically by numerous
methods, for instance spectral, finite differences, finite element, collocation,
and Adomian decomposition techniques. Changna et, al [17] used an adap-
tive moving mesh finite element to solve the one and two dimensions RLM
equation.

Generalizations, for example, the generalized regularized long wave GRLW
(which is also defined by the Benjamin-Bona-Mahondy BBM) or the modified
regularized long wave (MRLW) equations [18, 19, 20] appear from numerous
applications. The MRLW equation, obtained by taking p = 2 in Eq. (1.1),
is written as

ut − µutxx + p
(

u3
)

x
+ ux = 0. (1.3)

This equation was solved by Gardner [21] using B-spline finite element. Khal-
ifa et al. [22] and Karakoc et al. [23] employed finite element methods based
on quintic, cubic, and septic collocation for obtaining the numerical solution
of the MRLW equation. Raslan and Hassan [24] employed solitary waves for
the MRLW equation. Finite differences methods were employed to solve the
MRLW equation by Khalifa [25]. Ali [26] solved numerically the MRLW equa-
tion utilizing a mesh-free collocation method. The GRLW equation is studied
employing numerous methods, Kaya [27], EL-Danaf et al. [28] and Guo et al.
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[29] used numerical methods based on the finite difference scheme, element-
free KP-Ritz, and decomposition scheme. A Petrov-Galerkin method was
employed to the GRLW equation by Roshan [30]. Ramos [31] applied an
approximate quasilinearization scheme to solve the GRLW equation with an
initial condition on the formation of an undular bore.

The section of numerical results, here, concentrates on solving the GRLW
equation using several techniques, the uniform mesh and PMA moving mesh.
I follow the PMA moving mesh technique described in [32, 33, 34, 35]. This
technique based on the r-adaptive moving mesh method [36, 35, 37], which
generates the moving mesh using the gradient potential function. the funda-
mental part of this technique is the suitable choice of the monitor function
which controls the movement of the mesh points so that the region where
the solution has, for example, a large variation or curvature. Since the PMA
moving mesh technique improves the mesh, the internal layers are resolved
more precisely. Also, the PMA moving mesh method can be used in the fi-
nite difference techniques. Many applications, for example in fluid mechanics
[38, 39], heat transfer [40] and meteorological [33, 34], has been achieved by
using a PMA moving mesh techniques.

The purpose of this paper is to focus on implementing the finite difference
method on an adaptive moving mesh for solving the one-dimensional GRLW
equation; extending this to higher dimensions is currently doing undertaken
and will be published elsewhere.

1.1 The GRLW equation and the analytical solution

The GRLW Eq. (1.1) can be written as [30]

ut − µutxx + p
(

up+1
)

x
+ ux = 0, (1.4)

where x, t are the spatial and temporal coordinates, respectively. The pa-
rameters p, and µ are positive constants. This PDE is considered based on
the physical boundary conditions u → 0 and ux → 0 as x → ±∞. The cor-
responding boundary conditions, on the region x ∈ [xL, xR], are prescribed
as

u(xL, t) = u(xR, t) = 0, ux(xL, t) = ux(xR, t) = 0, uxx(xL, t) = uxx(xR, t) = 0, ∀t ≥ 0.
(1.5)

The analytical solutions (exact solutions) of the GRLW equation, is given
by
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u(x, t) =

[

ρ sech2

(

p

2

√

α0

µ(α0 + 1)
(x− x0 − (α0 + 1)t)

)]

1

p
, (1.6)

where α0 is a spread velocity, ρ = (p+2)α0

2p
is an amplitude of the soliton and

x0 is the central location of the initial wave. For further detail, the interested
reader can read Appendix 3. This solution obtained also by Gardner et al.
[10] and Roshan [30].

2 Numerical results

In this section, I show the numerical results achieved using several techniques
a uniform mesh and a PMA moving mesh. In both methods, I use the centred
finite difference methods to discretise the spatial derivatives appear in the
GRLW equation Eq. (1.1) and keep the derivative of temporal continuous.
Hence, the underlying PDE Eq. (1.1) is transferred to a system of ODEs,
which I use MATLAB solver (ode15i) to solve.

2.1 Numerical solution of GRLW equation on a fixed

mesh

I investigate the numerical solution to Eq. (1.4) using a fixed mesh on the
physical domain [xL, xR], where is separated into Nx subintervals [xi, xi+1].
The nodes is given to be

xi = (i− 1)∆x, ∀xi ∈ [xL, xR], i = 1, 2, 3, ..., Nx + 1,

and ∆x = xR−xL

Nx
is uniformly width of per subinterval. I use the finite differ-

ences operators to discretise the spatial differentiation appearing in Eq.(1.4)
and keep the temporal differentiation continuous. Consequently, a uniform
mesh scheme of Eq.(1.4) becomes as follows:

(f(u))t = −

(

gi − gi−1

∆x

)

,

fi = ui −
µ

∆2x
(ui+1 − 2ui + ui−1) ,

gi = p up+1
i+1/2 + ui+1/2,

(2.1)
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where i = 1, 2, 3, ..., Nx + 1, up+1
i+1/2 can be evaluated by up+1

i+1/2 = 0.5(up+1
i+1 +

up+1
i ) and ui+1/2 can also be taken by ui+1/2 = 0.5(ui+1+ ui). Subject to the

boundary conditions ut,1 = ut,Nx+1 = 0 and the initial condition chosen by
the solution of Eq. (1.1) at t = 0.

Figure 1: The evolution of time of u of Eq. (1.4) using the fixed mesh scheme,
where t = 0 : 0.5 : 5. The parameters are taken by p = 3, µ = 10−2, x0 = 2,
α0 = 1.0 xL = 0, xR = 14 and Nx = 2000.

Figure 2.1 illustrated the time evolution of the uniform solution of Eq.
(1.4) using the fixed mesh scheme with t is rising among t = 0 and t = 5,
where step temporal here is ∆t = 0.5. The parameters are taken by p = 3,
µ = 10−2, x0 = 2, α0 = 1.0 xL = 0, xR = 14 and Nx = 2000.

2.2 Numerical results on a PMA moving mesh

The fundamental principle that supports the PMA method considered here
is to redistribute the mesh points in time as the solution moves with time or
adapts to the changes in the solution [32, 33]. The idea of this method is to
generate moving mesh nodes by using the gradient of the potential function
as the mesh generator [35].

I, here, mostly concentrate on investigating the numerical solution of
GRLW Eq. (1.4) applying a PMA moving mesh method. I first continuously
map a fixed number of points from the computational domain [0, 1] to the
physical domain [xL, xR] such that

x = x(ξ, t) : [0, 1] → [xL, xR], t > 0, (2.2)

where x and ξ are assumed to be the physical and computational co-ordinates,
respectively. Thus, the solution u is given by

u(x, t) = u(x(ξ, t), t). (2.3)
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Hence, the moving mesh is rewritten as

xi(ξ) = x(ξi, t), i = 1, · · · , Nx + 1, (2.4)

where ξi = (i− 1)/Nx, i = 1, · · · , Nx + 1. Brenier [41], Caffarelli [42] and
Finn [43] proposed that the physical co-ordinate x can also be obtained using
the gradient of the mesh potential P (ξ, t). This mesh potential is achieved
using the 1D PMA mesh equation, where the 1D PMA mesh equation is
given by

τ(1− α∂ξξ)Ṗ = Q(Pξ, t)Pξξ,
x = Pξ.

(2.5)

Subject to the boundary condition taken by

Pξ,1 = xL, Pξ,Nx+1 = xR, (2.6)

and initial condition is chosen to be

P (ξi, t = 0) = 0.5 ξ2i , i = 1, 2, · · · , Nx + 1, (2.7)

where ξi ∈ [0, 1] is the computational co-ordinate. Applying the chain rule,
yields

ux =
uξ

Pξξ

, ut = u̇−
uξ

Pξξ

ẋ. (2.8)

Thus, the expression of the GRLW equation Eq. (1.4) is given by

ḟ −

(

uξ

Pξξ

)

Ṗξ + p

(

up+1
ξ

Pξξ

)

+

(

uξ

Pξξ

)

= 0,

f = u−
µ

Pξξ

(

uξ

Pξξ

)

ξ

,

(2.9)

where i = 1, ..., Nx. Subject to the boundary conditions ut,1 = ut,Nx+1 = 0
and the initial condition chosen by the solution of Eq. (1.1) at t = 0. Hence,
the co-ordinate transformation x(ξ) is obtained by utilizing the 1D PMA
mesh equation is given by ( [33, 54, 47]):

1DPMA : Ṗ−
α

∆ξ2
(Ṗi+1−2Ṗi+Ṗi−1) =

1

τ
Q(Pξ, t)

1

∆ξ2
(Pi+1−2Pi+Pi−1),

(2.10)
where ∆ξ is the step size of the computational co-ordinate, Q(Pξ, t) is so-
called the monitor function and τ, α are constants. The boundary conditions
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are given by Q̇1 = 0 and Q̇Nx+1 = 0, and the initial condition is taken by Eq.
(2.7). Here, I apply the modified arc-length monitor function is proposed by
[44, 45, 46, 47]. The modified arc-length monitor function is defined by

Arc-length monitor function : Q(x, t) =

√

b+ λ

(

uξ

Pξξ

)2

, (2.11)

where λ, b are considered to be non-negative constants. If lambda = 1, and
b = 1, Eq. (2.11) indicates the arc-length monitor function. Several forms
of smoothing to the mesh density function are used so as to support the
uniform grid [38, 40, 55]. Cook [47] proposed, in 1D, a 3-point smoothing
of the monitor function to avoid a sudden change in the regions where the
solution has large variations. The smoothed monitor function is defined by

Q̂ =
1

β−1 + β0 + β1

(β−1Qi−1 + β0Qi + β1Qi+1) ,

Q̂1 =
1

β0 + β1

(β0Q1 + β1Q2) ,

Q̂Nx+1 =
1

β−1 + β0
(β−1QNx

+ β0QNx+1) ,

(2.12)

where β−1, β0, β1 are the smoothing stencils. Here, I take the stencils by
β−1 = 1, β0 = 2, β1 = 1.

Discretisation

The computational co-ordinate ξ, in this problem, is determined by

ξi = xL + (i− 1)∆ξ, i = 1, 2, · · · , Nx + 1, (2.13)

where ∆ξ = (xR − xL)/Nx. Then, the physical coordinate x is defined by
xi = x(ξi, t), where the boundary grids are forced to be x1 = xL and xNx+1 =
xR. Thus, the location of the grids xi is determined as follows

xi =
1

2∆ξ
(Pi+1Pi−1), i = 2, · · · , Nx, (2.14)
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where Pi = P (ξi, t) is the mesh potential obtained by solving Eq. (2.10).
Hence, the semi-discretisation of Eq. (2.9) is defined by

ḟi −

(

ui+1 − ui−1

Pi+2 − 2Pi + Pi−2

)

(

Ṗi+1 − Ṗi−1

)

= 2∆ξ

[

p
−(up+1

i+1 − up+1
i−1 )

Pi+2 − 2Pi + Pi−2
−

ui+1 − ui−1

Pi+2 − 2Pi + Pi−2

]

,

fi = ui −
8µ∆ξ2

Pi+2 − 2Pi + Pi−2

(

ui+1 − ui

Pi+2 − Pi+1 − Pi + Pi−1

−
ui − ui−1

Pi+1 − Pi − Pi−1 + Pi−2

)

,

(2.15)
where i = 3, 4, ..., Nx − 1.

Arc-length monitor function : Q(x, t) =

√

b+ λ

(

2∆ξ(ui+1 − ui−1)

Pi+2 − 2Pi + Pi−2

)2

,

(2.16)
Finally, I study the convergence and the accuracy of both the uniform and
the PMA moving mesh schemes. I require to obtain the numerical solutions
for both the uniform and the PMA mesh schemes at a fixed time t = 5 and
compare them with the solution of the exact solution at the same time.

Figures 2 (a, b) present the numerical solution to Eq (2.9) obtained using
a PMA moving mesh method with the arc-length monitor function, with
parameter values p = 3, µ = 10−2, x0 = 2, α0 = 1.0 ,τ = 10−3, b = 1, γ = 5
and Nx = 1000. Time increased among t = 0 and t = 5 with a temporal
step size ∆t = 0.5. Figure 2 (a), at t = 5, shows the numerical solution and
exact solution evaluated using Eq. (1.1). Notice that the numerical solution
is almost the same as the exact solution.

The interaction of two or three solitary waves

If the analytical solution has interaction of more than one solitary wave, it
forms as

u(x, t) =
n
∑

i=1

[

(p+ 2)αi

2p
sech2

(

p

2

√

αi

µ(αi + 1)
(x− xi − (αi + 1)t)

)]

1

p
,

(2.17)
where n = 2 or 3.
Table 1 presents the L2 norm error and CPU time taken to arrive t = 5

for both the fixed mesh Eq. (2.1) and the PMA uniform schemes Eq. (2.15)
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Figure 2: (a) Presenting the numerical solution u travelling with time,
(b) showing the associated mesh obtained employing PMA mesh equation
Eq.(2.10) with the arc-length monitor function. Here, the parameter values
are taken to be p = 3, µ = 10−2, x0 = 2, α0 = 1.0 ,τ = 10−3, b = 1, γ = 5,
Nx = 1000 and t = 0 → 5.

Uniform mesh scheme PMA moving mesh
∆x Error CPU Error CPU
1 6× 10−2 2.3× 10−1 9.5× 10−3 5× 10−1 s
0.1 2.2× 10−4 2.6× 10−1 2× 10−6 5.3× 10−1 s
0.05 5.7× 10−5 5× 10−1s 1.3× 10−7 1.04s
0.02 1.21× 10−5 1.42s 7.8× 10−9 3.28s
0.01 5.78× 10−6 7.97s 4.69× 10−9 9.21s
0.005 4.19× 10−6 40.2s 4.6× 10−9 31s

Table 1: Presenting the L2 norm error and CPU time taken for both the
uniform mesh and PMA moving mesh schemes. The results obtained at
t = 5 with varying ∆x. I evaluated the exact solution Eq. (1.1) at t = 5 to
measure the errors. The parameters are given by p = 3, alpha0 = 1.2, µ = 1,
x0 = 15, b = 1 and λ = 5.



452 A. R. Alharbi

Figure 3: (a) The numerical solution and the exact solution of GRLW equa-
tion at t = 1 and Nx = 500, (b) the associated adaptive mesh x(ξ, t). The
PMA mesh scheme is used with the arc-length monitor function with p = 3,
µ = 10−2, x0 = 2 and α0 = 1.0, b = 1 and λ = 5.
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Figure 4: (a, c) Two solitary waves evaluated using the PMA moving mesh
scheme with p = 2, µ = 10−1, x0 = 10, x1 = 25, α0 = 4.0, α1 = 1.0, b = 1,
τ = 10−3 and λ = 5 and Nx = 4000 at t = 1, 4, respectively. (b, d) the
associated adaptive meshes obtained using Eq. (2.10) with the arc-length
monitor function at t = 1, 4, respectively.
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Figure 5: (a) Presenting the three solitary waves evaluated using the PMA
moving mesh scheme with p = 3, µ = 10−1, α0 = 4.0, α1 = 3.0, α2 = 1.0,
x0 = 10, x1 = 25, x2 = 40, b = 1, τ = 10−3 and λ = 5 and Nx = 4000 at
t = 2, 5, respectively. (b, d) the associated adaptive meshes obtained using
Eq. (2.10) with the arc-length monitor function at t = 2, 5, respectively.
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Figure 6: The 3D figures for one solitary wave of both the exact solution
investigated Eq. (1.1) and the numerical solution obtained using the PMA
moving mesh method. The parameters values are p = 3, µ = 10−2, x0 = 2
and α0 = 1.0, b = 1 and λ = 5 .

Figure 7: The 3D figures for two solitary waves of both the exact solution
investigated Eq. (2.17), n = 2, and the numerical solution obtained using
the PMA moving mesh method. The parameters values are p = 2, µ = 10−1,
x0 = 10, x1 = 25, α0 = 4.0, α1 = 1.0, b = 1, τ = 10−3 and λ = 5 .

Figure 8: The 3D figures for three solitary waves of both the exact solution
investigated Eq. (2.17), n = 3, and the numerical solution obtained using
the PMA moving mesh method. The parameters values are p = 3, µ = 10−1,
α0 = 4.0, α1 = 3.0, α2 = 1.0, x0 = 10, x1 = 25, x2 = 40, b = 1, τ = 10−3 and
λ = 5 .
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Figure 9: The L2 error for both the uniform (solid blue line) and PMAmoving
mesh (solid red) schemes compared with the exact solution evaluated by Eq.
(1.1) at t = 5 and ∆x decreased between 1 and 0.005.

at t = 5 with varying ∆x. To measure the errors, I compared the numerical
results with the exact solution which is evaluated by Eq. (1.1) at the same
t and ∆x decreased between 1 and 5 × 10−3. Observe that, from figure
9 the error recorded using a PMA moving mesh scheme is much smaller
than the error measured using a uniform mesh. This indicates that the PMA
moving mesh scheme is more accurate and convergent than the uniform mesh
scheme. It is clear that the lowest error measure is roughly 10−9 for the
PMA moving mesh method at ∆x = 0.005 while the lowest value of the
error for the uniform mesh scheme is approximately 10−6 to the same ∆x.
Remark that the lowest error measured for the uniform mesh scheme is about
4×10−6 for ∆x = 0.005. The PMA mesh scheme requires ∆x = 0.1 to reach
approximately the same error.

3 Conclusions

In this article, I have derived the analytical solution (see Appendix 3. I
present some techniques for investigating the numerical results such as a
PMA moving mesh and finite difference methods. Actually, I test both of
these methods when the solution has interaction of one, two or three solitary
waves. All of the numerical results that I present here in figures and table
appear the PMA moving mesh method is powerful and accurate.
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Appendix

An analytical solution to the GRLW equation Eq. (1.1) is sought here start-
ing with

η = x− αt, u(x, t) = u(η). (3.1)

Thus, the GRLW equation Eq. (1.1) is given by

(1− α)uη + αµuηηη + p(up+1)η = 0, (3.2)

subject to u → 0, uη → 0 as η → ±∞. Integrating twice with respect to η,
leads to

(1− α)u2 + αµu2
η + δup+2 = C1u+ C2, (3.3)

where C1 and C2 are constants and δ = 2p
p+2

. Using the boundary conditions,
yields C1, C2 → 0, and then

(1− α)u2 + αµu2
η + δup+2 = 0. (3.4)

Using special substitution and integrating both sides with respect to η, leads
to

up =
α

δ
sech2θ, (3.5)

where δ = 2p
p+2

and θ = p
2

√

α
µ(α+1)

(x − x0 − (α + 1)t). Thus the exact

solution of Eq. (1.1) is given by

u(x, t) =

[

(p+ 2)α

2p
sech2

(

p

2

√

α

µ(α+ 1)
(x− x0 − (α+ 1)t)

)]

1

p
, (3.6)

where x0 is a constant. Therefore, selecting p = 2 in Eq. (3.6) provides the
exact solution of MRLW equation Eq. (1.3) and p = 1 gives the solution of
RLW equation Eq. (1.2).
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