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Abstract

For positive integers m,n, q, g(m,n, q) is the number of words of
length n over an alphabet A = {a1 . . . , aq} such that there is no block
of m consecutive aq’s in the word. A recent result shows that when q is
a prime andm ≤ n then g(m,n, q) is a lower estimate of the cardinality
of the largest set of integers in {0, . . . , qn − 1} which contains no qm-
term arithmetic progression. We give formulas for and estimates of
g(m,n, q) in special cases, and also a linear difference equation satisfied
by g(m,n, q) as a function of n.

1 Introduction

Suppose that N ≥ k ≥ 3 are integers, and let [N ] = {0, . . . , N − 1}. A
k-term arithmetic progression is a set of integers expressible as

Key words and phrases: arithmetic progression, cyclic arithmetic
progression, Van der Waerden hypergraph, chromatic number, vertex
independence number, linear homogeneous difference equation,
Fibonacci sequence.
This research was supported by NSF grant number 1560257.
AMS (MOS) Subject Classifications: 05A15, 05A16, 05C65,
05C69.
ISSN 1814-0432, 2020, http://ijmcs.future-in-tech.net



526 J. Benali, H. Cobb, P. Johnson

{a + jd | j = 0, . . . , k − 1} for some integers d > 0 and a. The Van der

Waerden hypergraph W (k,N) has vertex set [N ] and for hyperedges (or just
edges) all the k-term arithmetic progressions contained in [N ]. The cyclic

Van der Waerden hypergraph Wc(k,N) is defined similarly, except that its
edges are the cyclic k-term arithmetic progressions mod N ; these are the k-
element subsets of [N ] obtained by reducing mod N the integers in a k-term
arithmetic progression. For example, {1, 6, 8} is a cyclic 3-term arithmetic
progression mod 9. Note that, for instance, the reductions mod 4 of the
elements of the 3-term arithmetic progression {0, 2, 4} form the set {0, 2},
which is not a cyclic 3-term arithmetic progression mod 4. Also note that
every ordinary k-term arithmetic progression contained in [N ] is also a cyclic
k-term arithmetic progression mod N . Therefore, W (k,N) is a spanning
subhypergraph of Wc(k,N).

These hypergraphs are of interest not least because of a result that B.
L. van der Waerden published in 1927 [5], well before hypergraphs became
common objects of mathematical study. The result may be stated thus: For
each k ≥ 3, the chromatic number of W (k, n), which is the minimum number
of colors needed to color [N ] so that no k-term arithmetic progression in
[N ] is monochromatic, tends to infinity as N → ∞. Since W (k,N) is a
subhypergraph of Wc(k,N), the same conclusion holds for Wc(k,N).

Another hypergraph parameter closely related to the chromatic number is
the (vertex) independence number. The independence number of W (k,N) is
the size of a largest subset of [N ] that does not contain any k-term arithmetic
progression. Szemerédi’s Lemma [4] implies that, if we let α(k,N) denote the
independence number of W (k,N), then α(k,N)/N → 0 as N → ∞. Letting
αc(k,N) denote the independence number of Wc(k,N), we have αc(k,N) ≤
α(k,N), and so αc(k,N)/N → 0 as N → ∞.

Szemerédi’s Lemma is stronger than van der Waerden’s theorem: the
later result implies the earlier, almost instantly. However, it appears that
the actual behavior of α(k,N) as a function of N , for fixed k ≥ 3, has not
attracted anywhere near the interest focused on the chromatic number of
W (k,N). (The values of N at which the chromatic number increases are
called van der Waerden numbers, and finding them is an obsession in some
precincts.)

Suppose that 1 ≤ m ≤ n and p are integers, with p being a prime.
When p = 2 we require that m ≥ 2. It has recently been discovered [2] that
every cyclic pm-term arithmetic progression mod pn must contain a term
t =

∑n−1
j=0 tjp

j, in which tj ∈ [p] = {0, . . . , p − 1}, j = 0, . . . , n − 1, such
that for some 0 ≤ j ≤ n − m, tj+i = p − 1, i = 0, . . . , m − 1. That is,
the cyclic a.p. must contain an integer whose p-ary (base p) representation
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(tn−1tn−2 · · · t0)p contains a block of m consecutive (p− 1)’s. It follows that
I(pm, pn) = {t ∈ [pn]| the p-ary representation of t does not contain a block of
m consecutive (p− 1)’s} is an independent set of vertices in both Wc(p

m, pn)
and inW (pm, pn). (It is also shown in [2] that I(pm, pn) is a maximal indepen-
dent set in both hypergraphs, but not necessarily maximum in W (pm, pn).)
Therefore,

|I(pm, pn)| ≤ αc(p
m, pn) ≤ α(pm, pn).

Consequently, evaluating |I(pm, pn)| will give us some idea about the growth
of αc(p

m, pn) and α(pm, pn) as n → ∞ with m fixed. Indeed, without tak-
ing much trouble at all, we already have, for p an odd prime, (p − 1)n =
|I(p, pn)| ≤ |I(pm, pn)| ≤ αc(p

m, pn) ≤ α(pm, pn) = o(pn) as n → ∞. The
first equality is noted in [2] and the last is a consequence of Szemerédi’s
Lemma.

These bounds on the growth of αc(p
m, pn) and α(pm, pn), for p odd, are

easy to remember, but we wonder if finer estimates are available.

2 A more general enumeration problem

For positive integers q ≥ 2, m, and n let A = {a1, . . . , aq} be an alphabet
with q elements, G(m,n, q) = {w = ai1 · · · ain ∈ An| there is no block of m
consecutive aq’s in the word w}, and

g(m,n, q) = |G(m,n, q)|.

Observe that when p is a prime, I(pm, pn) ≃ G(m,n, p) by the map that sends
z ∈ I(pm, pn) to its n-tuple of p-ary coefficients, (c0, . . . , cn−1) ∈ {0, . . . , p−
1}n, where z =

∑n−1
i=0 cip

i.
We aim to evaluate, or at least estimate, the numbers g(m,n, q). From

one point of view this is a foolish task to undertake, as the calculation of the
g(m,n, q) is but a single instance of a large class of enumeration problems
completely and powerfully solved almost 40 years ago in [1]. However, the
existence of a more general solution does not mean that there is nothing to be
gained from focusing on a particular problem with elementary approaches.
For instance, in [3], which is about the special cases when q = 2 of our
problem, there are connections made with other parts of enumerative com-
binatorics that we will not touch on here. (However, see our Corollary 3.2,
below.)

For another instance, we have in this section Corollary 2.6, which says
that g(m,n, q)/qn → 0 as n → ∞ (for m ≥ 1, q ≥ 2), which is a general-
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ization of |I(pm, pn)|/pn → 0 as n → ∞, derived at the end of the Introduc-
tion. That derivation depended on Szemerédi’s Lemma, whereas the proof
of Corollary 2.6 is quite elementary. Could we have proven Corollary 2.6
from the general theorem in [1]? No doubt, but there is value in elementary
proofs.

We begin with the easy “boundary” values of g(m,n, q). Proofs of the
claims in Proposition 2.1 are left to the reader.

Proposition 2.1. For all positive integers q ≥ 2, m, and n:

1. If m > n then g(m,n, q) = qn.

2. g(n, n, q) = qn − 1.

3. g(1, n, q) = (q − 1)n.

Proposition 2.2. For n, q ≥ 2, g(n− 1, n, q) = qn − 2q + 1. If q ≥ 2 and

m+ 2 ≤ n ≤ 2m then g(m,n, q) = qn − (n−m+ 1)qn−m + (n−m)qn−m−1.

Remark 2.3. We are aware that the result for n = m + 1 is given in the

result for m+ 2 ≤ n ≤ 2m; we decided to single out g(m,m+ 1, q) anyway.

Proof of Proposition 2.2 Let H(m,n, q) = An\G(m,n, q) and
h(m,n, q) = |H(m,n, q)| = qn − g(m,n, q). Observe that H(m,n, q) is the
set of all words in An that do contain a block of m consecutive aq’s; that is;
H(m,n, q) consists of those w ∈ An such that the maximum length of a
subword of w consisting of consecutive aq’s is at least m.

If m < n ≤ 2m then there can be at most one maximal subword of w ∈ An

of length ≥ m consisting of consecutive aq’s. For each b ∈ {m, . . . , n}, when
m < n ≤ 2m, it is straightforward to count the words w ∈ H(m,n, q) in
which the maximal such subword is of length b ∈ {m, . . . , n}. When b = n
there is exactly one such word. When b = n− 1 there are two types of such
words, xabq and abqx, x ∈ A\{aq}, so the number of such words is 2(q − 1).
When m ≤ b ≤ n− 2 the words are in 3 categories: abqyv, or uxa

b
a, in which

x, y ∈ A\{aq} and u, v ∈ An−b−1, or uxabqyv, with x, y ∈ A\{aq} and u, v
are possibly empty words such that uv ∈ An−b−2. The total number of such
words, when m ≤ b ≤ n− 2, is 2(q − 1)qn−b−1 + (q − 1)2(n− b− 1)qn−b−2.
Summing over b we have, when m+ 2 ≤ n ≤ 2m,
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h(m,n, q) = 1 + 2(q − 1) +

n−2
∑

b=m

[2(q − 1)qn−b−1 + (q − 1)2(n− b− 1)qn−b−2]

= 2q − 1 + 2(q − 1)

n−m−1
∑

j=1

qj + (q − 1)2
n−m−1
∑

j=1

jqj−1

= 2q − 1 + 2(q − 1)q
qn−m−1 − 1

q − 1
+ (q − 1)2

d

dq

n−m−1
∑

j=0

qj

= 2q − 1 + 2q(qn−m−1 − 1) + (n−m− 1)qn−m − (n−m)qn−m−1 + 1

= (n−m+ 1)qn−m − (n−m)qn−m−1

The conclusion now follows from

g(m,n, q) = qn − h(m,n, q).

Convention: g(m, 0, q) = 1 for all positive integers q ≥ 2 and m. (The
only element of G(m, 0, q) is the empty word.)

Lemma 2.4. For integers q ≥ 2, m ≥ 1, n, a, b ≥ 0 such that a + b = n,
g(m,n, q) ≤ g(m, a, q) g(m, b, q).

Proof. Clearly G(m,n, q) ⊆ {w = xy | x ∈ G(m, a, q), y ∈ G(m, b, q)}.

Theorem 2.5. For integers q ≥ 2 and n > m > 0,
max [(q − 1)n, qn − (n−m+ 1)qn−m] ≤ g(m,n, q). If, in addition, n > 2m,

then

g(m,n, q) ≤ (q2m − (m+ 1)qm +mqm−1)⌊
n
2m

⌋g(m,n− 2m⌊ n

2m
⌋, q).

Proof. Using notation from the proof of Proposition 2.2, clearly H(m,n, q) ⊆
H(m − 1, n, q) if 1 < m. Therefore h(m,n, q) is non-increasing with m, so
g(m,n, q) is non-decreasing with m. Therefore, g(m,n, q) ≥ g(1, n, q) =
(q − 1)n.

There are n − m + 1 blocks of m consecutive indices in {1, . . . , n}, and
for each such block B there are qn−m words w ∈ An with aq’s in every
position indicated by indices in B. Since every w ∈ H(m,n, q) has aq’s
in positions indicated by indices in at least one of those blocks, we have
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qn − g(m,n, q) = h(m,n, q) ≤ (n−m+ 1)qn−m, so
qn − (n−m+ 1)qn−m ≤ g(m,n, q).

Now suppose that n > 2m and let z and r be integers such that n =
2mz + r and 0 ≤ r < 2m; that is, z = ⌊ n

2m
⌋ and r = n − 2mz. Applying

Lemma 2.4 z times, we have g(m,n, q) ≤ g(m, 2m, q)zg(m, r, q), which, in
view of Proposition 2.2, is the final conclusion of the theorem.

The lower bound on g(m,n, q) in Theorem 2.5 is underwhelming, in view
of the fact that

qn − (n−m+ 1)qn−m = qn[1− n−m+ 1

qm
] → −∞ as n → ∞,

for fixed m and q. However, for large n the lower bound of (q − 1)n is not
bad, in view of the upper bound.

That upper bound can be more explicit, since for 0 ≤ r < 2m explicit
formulae for g(m, r, q) are available in Propositions 2.1 and 2.2. Also, the
upper bound is obviously crude–the inequalities at each iteration of Lemma
2.4 in the proof are strict. However, the upper bound is good enough to
verify what one would expect from the discussion in the Introduction, where
it is shown that the following holds whenever q is a prime.

Corollary 2.6. For all integers m ≥ 1 and q ≥ 2, g(m,n,q)
qn

→ 0 as n → ∞.

Proof. Suppose that m ≥ 1 and n > 2m. Let n = 2mz + r, 0 ≤ r < 2m, as
in the proof of Theorem 2.5. Then

g(m,n,q)
qn

≤ (q2m−(m+1)qm+mqm−1)z

q2mz
g(m,r,q)

qr

= (1− (m+1)q−m

qm+1 )z g(m,r,q)
qr

→ 0

as z → ∞.

3 A linear homogeneous difference equation

for g(m,n, q)

Let us suppose that n ≥ m. Every w ∈ G(m,n, q) will either end with a
letter x ∈ A\{aq}, or xaq, or xaqaq (if m > 2), etc. That is to say, w = uxakq
for some k ∈ {0, . . . , m − 1}, x ∈ A\{aq} and u ∈ G(m,n − k − 1, q).
Letting f(n) = g(m,n, q), for fixed m and q, we therefore have that f(n) =
(q−1)f(n−1)+(q−1)f(n−2)+· · ·+(q−1)f(n−m) = (q−1)

∑m

k=1 f(n−k).
Hence, we have



An Enumeration Problem... 531

Theorem 3.1. For all integers m ≥ 1, q ≥ 2, f(n) = g(m,n, q) is the

unique solution of the order m linear homogeneous difference equation f(n) =
(q − 1)

∑m

k=1 f(n − k) satisfying the initial conditions f(n) = qn, n =
0, . . . , m− 1.

The Fibonacci sequence F0, F1, F2, . . . is defined by F0 = 0, F1 = 1, and,
for n > 1, Fn = Fn−1 + Fn−2.

Corollary 3.2. For all n = 0, 1, 2, . . . , g(2, n, 2) = Fn+2.

Proof. By Theorem 3.1 and Proposition 2.1, g(2, 0, 2) = 1 = F2, g(2, 1, 2) =
2 = F3, and for n > 1, g(2, n, 2) = (2− 1)[g(2, n− 1, 2) + g(2, n− 2, 2)].

There is a routine for solving linear homogeneouos difference equations
with initial conditions. We have only to solve the characteristic equation of
the difference equation, which is

rm = (q − 1)(rm−1 + · · ·+ 1)

in this case, write the general solution of the difference equation as a linear
combination of m special solutions associated with the solutions of the poly-
nomial characteristic equation, and then determine which coefficents in the
linear combination will give a solution that satisfies the initial conditions.
The main impediment to the execution of this plan is the difficulty of ex-
tracting solutions of the characteristic equation. When m = 2 the equation
is quadratic. We leave it to the reader to verify the claim of the following
corollary.

Corollary 3.3. For integers q ≥ 2 and n ≥ 0, g(2, n, q) =
(q−1)n/2

2n+1(
√

(q−1)(q+3)
[(
√

(q − 1)(q + 3)+q+1)(
√
q − 1+

√
q + 3)n+(

√

(q − 1)(q − 3)−
q − 1)(

√
q − 1−√

q + 3)n]
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