On rings and symmetric generalized biderivations

Ahlam Fallatah
Department of Mathematics
College of Science
Taibah University
Madinah, Saudi Arabia
email: afallatah@taibahu.edu.sa

(Received January 20, 2020, Accepted February 25, 2020)

Abstract

In the present paper, our aim is to prove the following result: let R be a prime ring of a characteristic different from two. If Δ_{1}, Δ_{2} are two symmetric generalized biderivations on R with associated biderivation D such that $\left[\Delta_{1}(x, x), \Delta_{2}(x, x)\right]=0$ for all $x \in R$, then the following results hold: 1. R is commutative. 2. Δ_{1} and Δ_{2} act as left bi-multipliers on R.

1 Introduction

The idea of symmetric bi-derivations was introduced by Maksa [3] who showed showed [4] that symmetric bi-derivations are related to general solutions of some functional equations. The notion of additive commuting mappings is closely connected with the notion of bi-derivations. Every commuting additive mapping $f: R \longrightarrow R$ gives rise to a bi-derivation on R. Namely linearizing $[x, f(x)]=0$ for all $x, y \in R(x, y) \mapsto[f(x), y]$ is a bi-derivation. Now we introduce the concept of symmetric bi-derivations as follows:

Key words and phrases: Prime ring, Generalized biderivations, multipliers.
AMS (MOS) Subject Classifications: 16W20, 16W25, 16N80
ISSN 1814-0432, 2020, http://ijmcs.future-in-tech.net

Definition 1.1. (Symmetric mapping) A mapping $D: R \times R \rightarrow R$ is said to be symmetric if $D(x, y)=D(y, x)$ for all $x, y \in R$.

Definition 1.2. (Bi-additive mapping) Let R be a ring. A mapping D : $R \times R \rightarrow R$ is called bi-additive if it is additive in both arguments.

Definition 1.3. (Trace) A mapping $f: R \rightarrow R$ defined by $f(x)=D(x, x)$, where $D: R \times R \rightarrow R$ is a symmetric mapping, is called the trace of D.

Remark 1.1. 1. The trace f of D satisfies the relation $f(x+y)=f(x)+$ $f(y)+D(x, y)+D(y, x)$ for all $x, y \in R$.
2. If D is symmetric, then the trace f of D satisfies the relation $f(x+y)=$ $f(x)+f(y)+2 D(x, y)$ for all $x, y \in R$.
Definition 1.4. (Biderivation) A bi-additive mapping $D: R \times R \longrightarrow R$ is called a bi-derivation if for every $x \in R$, the map $y \mapsto D(x, y)$ as well as for every $y \in R$, the map $x \mapsto D(x, y)$ is a derivation of R; that is, $D(x y, z)=$ $D(x, z) y+x D(y, z)$ for all $x, y, z \in R$ and $D(x, y z)=D(x, y) z+y D(x, z)$ for all $x, y, z \in R$.

Following [6], we initiate the idea of generalized biderivation on rings given as:

Definition 1.5. (Generalized biderivation) A biadditive mapping $\Delta: R \times$ $R \longrightarrow R$ is said to be a generalized biderivation if for every $x \in R$, the map $y \mapsto \Delta(x, y)$ is a generalized derivation of R associated with the function $y \mapsto D(x, y)$ as well as if for every $y \in R$, the map $x \mapsto \Delta(x, y)$ is a generalized derivation of R associated with the function $x \mapsto D(x, y)$ for all $x, y \in R$. It also satisfies $\Delta(x, y z)=\Delta(x, y) z+y D(x, z)$ and $\Delta(x y, z)=\Delta(x, z) y+$ $x D(y, z)$ for all $x, y, z \in R$.
Example 1.1. Let $R=\left\{\left.\left(\begin{array}{cc}a & 0 \\ b & 0\end{array}\right) \right\rvert\, a, b \in S\right\}$, where S is any commutative ring. Consider $\Delta: R \times R \longrightarrow R$ be generalized biderivation with associated map $D: R \times R \longrightarrow R$ defined as $\Delta\left(\left(\begin{array}{ll}a_{1} & 0 \\ b_{1} & 0\end{array}\right),\left(\begin{array}{ll}a_{2} & 0 \\ b_{2} & 0\end{array}\right)\right)=$ $\left(\begin{array}{cc}a_{1} a_{2} & 0 \\ 0 & 0\end{array}\right)$, and $D\left(\left(\begin{array}{ll}a_{1} & 0 \\ b_{1} & 0\end{array}\right),\left(\begin{array}{cc}a_{2} & 0 \\ b_{2} & 0\end{array}\right)\right)=\left(\begin{array}{cc}0 & 0 \\ 0 & b_{1} b_{2}\end{array}\right)$.

In this paper, we prove some theorems on symmetric generalized biderivations of prime ring generalizing the results proved in $[1,2,5]$.

2 Main Theorems

To prove our main theorems, we need the following lemma:
Lemma 2.1. [1] Let R be a prime ring of characteristic different from two and let I be a nonzero ideal of R. If Δ is a symmetric generalized biderivation on R with associated biderivation D such that $D(\Delta(x, y), z)=0$ for all $x, y, z \in I$, then either R is commutative or $D=0$. Moreover, Δ acts as a left bimultiplier on R.

Theorem 2.1. Let R be prime ring of a characteristic different from 2. If Δ_{1}, Δ_{2} are generalized biderivations with associated biderivation D such that $\left[\Delta_{1}(y, y), r\right]+\left[r, \Delta_{2}(y, y)\right]=0$ for all $y, r \in R$, then the following results follow:

1. R is commutative.
2. Δ_{1} and Δ_{2} act as left bi-multipliers.

Proof. By hypothesis, we have

$$
\begin{equation*}
\left[\Delta_{1}(y, y), r\right]+\left[r, \Delta_{2}(y, y)\right]=0 \text { for all } y, r \in R . \tag{2.1}
\end{equation*}
$$

Linearization in y yields

$$
\begin{align*}
{\left[\Delta_{1}(y, y), r\right] } & +2\left[\Delta_{1}(y, z), r\right]+\left[\Delta_{1}(z, z), r\right]+\left[r, \Delta_{2}(y, y)\right] \\
& +\left[r, \Delta_{2}(z, z)\right]+2\left[r, \Delta_{2}(y, z)\right]=0 \text { for all } y, z, r \in R . \tag{2.2}
\end{align*}
$$

Using the characteristic condition and (2.1), we get

$$
\begin{equation*}
\left[\Delta_{1}(y, z), r\right]+\left[\Delta_{2}(y, z), r\right]=0 \text { for all } y, z, r \in R . \tag{2.3}
\end{equation*}
$$

Substitute $z u$ for z in (2.3) to get

$$
\begin{equation*}
\left[\Delta_{1}(y, z) u, r\right]+[z D(y, u), r]+\left[\Delta_{2}(y, z) u, r\right]+[z D(y, u), r]=0 \text { for all } y, z, u, r \in R . \tag{2.4}
\end{equation*}
$$

This implies that

$$
\begin{align*}
& \Delta_{1}(y, z)[u, r]+\left[\Delta_{1}(y, z), r\right] u+z[D(y, u), r]+[z, r] D(y, u)+\Delta_{2}(y, z)[u, r] \\
& +\left[\Delta_{2}(y, z), r\right] u+[z, r] D(y, u)+z[D(y, u), r]=0 \text { for all } u, y, z, r \in R . \tag{2.5}
\end{align*}
$$

Replace u by $u r$ in (2.5) to obtain

$$
\begin{align*}
& \Delta_{1}(y, z)[u, r] r 2[D(y, u), r] r+2 u[D(y, r), r]+z[u, r] D(y, r)+[z, r] D(y, u) r+[z, r] u D(y, r) \\
& +\Delta_{2}(y, z)[u, r][z, r] D(y, u) r+\left[\Delta_{2}(y, z), r\right] u+[z, r] D(y, u) r+[z, r] u D(y, r) \\
& +z[D(y, u), r] r+z[u, r] D(y, r)+z u[D(y, r), r]=0 \text { for all } u, y, z, r \in R . \tag{2.6}
\end{align*}
$$

After simplification and using the characteristic of R is not two, we get

$$
\begin{equation*}
z u[D(y, r), r]+z[u, r] D(y, r)+[z, r] u D(y, r)=0 \text { for all } u, y, z, r \in R \tag{2.7}
\end{equation*}
$$

Replacing z by $t z$ in (2.7), we have

$$
\begin{equation*}
[t, r] z u D(y, r)=0 \text { for all } u, y, z, r, t \in R . \tag{2.8}
\end{equation*}
$$

Primeness of R implies that either $[t, r]=0$ or $D(y, r)=0$ for all $t, y, r \in R$. The first case shows that R is commutative. If we take $D(y, r)=0$ for all $y, r \in R$, then the generalized biderivations Δ_{1}, Δ_{2} reduces to the left bi-multiplier. This complete the proof.
Theorem 2.2. Let R be prime ring of a characteristic not equal to two. If Δ_{1}, Δ_{2} are two symmetric generalized biderivations on R with associated biderivation D such that $\left[\Delta_{1}(x, x), \Delta_{2}(x, x)\right]=0$ for all $x \in R$, then the following condition holds:

1. R is commutative.
2. Δ_{1} and Δ_{2} acts as a left bi-multiplier on R.

Proof. By hypothesis, we have

$$
\begin{equation*}
\left[\Delta_{1}(x, x), \Delta_{2}(x, x)\right]=0 \text { for all } x \in R . \tag{2.9}
\end{equation*}
$$

Linearize (2.9) in x to get

$$
\begin{align*}
{\left[\Delta_{1}(x, x), \Delta_{2}(x, x)\right] } & +\left[\Delta_{1}(x, x), \Delta_{2}(y, y)\right]+2\left[\Delta_{1}(x, x), \Delta_{2}(x, y)\right] \\
& +\left[\Delta_{1}(y, y), \Delta_{2}(x, x)\right]+\left[\Delta_{1}(y, y), \Delta_{2}(y, y)\right] \\
& +2\left[\Delta_{1}(y, y), \Delta_{2}(x, y)\right]+2\left[\Delta_{1}(x, y), \Delta_{2}(x, x)\right] \\
& +2\left[\Delta_{1}(x, y), \Delta_{2}(y, y)\right]+2\left[\Delta_{1}(x, y), \Delta_{2}(x, y)\right]=0 \text { for all } x, y \in R \tag{2.10}
\end{align*}
$$

By given condition in hypothesis, we arrive at

$$
\begin{align*}
{\left[\Delta_{1}(x, x), \Delta_{2}(y, y)\right] } & +2\left[\Delta_{1}(x, x), \Delta_{2}(x, y)\right] \\
& +\left[\Delta_{1}(y, y), \Delta_{2}(x, x)\right]+2\left[\Delta_{1}(y, y), \Delta_{2}(x, y)\right] \\
& +2\left[\Delta_{1}(x, y), \Delta_{2}(x, x)\right]+2\left[\Delta_{1}(x, y), \Delta_{2}(y, y)\right] \\
& +2\left[\Delta_{1}(x, y), \Delta_{2}(x, y)\right]=0 \text { for all } x, y \in R \tag{2.11}
\end{align*}
$$

Substitute $-y$ for y in (2.11) to find

$$
\begin{align*}
{\left[\Delta_{1}(x, x), \Delta_{2}(y, y)\right] } & -2\left[\Delta_{1}(x, x), \Delta_{2}(x, y)\right] \\
& +\left[\Delta_{1}(y, y), \Delta_{2}(x, x)\right]-2\left[\Delta_{1}(y, y), \Delta_{2}(x, y)\right] \\
& -2\left[\Delta_{1}(x, y), \Delta_{2}(x, x)\right]-2\left[\Delta_{1}(x, y), \Delta_{2}(y, y)\right] \\
& +2\left[\Delta_{1}(x, y), \Delta_{2}(x, y)\right]=0 \text { for all } x, y \in R . \tag{2.12}
\end{align*}
$$

Addition of equations (2.11) and (2.12) and the use of characteristic restriction yield
$\left[\Delta_{1}(x, x), \Delta_{2}(y, y)\right]+\left[\Delta_{1}(y, y), \Delta_{2}(x, x)\right]+2\left[\Delta_{1}(x, y), \Delta_{2}(x, y)\right]=0$ for all $x, y \in R$.
Again linearize the above equation in x to get

$$
\begin{align*}
{\left[\Delta_{1}(x, x), \Delta_{2}(y, y)\right] } & +\left[\Delta_{1}(y, y), \Delta_{2}(y, y)\right]+2\left[\Delta_{1}(x, y), \Delta_{2}(y, y)\right] \\
& +\left[\Delta_{1}(y, y), \Delta_{2}(x, x)\right]+\left[\Delta_{1}(y, y), \Delta_{2}(y, y)\right] \\
& +2\left[\Delta_{1}(y, y), \Delta_{2}(x, y)\right]+2\left[\Delta_{1}(x, y), \Delta_{2}(x, y)\right] \\
& +2\left[\Delta_{1}(y, y), \Delta_{2}(x, y)\right]+2\left[\Delta_{1}(y, y), \Delta_{2}(y, y)\right] \\
& +2\left[\Delta_{1}(x, y), \Delta_{2}(y, y)\right]=0 \text { for all } x, y \in R . \tag{2.14}
\end{align*}
$$

From equation (2.13) and (2.14), we obtain

$$
\begin{equation*}
4\left[\Delta_{1}(y, y), \Delta_{2}(x, y)\right]+4\left[\Delta_{1}(x, y), \Delta_{2}(y, y)\right]=0 \text { for all } x, y \in R . \tag{2.15}
\end{equation*}
$$

Since characteristic of R is not two, we have

$$
\begin{equation*}
\left[\Delta_{1}(y, y), \Delta_{2}(x, y)\right]+\left[\Delta_{1}(x, y), \Delta_{2}(y, y)\right]=0 \text { for all } x, y \in R . \tag{2.16}
\end{equation*}
$$

Putting $x z$ in place of z in (2.16), we get

$$
\begin{align*}
{\left[\Delta_{1}(y, y), \Delta_{2}(x, y) z\right] } & +\left[\Delta_{1}(y, y), x D(z, y)\right]+\left[\Delta_{1}(x, y) z, \Delta_{2}(y, y)\right] \\
& +\left[x D(z, y), \Delta_{2}(y, y)\right]=0 \text { for all } x, y, z \in R . \tag{2.17}
\end{align*}
$$

Simplification of (2.17) and the use of (2.16) imply that

$$
\begin{align*}
\Delta_{2}(x, y)\left[\Delta_{1}(y, y), z\right] & +\left[\Delta_{1}(y, y), x\right] D(z, y)+x\left[\Delta_{1}(y, y), D(z, y)\right]+\Delta_{1}(x, y)\left[z, \Delta_{2}(y, y)\right] \\
& +x\left[D(z, y), \Delta_{2}(y, y)\right]+\left[x, \Delta_{2}(y, y)\right] D(z, y)=0 \text { for all } x, y, z \in R . \tag{2.18}
\end{align*}
$$

Applying (2.18) to the resulting equation after replacing z by $z \Delta_{2}(y, y)$ in (2.18) and we see that

$$
\begin{align*}
{\left[\Delta_{1}(y, y), x\right] z D\left(\Delta_{2}(y, y), y\right) } & +x z\left[\Delta_{1}(y, y), D\left(\Delta_{2}(y, y), y\right)\right]+x\left[\Delta_{1}(y, y), z\right] D\left(\Delta_{2}(y, y), y\right) \\
& +x z\left[D\left(\Delta_{2}(y, y), y\right), \Delta_{2}(y, y)\right]+x\left[z, \Delta_{2}(y, y)\right] D\left(\Delta_{2}(y, y), y\right) \\
& +\left[x, \Delta_{2}(y, y)\right] z D\left(\Delta_{2}(y, y), y\right)=0 \text { for all } x, y, z \in R . \tag{2.19}
\end{align*}
$$

If we substitute $r x$ for x in (2.19) and use (2.19), then the last equation takes the form

$$
\begin{equation*}
\left[\Delta_{1}(y, y), r\right] x z D\left(\Delta_{2}(y, y), y\right)+\left[r, \Delta_{2}(y, y)\right] x z D\left(\Delta_{2}(y, y), y\right)=0 \text { for all } r, x, y, z \in R . \tag{2.20}
\end{equation*}
$$

The equation above implies that $\left\{\left[\Delta_{1}(y, y), r\right]+\left[r, \Delta_{2}(y, y)\right]\right\} x z D\left(\Delta_{2}(y, y), y\right)=$ 0 for all $r, x, y, z \in R$. By primeness of R we bring that for all $r, x, y, z \in R$ either $\left\{\left[\Delta_{1}(y, y), r\right]+\left[r, \Delta_{2}(y, y)\right]\right\}=0$ or $x z D\left(\Delta_{2}(y, y), y\right)=0$. In the first case, the conclusion follows from Theorem 2.1. Next consider the case $x z D\left(\Delta_{2}(y, y), y\right)=0$ for all $x, y, z \in R$. Consequently, we get the result by applying Lemma 3.1.

References

[1] A. Ali, V. D. Filippis, F. Shujat, Results concerning symmetric generalized biderivations of prime and semiprime rings, Matematiqki Vesnik, 66, no. 4, (2014), 410-417.
[2] F. Shujat, Symmetric generalized biderivation on prime rings, Bol. soc. Paran. Math., (2018).
[3] G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glasnik. Mat., 15 (35), (1980), 279-282.
[4] G. Maksa, On the trace of symmetric biderivations, C. R. Math. Rep. Acad. Sci., 9, (1987), 303-307.
[5] J. Vukman, Symmetric biderivations on prime and semiprime rings, Aequationes Math., 38, (1989), 245-254.
[6] N. Argac, On prime and semiprime rings with derivations, Algebra Colloq., 13, no. 3, (2006), 371-380.

