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Abstract

In the present paper, our aim is to prove the following result: let R
be a prime ring of a characteristic different from two. If ∆1,∆2 are two
symmetric generalized biderivations on R with associated biderivation
D such that [∆1(x, x),∆2(x, x)] = 0 for all x ∈ R, then the following
results hold:

1. R is commutative.

2. ∆1 and ∆2 act as left bi-multipliers on R.

1 Introduction

The idea of symmetric bi-derivations was introduced by Maksa [3] who showed
showed [4] that symmetric bi-derivations are related to general solutions of
some functional equations. The notion of additive commuting mappings is
closely connected with the notion of bi-derivations. Every commuting ad-
ditive mapping f : R −→ R gives rise to a bi-derivation on R. Namely
linearizing [x, f(x)] = 0 for all x, y ∈ R (x, y) 7→ [f(x), y] is a bi-derivation.
Now we introduce the concept of symmetric bi-derivations as follows:
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Definition 1.1. ( Symmetric mapping) A mapping D : R×R → R is said
to be symmetric if D(x, y) = D(y, x) for all x, y ∈ R.

Definition 1.2. (Bi-additive mapping) Let R be a ring. A mapping D :
R× R → R is called bi-additive if it is additive in both arguments.

Definition 1.3. (Trace) A mapping f : R → R defined by f(x) = D(x, x),
where D : R× R → R is a symmetric mapping, is called the trace of D.

Remark 1.1. 1. The trace f of D satisfies the relation f(x+ y) = f(x) +
f(y) +D(x, y) +D(y, x) for all x, y ∈ R.

2. If D is symmetric, then the trace f of D satisfies the relation f(x+y) =
f(x) + f(y) + 2D(x, y) for all x, y ∈ R.

Definition 1.4. (Biderivation) A bi-additive mapping D : R× R −→ R is
called a bi-derivation if for every x ∈ R, the map y 7→ D(x, y) as well as for
every y ∈ R, the map x 7→ D(x, y) is a derivation of R; that is, D(xy, z) =
D(x, z)y + xD(y, z) for all x, y, z ∈ R and D(x, yz) = D(x, y)z + yD(x, z)
for all x, y, z ∈ R.

Following [6], we initiate the idea of generalized biderivation on rings
given as:

Definition 1.5. (Generalized biderivation) A biadditive mapping ∆ : R ×
R −→ R is said to be a generalized biderivation if for every x ∈ R, the map
y 7→ ∆(x, y) is a generalized derivation of R associated with the function
y 7→ D(x, y) as well as if for every y ∈ R, the map x 7→ ∆(x, y) is a generalized
derivation of R associated with the function x 7→ D(x, y) for all x, y ∈ R.
It also satisfies ∆(x, yz) = ∆(x, y)z + yD(x, z) and ∆(xy, z) = ∆(x, z)y +
xD(y, z) for all x, y, z ∈ R.

Example 1.1. Let R =

{(

a 0
b 0

)

| a, b ∈ S

}

, where S is any commu-

tative ring. Consider ∆ : R × R −→ R be generalized biderivation with

associated map D : R × R −→ R defined as ∆

((

a1 0
b1 0

)

,

(

a2 0
b2 0

))

=
(

a1a2 0
0 0

)

, and

D

((

a1 0
b1 0

)

,

(

a2 0
b2 0

))

=

(

0 0
0 b1b2

)

.

In this paper, we prove some theorems on symmetric generalized bideriva-
tions of prime ring generalizing the results proved in [1, 2, 5].
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2 Main Theorems

To prove our main theorems, we need the following lemma:

Lemma 2.1. [1] Let R be a prime ring of characteristic different from two
and let I be a nonzero ideal of R. If ∆ is a symmetric generalized bideriva-
tion on R with associated biderivation D such that D(∆(x, y), z) = 0 for all
x, y, z ∈ I, then either R is commutative or D = 0. Moreover, ∆ acts as a
left bimultiplier on R.

Theorem 2.1. Let R be prime ring of a characteristic different from 2. If
∆1,∆2 are generalized biderivations with associated biderivation D such that
[∆1(y, y), r] + [r,∆2(y, y)] = 0 for all y, r ∈ R, then the following results
follow:

1. R is commutative.

2. ∆1 and ∆2 act as left bi-multipliers.

Proof. By hypothesis, we have

[∆1(y, y), r] + [r,∆2(y, y)] = 0 for all y, r ∈ R. (2.1)

Linearization in y yields

[∆1(y, y), r] + 2[∆1(y, z), r] + [∆1(z, z), r] + [r,∆2(y, y)]
+ [r,∆2(z, z)] + 2[r,∆2(y, z)] = 0 for all y, z, r ∈ R.

(2.2)

Using the characteristic condition and (2.1), we get

[∆1(y, z), r] + [∆2(y, z), r] = 0 for all y, z, r ∈ R. (2.3)

Substitute zu for z in (2.3) to get

[∆1(y, z)u, r]+[zD(y, u), r]+[∆2(y, z)u, r]+[zD(y, u), r] = 0 for all y, z, u, r ∈ R.

(2.4)
This implies that

∆1(y, z)[u, r] + [∆1(y, z), r]u+ z[D(y, u), r] + [z, r]D(y, u) + ∆2(y, z)[u, r]
+[∆2(y, z), r]u+ [z, r]D(y, u) + z[D(y, u), r] = 0 for all u, y, z, r ∈ R.

(2.5)
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Replace u by ur in (2.5) to obtain

∆1(y, z)[u, r]r2[D(y, u), r]r+ 2u[D(y, r), r] + z[u, r]D(y, r) + [z, r]D(y, u)r + [z, r]uD(y, r)
+∆2(y, z)[u, r][z, r]D(y, u)r+ [∆2(y, z), r]u+ [z, r]D(y, u)r + [z, r]uD(y, r)
+z[D(y, u), r]r + z[u, r]D(y, r) + zu[D(y, r), r] = 0 for all u, y, z, r ∈ R.

(2.6)
After simplification and using the characteristic of R is not two, we get

zu[D(y, r), r] + z[u, r]D(y, r) + [z, r]uD(y, r) = 0 for all u, y, z, r ∈ R. (2.7)

Replacing z by tz in (2.7), we have

[t, r]zuD(y, r) = 0 for all u, y, z, r, t ∈ R. (2.8)

Primeness of R implies that either [t, r] = 0 or D(y, r) = 0 for all t, y, r ∈ R.

The first case shows that R is commutative. If we take D(y, r) = 0 for
all y, r ∈ R, then the generalized biderivations ∆1,∆2 reduces to the left
bi-multiplier. This complete the proof.

Theorem 2.2. Let R be prime ring of a characteristic not equal to two.
If ∆1,∆2 are two symmetric generalized biderivations on R with associated
biderivation D such that [∆1(x, x),∆2(x, x)] = 0 for all x ∈ R, then the
following condition holds:

1. R is commutative.

2. ∆1 and ∆2 acts as a left bi-multiplier on R.

Proof. By hypothesis, we have

[∆1(x, x),∆2(x, x)] = 0 for all x ∈ R. (2.9)

Linearize (2.9) in x to get

[∆1(x, x),∆2(x, x)] + [∆1(x, x),∆2(y, y)] + 2[∆1(x, x),∆2(x, y)]
+ [∆1(y, y),∆2(x, x)] + [∆1(y, y),∆2(y, y)]
+ 2[∆1(y, y),∆2(x, y)] + 2[∆1(x, y),∆2(x, x)]
+ 2[∆1(x, y),∆2(y, y)] + 2[∆1(x, y),∆2(x, y)] = 0 for all x, y ∈ R.

(2.10)
By given condition in hypothesis, we arrive at

[∆1(x, x),∆2(y, y)] + 2[∆1(x, x),∆2(x, y)]
+ [∆1(y, y),∆2(x, x)] + 2[∆1(y, y),∆2(x, y)]
+ 2[∆1(x, y),∆2(x, x)] + 2[∆1(x, y),∆2(y, y)]
+ 2[∆1(x, y),∆2(x, y)] = 0 for all x, y ∈ R.

(2.11)
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Substitute −y for y in (2.11) to find

[∆1(x, x),∆2(y, y)] − 2[∆1(x, x),∆2(x, y)]
+ [∆1(y, y),∆2(x, x)]− 2[∆1(y, y),∆2(x, y)]
− 2[∆1(x, y),∆2(x, x)]− 2[∆1(x, y),∆2(y, y)]
+ 2[∆1(x, y),∆2(x, y)] = 0 for all x, y ∈ R.

(2.12)
Addition of equations (2.11) and (2.12) and the use of characteristic restric-
tion yield

[∆1(x, x),∆2(y, y)]+[∆1(y, y),∆2(x, x)]+2[∆1(x, y),∆2(x, y)] = 0 for all x, y ∈ R.

(2.13)
Again linearize the above equation in x to get

[∆1(x, x),∆2(y, y)] + [∆1(y, y),∆2(y, y)] + 2[∆1(x, y),∆2(y, y)]
+ [∆1(y, y),∆2(x, x)] + [∆1(y, y),∆2(y, y)]
+ 2[∆1(y, y),∆2(x, y)] + 2[∆1(x, y),∆2(x, y)]
+ 2[∆1(y, y),∆2(x, y)] + 2[∆1(y, y),∆2(y, y)]
+ 2[∆1(x, y),∆2(y, y)] = 0 for all x, y ∈ R.

(2.14)
From equation (2.13) and (2.14), we obtain

4[∆1(y, y),∆2(x, y)] + 4[∆1(x, y),∆2(y, y)] = 0 for all x, y ∈ R. (2.15)

Since characteristic of R is not two, we have

[∆1(y, y),∆2(x, y)] + [∆1(x, y),∆2(y, y)] = 0 for all x, y ∈ R. (2.16)

Putting xz in place of z in (2.16), we get

[∆1(y, y),∆2(x, y)z] + [∆1(y, y), xD(z, y)] + [∆1(x, y)z,∆2(y, y)]
+ [xD(z, y),∆2(y, y)] = 0 for all x, y, z ∈ R.

lll

(2.17)
Simplification of (2.17) and the use of (2.16) imply that

∆2(x, y)[∆1(y, y), z] + [∆1(y, y), x]D(z, y) + x[∆1(y, y), D(z, y)] + ∆1(x, y)[z,∆2(y, y)]
+ x[D(z, y),∆2(y, y)] + [x,∆2(y, y)]D(z, y) = 0 for all x, y, z ∈ R.

(2.18)
Applying (2.18) to the resulting equation after replacing z by z∆2(y, y) in
(2.18) and we see that

[∆1(y, y), x]zD(∆2(y, y), y) + xz[∆1(y, y), D(∆2(y, y), y)] + x[∆1(y, y), z]D(∆2(y, y), y)
+ xz[D(∆2(y, y), y),∆2(y, y)] + x[z,∆2(y, y)]D(∆2(y, y), y)
+ [x,∆2(y, y)]zD(∆2(y, y), y) = 0 for all x, y, z ∈ R.

(2.19)
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If we substitute rx for x in (2.19) and use (2.19), then the last equation takes
the form

[∆1(y, y), r]xzD(∆2(y, y), y)+[r,∆2(y, y)]xzD(∆2(y, y), y) = 0 for all r, x, y, z ∈ R.

(2.20)
The equation above implies that {[∆1(y, y), r]+[r,∆2(y, y)]}xzD(∆2(y, y), y) =
0 for all r, x, y, z ∈ R. By primeness of R we bring that for all r, x, y, z ∈ R

either {[∆1(y, y), r] + [r,∆2(y, y)]} = 0 or xzD(∆2(y, y), y) = 0. In the
first case, the conclusion follows from Theorem 2.1. Next consider the case
xzD(∆2(y, y), y) = 0 for all x, y, z ∈ R. Consequently, we get the result by
applying Lemma 3.1.
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