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Abstract

This paper presents a new two-step iterative method based on

Newton-Cotes formula. We prove that this method is cubically conver-

gent. Some numerical examples show that our method is comparable

with the well-known existing methods.

1 Introduction

Nowadays there are many iterative methods for solving the system of non-
linear equations in the form:

F (x) = (f1(x), f1(x), . . . , fn(x))
t = 0 (1.1)

where F : D ⊂ R
n → R

n, x = (x1, x2, . . . , xn)
t and fi, i = 1, 2, . . . , n are

maps from a convex subset D of the n-dimensional space R
n into the n-

dimensional space Rn. Solving (1.1) is a process of finding a numerical vector
x∗ = (x∗

1, x
∗

2, . . . , x
∗

n
)t such that F (x∗) = 0. There are recently many iterative
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methods for solving the system of nonlinear equations F (x) = 0 which have
been developed in order to improve the order of convergence by using different
techniques. One of them is using quadrature formulas [1]-[8]. It is known
that the quadrature rules play an important part in calculating the numerical
value of definite integrals. Motivated and inspired by the on-going activities
in this direction, in this paper we analyze a new iterative method for solving
the system of nonlinear equations by using Newton-Cotes formula. The new
method is a predictor-corrector method which uses Newton’s method as a
predictor and new method as a corrector. Some numerical examples are
given to illustrate the efficiency and the performance of this new method.

2 Description of iterative method

Let F : D ⊂ R
n → R

n be a Frechet differentiable function on a convex
D ⊂ R

n. For any x, xk ∈ D, we use the mean-value theorem of function
F (x) as follows:

F (x) = F (xk) +

∫ 1

0

F ′(xk + t(x− xk))(x− xk)dt. (2.2)

We approximate the integral on the right-hand side of (2.2) by the rectan-
gular rule. We obtain

∫ 1

0

F ′(xk + t(x− xk))(x− xk)dt ≈ F ′(xk)(x− xk). (2.3)

By (2.2), (2.3) and F (x) = 0, we have

x = xk − F ′(xk)
−1F (xk). (2.4)

This allows us to get a Newton’s method for solving the system of nonlinear
equations F (x) = 0 as follows:

Algorithm 2.1 For a given x0, compute an approximate solution xk+1

by the iterative scheme

xk+1 = xk − F ′(xk)
−1F (xk), k ≥ 0, (2.5)

where F ′(xk) is the Jacobian matrix at the point xk. Algorithm 2.1 has
quadratic convergence.
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If we approximate the integral in (2.2) by using the closed Newton-Cote
formula, we obtain
∫ 1

0
F ′(xk + t(x− xk))(x− xk)dt

≈ x−xk

90
[7F ′(xk) + 32F ′(xk + h) + 12F ′(xk + 2h) + 32F ′(xk + 3h) + 7F ′(xk + 4h)]

(2.6)
where h = x−xk

4
.

Replacing (2.6) into (2.2), we have

F (x) ≈ F (xk)+
x− xk

90
[7F ′(xk) + 32F ′(xk + h) + 12F ′(xk + 2h) + 32F ′(xk + 3h) + 7F ′(xk + 4h)] .

(2.7)
Since F (x) = 0, we obtain

x ≈ xk+
90F (xk)

[7F ′(xk) + 32F ′(xk + h) + 12F ′(xk + 2h) + 32F ′(xk + 3h) + 7F ′(xk + 4h)]
.

(2.8)
To propose an iterative method, we set x = xk+1. Then (2.8) can be written
as:

xk+1 ≈ xk+
90F (xk)

[7F ′(xk) + 32F ′(xk + h) + 12F ′(xk + 2h) + 32F ′(xk + 3h) + 7F ′(xk + 4h)]
.

(2.9)
From (2.4), we have x−xk = −F ′(xk)

−1F (xk). Then (2.9) can be written as:

xk+1 ≈ xk+
90F (xk)

[

7F ′(xk) + 32F ′(xk + h̄) + 12F ′(xk + 2h̄) + 32F ′(xk + 3h̄) + 7F ′(xk + 4h̄)
]

(2.10)
where h̄ = −1

4
F ′(xk)

−1F (xk).
Therefore we obtain a two-step iterative method for solving the system of
nonlinear equations as follows:

Algorithm 2.2 For a given x0, compute an approximate solution xn+1 by
the iterative scheme
Predictor Step:

yn = −
1

4
F ′(xn)

−1F (xn) (2.11)

Corrector Step:

xn+1 = xn+
90F (xn)

[7F ′(xn) + 32F ′(xn + yn) + 12F ′(xn + 2yn) + 32F ′(xn + 3yn) + 7F ′(xn + 4yn)]
(2.12)

where n = 0, 1, 2, . . . .
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3 Convergence Analysis

Theorem 3.1. Let F : D ⊂ R
n → R

n be an r−times Frechet differentiable

function on a convex set D containing the root α of F (x) = 0. Then the

iterative method defined by Algorithm 2.2 is cubically convergent and satisfies

the error equation

en+1 = c22e
3
n
+ (3c2c3 − 3c32)e

4
n
+O(e5

n
). (3.13)

Proof. Consider Algorithm 2.2 again,

yn = −
1

4
F ′(xn)

−1F (xn) (3.14)

xn+1 = xn+
90F (xn)

[7F ′(xn) + 32F ′(xn + yn) + 12F ′(xn + 2yn) + 32F ′(xn + 3yn) + 7F ′(xn + 4yn)]
(3.15)

Let en = xn − α. By using Taylor’s expansion of F (x) around x = α, we
obtain

F (x) = F ′(α)(x−α)+
F”(α)(x− α)2

2!
+
F (3)(α)(x− α)3

3!
+
F (4)(α)(x− α)4

4!
+O((x−α)5).

(3.16)
Substituting en = xn − α and rearranging, we get

F (x) = F ′(α)
[

en + c2e
2
n
+ c3e

3
n
+ c4e

4
n
+O(e5

n
)
]

(3.17)

where c2 =
1
k!
F ′(α)−1F (k)(α).

From (3.14), we get

yn = −
1

4

[

en − c2e
2
n
+ 2(c22 − c3)e

3
n
+ (7c2c3 − 4c32 − 3c4)e

4
n
+O(e5

n
)
]

.

(3.18)
Therefore

xn+yn = α+
3en
4

−
1

4

[

−c2e
2
n
+ 2(c22 − c3)e

3
n
+ (7c2c3 − 4c32 − 3c4)e

4
n
+O(e5

n
)
]

.

(3.19)
Using Taylor’s expansion for F ′(xn + yn) at α, we have

F ′(xn+yn) = 1+
3

2
c2en+

(

c22
2
+

27c3
16

)

e2
n
+

(

17c2c3
18

− c32 +
27c4
16

)

e3
n
+O(e4

n
).

(3.20)
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In a similar way, we obtain

F ′(xn + 2yn) = 1 + c2en + (
c22
2
+

3c3
4

)e2
n
+ (

7c2c3
2

− 2c32 +
c4
4
)e3

n
+O(e4

n
),

F ′(xn + 3yn) = 1 +
1

2
c2en +

(

3c22
2

+
3c3
16

)

e2
n
+ (

33c2c3
8

− 3c32 +
c4
16

)e3
n
+O(e4

n
),

F ′(xn + 4yn) = 1 + 2c2e
2
n
− 4(c2c3 − c32)e

3
n
+O(e4

n
).

Thus,

7F ′(xn) + 32F ′(xn + yn) + 12F ′(xn + 2yn) + 32F ′(xn + 3yn) + 7F ′(xn + 4yn)

= 90 + 90c2en + 90(c22 + c3)e
2
n
+ (270c2c3 − 180c32 + 90c4)e

3
n
+O(e4

n
). (3.21)

Therefore, from (3.15), (3.17) and (3.21), we get

en+1 = c22e
3
n
+ (3c2c3 − 3c32)e

4
n
+O(e5

n
). (3.22)

Thus (3.22) shows that the method described by equation (3.14) and (3.15)
has third order convergence.

4 Numerical results.

In this section we will show the performances and efficiency of our new
method by comparing the results with the results of Newton’s method (NM),
the method of Cordero and Torregrosa (CT)[4], the method of Darvishi and
Barati (DV)[6], and the method of Noor and Wasseem (NR)[7]. The compar-
ison appears in table 1. All computations have been carried out in MAPLE,
using 30 digit floating point arithmetic. The stopping criterion used are
‖xn+1 − xn‖∞ < 10−14 and ‖F (xn+1)‖∞ < 10−14. We analyze the number of
iterations and the order of convergence p, approximated by

p ≈
ln‖xn+1 − xn‖∞/‖xn − xn−1‖∞
ln‖xn+1 − xn‖∞/‖xn − xn−1‖∞

,

we test the new method with the following systems of nonlinear equations
with their solutions.

1. ex
2

+ 8x sin y = 0; x+ y = 1
Solutions are (−0.14028501081, 0.1402850108)t.

2. x2 − 2x− y + 0.5 = 0; x2 + 4y2 − 4 = 0
Solutions are (−0.2222145551, 0.9938084186)t.
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3. x2 + y2 + z2 = 1; 2x2 + y2 − 4z = 0; 3x2 − 4y2 + z2 = 0
Solutions are (0.69828861, 0.62852430, 0.34256419)t.

4. x2 + y2 + z2 = 9; xyz = 1; x+ y − z2 = 0
Solutions are (2.49137570, 0.24274588, 1.65351794)t.

5. yz+w(y+z) = 0; xz+w(x+z) = 0; xy+w(x+y) = 0; xy+xz+yz = 1.
Solutions are (0.57735, 0.57735, 0.57735,−0.28868)t.

Table 1. The numerical comparison results.
system method initial value number of iteration (IT) p
(1) NM (0.2, 0.8)t 5 2.0

CT 4 3.0
DV 4 3.0
NR 4 3.0
new 4 3.0

(2) NM (0.5, 0.5)t 7 2.0
CT 5 3.0
DV Fails -
NR 5 3.0
new 5 3.0

(3) NM (0.5, 0.5, 0.5)t 6 2.0
CT 4 3.0
DV 4 -
NR 4 3.0
new 4 3.0

(4) NM (2.5, 0.5, 2.5)t 5 2.0
CT 4 3.0
DV 4 3.0
NR 4 3.0
new 4 3.0

(5) NM (0.6, 0.6, 0.6,−0.2)t 5 2.0
CT 3 3.3
DV 3 3.3
NR 3 3.3
new 3 3.3

Table 1 shows the number of iterations (IT) and the order of convergence of
all methods. We see that most of the results of the present method confer
with methods CT, DV and NR except for system (2) where method DV fails.
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5 Conclusion

In this paper we developed a two-step new iterative method for solving a
system of nonlinear equations using the Newton-Cotes formula. The error
equation was given theoretically to show that the new method has third or-
der convergence. The new method has been tested on some examples from
the literature and show the same results in most cases.
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