International Journal of Mathematics and ( M)
Computer Science, 15(2020), no. 3, 857-868 G8

Generalized Complex Fractional Derivative
and Integral operators for the Unified Class
of Analytic Functions

Ammar S. Issa, Maslina Darus

Department of Mathematical Sciences
Universiti Kebangsaan Malaysia
43600 Bangi
Selangor, Malaysia

email: ammar82@bau.edu.jo, maslina@ukm.edu.my
(Received March 13, 2020, Accepted April 24, 2020)

Abstract

In this paper, we introduce a generalization of the Linear fractional
differential and integral operator given by Srivastava and Owa [8]. In
addition, we study some geometric properties of this new operator for
the unified class U [®, V; «, 5, \,n], which was defined by Darus [2]
like growth, distortion and the radii of starlikeness.

1 Introduction

Let A be the class of functions of the form

() =z24+>",a,2"

This class consists of functions that are analytic and univalent in the
open disk U = {z:2 € C;|z] < 1}. Let S*(«) denote the class consists of
the starlike functions in A of order « such that 0 < o < 1, where any function

f(2) in A belongs to this class if it satisfies the condition Re <Zf (z)> > a,

f(2)
for all z in the open unit disk. We will also denote by C (a) the class of

Key words and phrases: Uniform starlike, Uniform convex, Fractional
integral operator, Fractional differential operator.

AMS (MOS) Subject Classifications: 30C45.

ISSN 1814-0432, 2020, http://ijmes.future-in-tech.net



858 A. S. Issa, M. Darus

convex functions in A of order a (0 <« < 1), and it is well known that
f(2) € C(a),if zf (2) is starlike of order a.

Silverman [12] defined a subclass of A, which we will denote by 7', con-
sisting of all the functions of the form

f(2) =22 anz™

In [5, 4], Goodman established the basic concepts of uniformly starlike and
uniformly convex functions, denoted by UCV and UST, respectively. After
that, Ronning [11] defined a class of starlike functions related to uniformly
convex functions which he denoted by S,, where f € S, if and only if

R{}f(())} . }]:<(>)

In 1997, Bharati et. al [1] defined a class, called k-uniformly convex
function of order a, which they denoted by k& — UCV (a), where f belongs
to this class if and only if

of (2) of (2)
Re{l—l— ) a}zk‘ e

Also, they defined the class k-uniformly starlike function of order «, de-
noted by k — ST (), where f belongs to this class if and only if
2f (2)

2f (2)
Re{ ) ““} e

Note that f € k — UCV if and only if zf € k — ST («).

_1'.

-1

i

—1

We need to mention that, Kanas and Wisniowska [9, 10] also studied

similar classes of conic domains with a = 0.
After that, Darus [3] defined a new family, denoted by D (®,V;a, ),
consisting of functions f in A, that satisfy the inequality

MO O IO I IO
o (fGrve) > e -+
where 0 < a < 1,6> 0,0 (2) =24+ > w2z, and U (2) = 2+ > 0y 7p2"

are analytic in U such that f(z) * ¥ (z) # 0,w, > Vn, @, = 0 and ~, > 0.
This somehow generalized various subclasses of A.
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Before that, Darus [2] unified the subclasses Dr (®, V; o, 8) = D (9, ¥; o, )N
T, and Er (®,V;a,8) = E(®,V;,5) N T, where f € Erif and only if
zf € D(®,V;q,8), denoted by U [®, ¥; , 5, \,n], where

Ul®,V;a,8,0,n] = (1=X) Dr (®,V;a,0) + AET (9, ¥; 0, ).

As aresult, we get U [®, U; o, 3,0, n] = Dy (@, V; 0, fland U [®, V; v, B, 1, n] =
ET ((I)u \117 avﬁ) .

2 Generalized Fractional Derivative and In-
tegral Operator

Owa [6] made a huge move in the theory of fractional analysis by introducing
the following definitions for fractional differential and integral operators in
the complex z-plane:

Definition 2.1. The fmctional derivative operator of order v for f(z) is

DY f (z) F(ll s f (z d§ 0 < v < 1, where the function f (z) is analytic

in a simply- connected region of the complex z—plane, C, containing the origin
and the multiplicity of (z — &)” is removed by assuming that log (z — &) to be
real when z — & > 0.

Definition 2.2. The fractional integral operator of order v for f (z) is IV f (2) =
ﬁd% [ (z— €)' 71de,0 < v < 1, where the function f (z) is analytic in
0

simply-connected region of the complex z — plane, C, containing the origin
and the multiplicity of (z — &£)” is removed by assuming that log (z — &) to be
real when z — & > 0.

Remark 2.1. Using Definitions 2.1 and 2.2 one can easily show that
1. D2f (z) = f(0).

2. DV {2} = F(TTJ;J%) {z77"},7>-1,0<v <1

3. IV {z'} = Fji:’il {77}, 7>-1,0<v <1
Using Definitions 2.1 and 2.2, many researchers have introduced new deriva-
tive and integral operators. They formed some new classes of univalent func-
tions and studied their properties.
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One of the most important fractional linear operator in the complex plane
was given by Owa and Srivastava [7]:

Vf=T(2-v)z"D’f, (2.1)
where DY f is the fractional derivative operator in Definition 2.1
In this section, we shall generalize the operator given by Owa and Srivastava

[7] and introduce a new derivative fractional operator using Definition 2.1.
To introduce this operator, we will begin by proving the following lemmas:

Lemma 2.3. Let f(z) = z + Y 2, a,2" be a function in the subclass of
A. Then the m* fractional deriwative for f (z), denoted by (D)™ f (2), is
given by

[e.e]

1 I'(n+1)
v (m) _ 1 muv n—muv
(D) = 55 =) 2 Th—mv+1)

Proof. To prove this lemma, we use mathematical induction. Clearly, the
result is true for m = 1. Now assume that the result is true for m = k; i.e.,

(D)W f(2) = F(ziku)zl_k” + >, an%z”_k”, kv < 1. To show that

the result is true for m = k + 1, we write,
(D)™ £ (2) = D2 (D) 1 (2))
1 = r 1
DZ (Zl—ku) + Z a, ( (n + ) )DZ (Zn—ku)
n=2

T T(2- k) — " (n— kv +1
! T(1—kv+1) 4,
_F(2—ku)F(1—ku—u+1)Z

(n+1) F'n—kv+1) 1
+Z n—ku+1)F(n—ku—u+1)Z
_ 1 P@—kr) 4 g
F(2—ku)F(2—(/€+1)y)

(n+1) F'n—kv+1) (k1)
+Z —kl/—l—l) (n—(k‘—l—l)u—l—l)z
_ 1 —(k+1)v n + 1) n—(k+1)v
T +Z k+1)u+1)z ‘

Hence the result follows.

We can also prove the following lemma:
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Lemma 2.4. Let f(z) = z — Y 2, a,2" be a function in the subclass of

T. Then the m™ fractional derivative for f(z), denoted by (D?)™ f(z), is
given by

v (m) _ 1 1—-mv - F (n + 1) n—mv
P = R T S T

Using those lemmas, we shall introduce the generalized fractional derivative
operator as follows:

Definition 2.5. Let f (z) be an element of the class A and letm =1,2,3,....
Then the generalized fractional derivative operator, denoted by D™, is

DY f =T (2 —mu) 2™ (DV)™ f(2),0<v < 1,mv+#2 3,4, ..

Remark 2.2. We notice that D' f = Q" f.

3  Coefficient inequalities, Growth and Dis-
tortion theorems for DV f

In this section, we give distortion theorems for the generalized fractional
operator DV f. However, we do need the following lemmas to establish our
new results.

Lemma 3.1. [3] A function f (z) = z—Y .~ , a,2" isin the class U [, ¥; a, B, A\, n]
if and only if it satisfies the following inequality

o

1 =A+nM)[(1+8)wn — (a+ F) Wl lan| <1 -0, (3.2)

3

where 0 < a< 1,8 >0, w, > Y, @, = 0 and v, > 0.

Lemma 3.2. [3] A function f (z) = z—Y .~ , a,2" isin the class U [, ¥; a, B, A\, n]
if and only if it satisfies the following inequality

11—«

L—XA+n2N)[(148) @, — (a+ B) )

where 0 < a < 1,6 >0, w, > Y, @, = 0 and v, = 0.

la,| < ( ,n > 2. (3.3)
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We now give distortion theorems of D¥™ f in the unified class U [®, V; a, 3, A, n].

Theorem 3.3. If f (2) = z—Y _~~, a,2" is an element in the class U [, ¥; «, B, \, n] ,then

1 1-v 2= L'(3) l -«
T L BN YO VG D Y (G ey poray o
< 1D (2)
r@3) 11—«
TG A N1 D) e (@ 5]

1 1-v 2—
[
_F(2_V> ‘Z| +|Z|
which generalizes the result by Darus [2].

Proof. From Lemma 3.1 we get f(z) =2z — Y ., a,2" belongs to the class
U[®,V;«, B, A\, n] if and only if it satisfies the following inequality

D= A+nN) [+ B) @ — (@ + B) 7l |an] <1 -0,
n=2

and this inequality leads to the following lower bound for ", |a,|,

1—«a
;W"' S TN+ B m— (@t B

Now,
v o 1 -V _ - F(n+1) n—v
|sz(z)|_ mzl ;GN—F(n—y+1)Z
1 —v - F(n_l—l) n—v
S e Tt
1 —v S n_'_l n— I/
zm;zl }_;W VH'}
1 i T(2+1) ,
Zm‘l - IF 1/+1"2 \Zlan|
> 1 | |1—1/ . | ‘2—1/ I (3) l—a
“Te-n" T T A N[+ B) @, — (at B) ]
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On the other hand,

D2 () = |y Z%
= r(zl— i +:O2 G"%ZW
<[] 11+ X ol e Sy
Sﬁ‘”‘ jSl\\“\Z\an\
< ppg M e e

Hence the result follows.

Next, we find an upper and lower bounds for [(D*)™ f (2)].

Theorem 3.4. Let f (z) = z—) .~ , a,z" be an element in the class U [P, V; o, B, A, n].
Then

1 1—mw 2omy L' (3) l—a
PR L o S Couperey ¥ s Ry Y (G ay) Py oy pvy
<|(DNH™ £ (2)
< 1 | ‘l—mu n ‘Z|2—mu I'(3) l -«
—T(2-—mv) F@—mv)(14+N[1+8)w, — (a+ ) Y]

Proof. As in the proof of the last theorem, we have
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[e.e]

1 F'(n+1) _
DV (m) — n—mrv
D™ = re = T L M T+ 1)
1 - I'(n+1) _
> n—mrv
- F(2—my ;anf‘ (n—mv+1)
1 _ - I'(n+1) _
> 1-mv| n—mv
=T (2 —mw) S ;‘a”‘ F(n—mu+1)w |
1 (2+1)
> 1-mv| 2—mv
—I'(2—-mv) }Z | F(2—my+1’} ‘Z‘an‘
> 1 |Z‘1—m1/_ ‘2‘2—m1/ F(g) l-a
“T(2—mv) F(3—mv)(L+A)[(1+8) @, — (a+B8) 7l
On the other hand,
1 = L'(n+1) _
DY (m) [ n—mv
(D)™ 1 (2) F(2—my z:; I'(n—mv+1)
S 1 1 mv 4 a, 7L+1) n—mv
F(Q—my — | T(n—mv+1)
1 F'n+1) _
< 1 my n—muv
~ T2 —-mw) HZM mvH)‘} |
1 re+1)
< 1—-mv 2—my
< e |+ WH)} \Zw
1 r 1—-
S |Z|1—mlj + |Z|2—ml/ (3) @ .
T(2—mw) TG —mv)(1+N)[(1+8) @, — (a+ 8) )

4 New fractional integral operator which is
closed under U [, V: «, 5, A, n]

In this section, we introduce a generalized fractional integral operator. In
addition, we will see the closeness of this new operator in the subclass
U®,V;a, B, A\, n].

Definition 4.1. Let f(z) € A. Then the generalized fractional integral op-
erator of order v is defined by

I (f (2) =T (mv +2) 2™ ()™ f (2),
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where (I;{)(m) is the composition for the fractional integral operator given in
Definition 2.2 for m — times.

As a consequence of applying the operator defined in Definition 2.2 and
part (3) Remark 2.1 to the functions f(z) € T" we get the following result:

Let f(2) =z— > a,2". Then
n=2

K”U%@%=K”(z—§:%¥>

B = r@+m)T(n+1)
— - ;Q" Tntmvt+l)

In the following theorem, we discuss the closeness of the operator 17" (f (z))
under the unified subclass U [®, U; a, 8, A\, n] .

Theorem 4.2. Let f(z) € U[®,V;a,8,\,n|. Then IV'™ (f (2)) is an ele-
ment of the subclass U [®,V; a, B, A\, n].

Proof. From Lemma 3.1, it is enough to show that

f:(1—)\+n)\)[(1+ﬁ)wn—(a+6)%]1“(n+1)1“(m1/+2)
-« F'(n+1+mv)

n=2
So let f(z) €e U[®,V;«, 3, A\, n]. Then, by Lemma 3.1,

(I =A+nN) [+ 8) @ — (a+B) 1l
11—«

la,| < 1.

Hence it suffices to show that % < 1. This can be shown by

applying the Gamma function properties as follows:

F(n+1)T (mv+2) _ I'(n+1)(mv+1)(mv)T (mv)
I'(n+1+muv) (mv+n)(mv+n—1)(mv+n—2)---(mv+1)mol’ (mv)
() (=1 (=22 (1)
(mv+n)(mv+n—1)(mv+n—2)---(mv+2)(1)
_n n—1 2 1
mv+nmy+n—1  mr+21
<1.

Hence the result follows. In the following theorem, we investigate the star-
likeness of the operator 1™ (f (z)) .
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Theorem 4.3. If f(z) € U[®,V;a, B, \,n], then 127 (f (2)) is starlike of
order 0 < p < 1 in the disk |z| < &, where

— ] (A=p)(1=A+nN)[(1+B)wn—(a+B)¥n] —_ * _ T'(n+DI'(mr+2)
£ = %f{ . C nt2—p)(1—a) - ‘“n‘}n L and C" = T(ntitmv)  °

(157 5(2)

Proof. We have to show that — TGy

-1 <1—-p

To see this, we will start from the left hand side.

S IC) I (1 - T3, na, Mg ) 1
I f (2) z2=> 0, an—r(itnﬁﬁszgl)z"
2 (1= 305, oy Bt nt) '
(- St )
R e X
1= a e o
B L=, nay, F(i?nﬁﬁifsl)zn_l — 14+, a, F%?ﬁﬁif;;l)zn_l
) L= s an
| (n 1) @, PR
| -2, e, M o

00 T'(2+mv)I'(n+1 n—1
_ T (04 1| "gmanen o

(2 I 1 —1
1= 307, Jay | DGt el) |
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Then
O EXC010) z(l_p)_Z?Q(nH)IaM%\ 2"
L7 f (2) 1= 322, [y DEEmaATled) |t
{(0=p) (1= 252 lan| HEEmatne o)
o, (1) | Gl |ty
- 1= 30 [ | BEERAND |
((1=p) = (1= p) Yo, | Dpmeadtloceld 1)
— 3, (n+ 1) || DEEATOD | oty
- 1= 302, lan] S 12!
{1 ) = 0 (042 — p) | DT |
- 1= 3002, lay| Rl D) ! ’
and finally

1

i d =) A=A+ [+ B oy — (@t B) ] (7=
|Z‘ < 5 o %f{ T'(2+mv)I(n+1) (n+2 _p) (1 _a) | TL|} )

L'(n+mr+1)
such that
N 1L O S IR (S Eo ¢ Sy B
"1 (2) L= Yy ol SR e

Hence the result follows.
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