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Abstract

In this paper, many properties of several sequences such as the
falling numbers and Stirling numbers of the second kind are discussed.
We use these properties to find recurrence relations of the sums of
powers σm(n) =

∑n
k=1 k

m.

1 Introduction

Assume that {σm(n)}
∞

m=0 is the sequence of sums of the m-th power of the
first n positive integers defined as

σm(n) =
n

∑

k=1

km.

For example, σ1(n) = n(n+1)
2

, σ2(n) = n(n+1)(2n+1)
6

, σ3(n) =
[

n(n+1)
2

]2

, and

σ4(n) =
n(n+1)(2n+1)(3n2+3n−1)

30
. It is clear that if a = σ1(n), then σ3(n) = a2. It

has further been proved σ5(n) =
4a3−a2

3
, σ7(n) =

6a4−4a3+a2

3
. Many interesting

questions arise here. For example, given σm(n), can we get σm+1(n)? Can we
get σm+2(n) using σm(n) and σm+1(n)? For further properties of {σm(n)}

∞

m=0,
see [6], [8], and [9].
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1.1 The falling numbers

Let N0 be the set of nonnegative integers. For n ∈ N0, the falling factorial
numbers (x)n are given as

(x)n = x(x− 1)(x− 2) · · · (x− n+ 1) =
Γ(x+ 1)

Γ(x+ 1− n)
, (1.1)

where (x)0 = 1. it is clear that (x)n = Γ(x+1)
Γ(x+1−n)

. In particular, for m ≥ n, we

get (m)n = m!
(m−n)!

.

Proposition 1.1. For m ∈ N0, the falling numbers (x)n satisfy

(x+m)m(x)j = (x+m)m+j .

In particular,

(x+ 1)(x)j = (x+ 1)j+1. (1.2)

Proof.

(x+m)m(x)j =
Γ(x+m+ 1)

Γ(x+ 1)

Γ(x+ 1)

Γ(x− j + 1)

=
Γ(x+m+ 1)

Γ(x+m− (j +m) + 1)
= (x+m)m+j .

For further properties of these numbers, see [7] and [13].

1.2 The forward difference operator

Definition 1.2. Let S(N) be the set of complex valued sequences over N.

For u ∈ S(N), the forward difference operators ∆ : S(N) −→ S(N) : u 7→ ∆u

is defined as (∆u)(k) = u(k + 1)− u(k).

It is easy to show that the forward difference operator satisfies

n−1
∑

k=m

(△f)(k) = f(n)− f(m). (1.3)

By substituting f(n) = (∆−1F )(n), we get

n−1
∑

k=m

F (k) =
n−1
∑

k=m

(△∆−1F )(k) = (∆−1F )(n)− (∆−1F )(m). (1.4)
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This equation defines the inverse difference operator as

(∆−1F )(n) = C +
n−1
∑

k=m

F (k). (1.5)

As an application for this definition and using Γ(x+ 1) = xΓ(x), we get

(k + s+ 1)n − (k + s)n =
Γ(k + s+ 2)

Γ(k + s+ 2− n)
−

Γ(k + s+ 1)

Γ(k + s+ 1− n)

=
Γ(k + s+ 1)

Γ(k + s+ 1− n)

( k + s + 1

k + s + 1− n
− 1

)

=
Γ(k + s+ 1)

Γ(k + s+ 1− n)

n

k + s+ 1− n

= n
Γ(k + s + 1)

Γ(k + s+ 1− (n− 1))
= n(k + s)n−1.

Now, using (1.3), we get

k−1
∑

j=1

(j + s)n =
1

n+ 1

k−1
∑

j=1

∆
(

(j + s)n+1

)

=
1

n+ 1

(

(k + s)n+1 − (1 + s)n+1

)

=
(k + s)n+1

n+ 1
+ C

Therefore, we have proven the following proposition

Proposition 1.3. If u(k) = (k + s)n, then

1. (∆u)(k) = n(k + s)n−1.

2. (∆−1u)(k) = (k+s)n+1

n+1
+ c.

For further properties for difference operators and their applications,
see [10], [1], [2], [3], [4] and [5].

1.3 Stirling numbers

For n ∈ N0, the sequence {n

k
}, k = 0, 1, 2 · · ·n, which satisfies

xn =
n

∑

j=0

{

n

j

}

(x)j (1.6)

is called the Stirling numbers of the second kind.
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Example 1.4. For k ∈ N and using

x3 = x+ 3x(x− 1) + x(x− 1)(x− 2)

= (x)1 + 3(x)2 + (x)3

=

{

3

0

}

(x)0 +

{

3

1

}

(x)1 +

{

3

2

}

(x)2 +

{

3

3

}

(x)3,

we get that
{

3
0

}

= 0,
{

3
1

}

= 1,
{

3
2

}

= 3 and
{

3
3

}

= 1.

In [11], the following explicit formula is given to calculate these numbers

{n

k

}

=
1

k!

k
∑

j=0

(−1)k−j

(

k

j

)

(k − j)n. (1.7)

This equation implies that
{n

0

}

= δn,0 =

{

1, n = 0;
0, n > 0.

. (1.8)

Clearly, for k,m ∈ N and using (1.8), we have

km =

m
∑

j=1

{

m

j

}

(k)j. (1.9)

Taking the sum for both sides of (1.9) from k = 1 to n and using Proposi-
tion 1.3, we get

σm(n) =
m
∑

j=1

{

m

j

}

(n+ 1)j+1

j + 1
. (1.10)

Now, interchanging the sums technique gives a result which is needed
later.

N
∑

n=1

σm(n) =
N
∑

n=1

n
∑

k=1

km =
N
∑

k=1

N
∑

n=k

km

=

N
∑

k=1

(N − k + 1)km

= (N + 1)σm(n)− σm+1(n).

Therefore,
N
∑

n=1

σm(n) = (N + 1)σm(N)− σm+1(N). (1.11)

For further properties of the Stirling numbers, see [12].
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2 Main Results

This section is devoted to construct recurrence relations for σm(n). To be-
gin with, taking the sum for both sides of (1.10) from n = 1 to n = N ,
using (1.11) and Proposition 1.3 we get

(N + 1)σm(N)− σm+1(N) =

m
∑

j=1

{

m

j

}

(N + 2)j+2

(j + 1)(j + 2)
.

Therefore, we have the following recurrence relation

Proposition 2.1. for m ∈ N,

σm+1(n) = (n+ 1)σm(n)−
m
∑

j=1

{

m

j

}

(n+ 2)j+2

(j + 1)(j + 2)
.

Example 2.2.

σ4(n) = (n+ 1)σ3(n)−

3
∑

j=1

{

3

j

}

(n+ 2)j+2

(j + 1)(j + 2)

= (n+ 1)(
n(n+ 1)

2
)2 −

(n+ 2)3
(2)(3)

− 3
(n+ 2)4
(3)(4)

−
(n+ 2)5
(4)(5)

=
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
.

We have other recurrence relations that can be generated after proving
the following result

Proposition 2.3. For m, k ∈ N, the following are true

1. km+1 + km =
∑m

j=1

{

m

j

}

(k + 1)j+1.

2. km+2 + 3km+1 + 2km =
∑m

j=1

{

m

j

}

(k + 2)j+2.

3. km+3 + 6km+2 + 11km+1 + 6km =
∑m

j=1

{

m

j

}

(k + 3)j+3.

Proof. Multiply (1.6) by k + 1 and use Proposition 1.1 to get

km+1 + km = (k + 1)km =
m
∑

j=1

{

m

j

}

(k + 1)1(k)j

=

m
∑

j=1

{

m

j

}

(k + 1)j+1.
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Now, use Proposition 1.1 to get

km+2 + 3km+1 + 2km = (k + 2)(k + 1)km =

m
∑

j=1

{

m

j

}

(k + 2)2(k)j

=
m
∑

j=1

{

m

j

}

(k + 2)j+2.

Again, use Proposition 1.1 to get

km+3 + 6km+2 + 11km+1 + 6km = (k + 3)(k + 2)(k + 1)km

=

m
∑

j=1

{

m

j

}

(k + 3)3(k)j

=
m
∑

j=1

{

m

j

}

(k + 3)j+3.

Now, one can easily verify that Proposition 2.3 implies that the following
are true.

Proposition 2.4. For m, k ∈ N

1. km+1 =
∑m

j=1

{

m

j

}

((k + 1)j+1 − (k)j).

2. km+2 =
∑m

j=1

{

m

j

}

((k + 2)j+2 − 3(k + 1)j+1 + (k)j).

3. km+3 =
∑m

j=1

{

m

j

}

((k + 3)j+3 − 6(k + 2)j+2 + 7(k + 1)j+1 − (k)j).

Taking the sum for the results in Proposition 2.3 from k = 1 to n and
using Proposition 1.3 give the following recurrence relations for σm(n).

Theorem 2.5. For m ∈ N

1. σm+1(n) =
∑m

j=1

{

m

j

}

(n+2)j+2

j+2
− σm(n).

2. σm+2(n) =
∑m

j=1

{

m

j

}

(n+3)j+3

j+3
− 3σm+1(n)− 2σm(n)

3. σm+3(n) =
∑m

j=1

{

m

j

}

(n+4)j+4

j+4
− 6σm+2(n)− 11σm+1(n)− 6σm(n).
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Also, taking the sum for the results in Proposition will give explicit for-
mulas for σm+1(n),σm+2(n), and σm+2(n) respectively.

Theorem 2.6. For m ∈ N, the Stirling numbers satisfy

1. σm+1(n) =
∑m

j=1

{

m

j

}(

(n+2)j+2

j+2
−

(n+1)j+1

j+1

)

.

2. σm+2(n) =
∑m

j=1

{

m

j

}(

(n+3)j+3

j+3
− 3

(n+2)j+2

j+2
+

(n+1)j+1

j+1

)

.

3. σm+3(n) =
∑m

j=1

{

m

j

}(

(n+4)j+4

j+4
− 6

(n+3)j+3

j+3
+ 7

(n+2)j+2

j+2
−

(n+1)j+1

j+1

)

.

Example 2.7. Using
{

2
j

}

= 1 for j = 1, 2, we get

n
∑

k=1

k5 = σ5(n) =

2
∑

j=1

{

2

j

}

(n+ 4)j+4

j + 4
− 6σ4(n)− 11σ3(n)− 6σ2(n)

=
(n+ 4)5

5
+

(n+ 4)6
6

−
6

30
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)− 11(

n(n+ 1)

2
)2 − 6

n(n + 1)(2n+ 1)

6

=
(n+ 4)(n+ 3)(n+ 2)(n+ 1)n

5
+

(n+ 4)(n+ 3)(n+ 2)(n+ 1)n(n− 1)

6

−
6

30
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)− 11(

n(n+ 1)

2
)2 − 6

n(n + 1)(2n+ 1)

6

=
[n(n+ 1)]2(2n2 + 2n− 1)

12
.
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