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Université d’Abomey-Calavi

Porto-Novo, Bénin

email: ogouyandjou@imsp-uac.org, nestor.wadagni@imsp-uac.org

(Received June 2, 2020, Accepted September 9, 2020)

Abstract

A Wasserstein Riemannian Gamma manifold is a space of Gamma

probability density functions endowed with the Riemannian Otto met-

ric which is related to the Wasserstein distance. In this paper, we

study some geometric properties of such Riemanian manifold. In par-

ticular we compute the coefficients of α-connections and the sectional

curvature of those manifolds.

1 Introduction

The geometry of Gamma manifold related to the family of Gamma densites
and endowed with the Fisher metric has been studied by Amari et al.[1].
Recently this geometry was used in medical imagin by Rebbah et al. [11]
where the authors present how the information geometry and the generalized
Gamma manifold improved the quality classification of deseases related to
persons. Considering the Riemannian structure obtained by the Fisher in-
formation on a statistical manifold, Amari [1] defines a one-parameter family
of affine connections called α-connections. Hence α-connections have be-
come key tools in information geometry and have been widely investigated
by several authors such as Gbaguidi et al. [7] who constructed a family of
α-connections on a Hilbert bundle of generalized statistical manifold.
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Recently Malagó et al. study the geometry of the family of Gaussian den-
sities endowed with Otto metric [8] which is related to wasserstein distance
[12, 3, 9]. In this paper, we study the geometry of the family of Gamma den-
sities endowed with the Otto metric. Let M be a set of probability densities
endowed with the Otto Riemannian metric. We construct on M a family
∇(α) of torsion-free α-connections that is exactly the Levi-Civita connection
on M when α = 0. We also find out that the exponential families and the
mixture families are respectively (1)-flat and (−1)-flat. The rest of the pa-
per is organized as follows: we recall some preliminaries on α-connections
in section 2, and we present useful results on Otto metric and Wasserstein
metric in sections 3 and 4. In section 5 we present the main results : the
construction of α-connection using Otto metric. Finally in section 6, we com-
pute the coefficients of α-connections, and the sectional curvature of Gamma
manifold.

2 Preliminary on α-connections

For some integer d ≥ 1, let X be a non-empty subset of R
d and M =

{pθ(·), θ ∈ Θ}, with Θ ⊂ R
n be a family of probability distributions on X .

Each element of M, can be identified with θ = (θ1, · · · , θn) ∈ Θ a subset of
R

n and the mapping θ 7→ pθ is injective. M is a C∞ differentiable manifold.

Example 2.1. X = R, n = 2, θ = (µ, σ), Θ = {(µ, σ) : µ ∈ R, σ ∈ R
∗
+}

p(x, θ) =
1

σ
√
2π
exp

{

−(x− µ)2

2σ2

}

Put ℓ(.; θ) = log p(., θ). ∂ℓ(.;θ)
∂θi

for i = 1, · · · , n are the scores functions.

Definition 2.1. The Fisher information metric

The Fisher information matrix of M at θ is the n × n matrix G(θ) =
(g̃ij(θ)) defined by :

g̃ij(θ) := Eθ[∂iℓ(X, θ)∂jℓ(X, θ)] =

∫

X

∂iℓ(x, θ)∂jℓ(x, θ)p(x; θ)dx

where ∂i :=
∂
∂θi

and ℓ(x, θ) = log p(x; θ). In particular, when n = 1, we call
this the Fisher information.
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The inner product of the natural basis of the coordinate system (θ1, · · · , θn)

〈∂i, ∂j〉 = g̃ij

uniquely determines a Riemannian metric g̃ = 〈·, ·〉 such that for all θ ∈ Θ,
and for all X, Y ∈ ⊤θM; g̃θ(X, Y ) = 〈X, Y 〉θ = Eθ[(Xℓ)(Y ℓ)]. g̃ is called
Fisher metric or alternatively, the information metric.

Definition 2.2. An affine connection ∇ on a differentiable manifold M is
a mapping

∇ : X (M)× X (M) → X (M)

which is denoted by (X, Y ) → ∇XY and which satisfies the following prop-
erties:

• ∇fX+gY Z = f∇XZ + g∇YZ

• ∇X(Y + Z) = ∇XY +∇XZ

• ∇X(fY ) = f∇XY + X(f)Y in which X, Y, Z ∈ X (M) and f, g ∈
C∞(M).

Theorem 2.3. [5] Given a Riemannian manifold (M, g), there exists an
unique affine connection ∇ on M satisfing the conditions:

• ∇ is symmetric.

• ∇ is compatible with the Riemannian metric g.

This affine connection is the Levi-Civita connection on the manifold (M, g).

In a coordinate system (U, θ), the function
◦

Γ
k

ij defined on U by ∇∂i∂j =
∑

k Γ
k
ij∂k are called the Christoffel symbols of the Levi-Civita connection and

we have

◦

Γ
k

ij =
1

2

(

∂gjm
∂θi

+
∂gmi

∂θj
− ∂gij
∂θm

)

gmk. (2.1)

Amari[2] considers the function Γ
(α)
ij,k which maps each point θ to the

following value:

(

Γ
(α)
ij,k

)

θ
:= Eθ

[(

∂i∂jℓ(X, θ) +
1− α

2
∂iℓ(X, θ)∂jℓ(X, θ)

)

(∂kℓ(X, θ))

]



1256 C. Ogouyandjou, N. Wadagni

where α is some arbitrary real number. The α-connection ∇(α), which is an
affine connection, is defined by

〈∇(α)
∂i
∂j , ∂k〉 = Γ

(α)
ij,k,

where g = 〈·, ·〉 is the Fisher metric and ∇(α)
∂i
∂j is the α covariant derivative

of ∂j in the direction of ∂i.
Next, we recall some important results on the Otto metric which is a Rie-
mannian metric on the Wasserstein space.

3 Wasserstein space

Let X be a subset of Rn and B(X ) be the σ-algebra of Borel sets on X . Let
P (X ) be the set of probability measures defined on B(X ).

Definition 3.1. For any two measures µ, ν ∈ P (X ), we define the coupling
of (µ, ν) by the set

Π(µ, ν) =
{

η ∈ P (X × X ) : η ◦ p−1
1 = µ, η ◦ p−1

2 = ν
}

where p1, p2 : X × X → X are the projections yielding the first and second
component, respectively.

Definition 3.2. The Wasserstein space of order p, p ∈ [1,∞[ is defined as

Pp(X ) =

{

µ ∈ P (X );

∫

X

‖x‖pdµ(x) < +∞
}

. (3.2)

For any two µ, ν ∈ Pp(X ), we define

Wp(µ, ν) =

(

inf
π∈Π(µ,ν)

∫

X

‖x− y‖pdπ(x, y)
)1/p

. (3.3)

A sequence (µn)n∈N ⊂ Pp(X ) is said to converge weakly to µ ∈ Pp(X ) if

lim
n→+∞

∫

X

fdµn =

∫

X

fdµ

for all continuous and bounded map f : X → R.
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Theorem 3.3. [4] Let µ0, µ1, µ2, · · · be a sequence of laws on X × X , each
of whose marginals is a member of Pp(X ), p ∈ [1,∞[. If µn → µ (weakly) as
n→ ∞, then

lim inf
n→∞

∫

‖x− y‖pdµn(x, y) >

∫

‖x− y‖pdµ0(x, y).

Theorem 3.4. [4] Given laws µ and ν in Pp(X ), p ∈ [1,∞[, the infimum in
(3.4) is attained for some law η ∈ Π(µ, ν)

The function Wp is called Wasserstein functions.

Theorem 3.5. [4] The Wasserstein functions Wp are metrics on the sets
Pp(X ) for p ∈ [1,∞[.

Definition 3.6. The Wasserstein distance of order p between µ and ν in
Pp(X ) is defined by:

Wp(µ, ν) =

(

inf
π∈Π(µ,ν)

∫

X

‖x− y‖pdπ(x, y)
)1/p

. (3.4)

Wp defines a (finite) distance on Pp(X ). For more details on Wasserstein
space see [12].

4 Otto metric

We consider a n-dimensional regular statistical manifold

M = {p(·; θ); θ = (θ1, · · · , θn) ∈ Θ}
where Θ is an open subset of Rn and the mapping θ 7→ pθ is injective.

Motivated by the study of a class of partial differential equation, in [10],
Otto considered an inner product defined on smooth functions of the θ-fiber,
⊤θM of the tangent bundle, as

(u, v) 7→
∫

X

grad(u)(x) · grad(v)(x)p(x; θ)dx (4.5)

where grad is the gradient function with respect to x. Then, this inner
produit defines on M a Riemannian metric so called Otto metric g, with
coordinate functions:

gij =

∫

X

grad

(

∂ℓ(x; θ)

∂θi

)

· grad
(

∂ℓ(x; θ)

∂θj

)

p(x; θ)dx

= E
[

grad (∂θiℓ) · grad
(

∂θjℓ
)]

. (4.6)
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The following theorem states that the Riemannian Otto metric is related
to the Wasserstein metric.

Theorem 4.1. [8] Let P∞(χ) =
{

f : f ∈ C∞(χ), f > 0,
∫

χ
f(x)d(x) = 1

}

.

If c : [0, 1] → P∞(χ) is a smooth immersed curve then its length L(c) in the
Wasserstein space P2(χ) satisfies

L(c) =

∫ 1

0

〈c′(t), c′(t)〉 1

2dt

where

L(c) = sup
j∈N

sup
0=t0≤t1≤···≤tJ=1

J
∑

j=1

W2(c(tj−1), c(tj)).

Proposition 4.2. Let M = {p(·; θ); θ = (θ1, · · · , θn) ∈ Θ} be a statistical
manifold endowed with the Otto metric g (4.6). For all i, j, k ∈ {1, · · · , n}

∂gjk
∂θi

+
∂gki
∂θj

− ∂gij
∂θk

= Eθ [2grad(∂ijℓ)grad(∂kℓ)

+grad(∂jℓ)grad(∂kℓ)∂iℓ+ grad(∂kℓ)grad(∂iℓ)∂jℓ

−grad(∂jℓ)grad(∂iℓ)∂kℓ] . (4.7)

Proof. Taking the partial derivative of gij in Equation (4.6) with respect to
θi, θj , θk yields the result.

5 α-connection related to Otto metric

5.1 Construction of our α-connection

In the remainder, we consider an n-dimensional statistical manifold M =
{p(·; θ); θ = (θ1, · · · , θn) ∈ Θ} where Θ is a open subset of R

n and the
mapping θ 7→ pθ is injective. We endowed M with the Riemannian Otto
metric g which is related to Wasserstein distance. For any α ∈ R, i, j, k ∈
{1, · · · , n}, we introduce the function Γ

(α)
ij,k which maps each point θ to the

following value:

Γ
(α)
ij,k = Eθ [grad(∂ijℓ)grad(∂kℓ)] +

1− α

2
⊤α

ij,k (5.8)



Wasserstein Riemannian geometry of Gamma densities 1259

where ⊤α
ij,k is a tensor defined by :

⊤α
ij,k = Eθ [grad(∂jℓ)grad(∂kℓ)∂iℓ] + Eθ [grad(∂kℓ)grad(∂iℓ)∂jℓ] +

−(1 + α)Eθ [grad(∂jℓ)grad(∂iℓ∂kℓ)] . (5.9)

Let φ be the parameter of dimension n of some parametrization of M,
alternative to that indicated by θ. Coordinates of φ will be denoted by
φ = (φ1, · · · , φn), and we write ∂φu for ∂

∂φu
and θi/u = ∂θi

∂φu
.

Lemma 5.1. For any change of coordinate system ⊤α
ij,k satisfies the equation

⊤α
uv,w = ⊤α

ij,kθi/uθj/vφw/k.

Proof. Using (5.9), we have

⊤α
ij,kθi/uθj/vφw/k = Eθ [grad(∂jℓ)grad(∂kℓ)∂uℓ] θj/vφw/k

+Eθ [grad(∂kℓ)grad(∂iℓ∂vℓ)] θi/uφw/k

−(1 + α)Eθ [grad(∂jℓ)grad(∂iℓ)∂wℓ] θi/uθj/v

=: I1 + I2 − (1 + α)I3. (5.10)

We have

I1 = Eθ [grad(∂jℓ)grad(∂kℓ)∂uℓ] θj/vφw/k

= Eθ [grad(∂vℓ)grad(∂wℓ)∂uℓ]

+Eθ [grad(∂vℓ)∂uℓ∂wℓ]
(

grad(θj/v)
)

θj/v

+Eθ [grad(∂wℓ)∂uℓ∂vℓ]
(

grad(φw/k)
)

φw/k

+Eθ [∂vℓ∂uℓ∂wℓ]
(

grad(θj/v)
) (

grad(φw/k)
)

θj/vφw/k

= Eθ [grad(∂vℓ)grad(∂wℓ)∂uℓ] (5.11)

because grad(θi/u) = grad(θj/v) = grad(φw/k) = 0. Similarly, we deduce

I2 = Eθ [grad(∂wℓ)grad(∂uℓ)∂vℓ]

I3 = Eθ [grad(∂vℓ)grad(∂uℓ)∂wℓ] .

Then ⊤α
uv,w = ⊤α

ij,kθi/uθj/vφw/k.

The following result based on the transformation law (see [1]) gives a
characterization of affine connections on a Riemannian manifold.

Lemma 5.2. On Riemannian manifold (M, g) :
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(a) all affine connection ∇ with connection symbol Γk
ij (i.e.∇∂i∂j = Γk

ij∂k)
are of the form

Γk
ij =

◦

Γ
k

ij + Sk
ij (5.12)

where Sij,k satisfies

Sw
uv = Sk

ijθi/uθj/vφw/k

(b) any set of smooth functions Γij,k on M which satisfies the law (5.12)
constitutes the connection symbols of an affine connection on M.

Proof. (a). Let ∇ an affine connection on M . Then

Γw
uv∂w = ∇ ∂

∂φu

∂

∂φv
= ∇ ∂θi

∂φu
∂

∂θi

(

∂θj

∂φv

∂

∂θj

)

=
∂θi

∂φu
∇ ∂

∂θi

(

∂θj

∂φv

∂

∂θj

)

=
∂θi

∂φu

[

∂θj

∂φv
∇ ∂

∂θi

∂

∂θj
+

∂

∂θi

(

∂θj

∂φv

)

∂

∂θj

]

=
∂θi

∂φu

[

∂θj

∂φv
Γk
ij

∂

∂θk
+

∂

∂θi

(

∂θj

∂φv

)

∂

∂θj

]

= Γk
ij

∂θi

∂φu

∂θj

∂φv

∂φw

∂θk
∂

∂φw
+

∂2θj

∂φu∂φv

∂

∂θj

= Γk
ij

∂θi

∂φu

∂θj

∂φv

∂φw

∂θk
∂

∂φw
+

∂2θk

∂φu∂φv

∂φw

∂θk
∂

∂φw

=

[

Γk
ij

∂θi

∂φu

∂θj

∂φv

∂φw

∂θk
+

∂2θw

∂φu∂φv

∂φw

∂θk

]

∂

∂φw
.

Then

Γw
uv(φ) = Γk

ij(θ)
∂θi

∂φu

∂θj

∂φv

∂φw

∂θk
+

∂2θw

∂φu∂φv

∂φw

∂θk
.

It is well known that the Christofell symbol satisfies the transformation law:
◦

Γ
w

uv(φ) =
◦

Γ
k

ij(θ)
∂θi

∂φu
∂θj

∂φv

∂φw

∂θk
+ ∂2θw

∂φu∂φv (see [6]). One has

Γw
uv(φ)−

◦

Γ
w

uv(φ) =

(

Γk
ij(θ)−

◦

Γ
k

ij(θ)

)

∂θi

∂φu

∂θj

∂φv

∂φw

∂θk
.
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The last equation shows that

Γk
ij =

◦

Γ
k

ij + Sk
ij

where Sk
ij satisfies

Sw
uv = Sk

ijθi/uθj/vφw/k

To proove (b), one shows that the following map:

∇ : X (M)× X (M) → X (M)
(X = xi∂i, Y = yj∂j) 7→ xiyjΓk

ij∂k + xi∂i(y
j)∂j

is an affine connection on M.

Theorem 5.3. Let M = {p(·; θ); θ = (θ1, · · · , θn) ∈ Θ} be a statistical man-
ifold endowed with the Otto metric g (4.6). There exists an affine connection
∇(α) : X (M)× X (M) → X (M) defined by :

g
(

∇(α)
∂i
∂j , ∂j

)

= Γ
(α)
ij,k. (5.13)

Proof. Set Γ
(α),k
i,j = Γ

(α)
ij,mg

mk. By using Lemma 5.2, Lemma 5.1 and Proposi-
tion 4.2

∇(α) : X (M)× X (M) → X (M)

(X = xi∂i, Y = yj∂j) 7→ xiyjΓ
(α),k
ij ∂k + xi∂i(y

j)∂j
(5.14)

is an affine connection on M. The proof is completed.

Now, we prove that this α-connection is torsion-free and for α = 0 this
connection is the Levi-Civita connection.

Theorem 5.4. 1. ∇(α) is a torsion-free affine connection.

2. The 0-connection is the Levi-Civita connection with respect to the Otto
metric.

Proof. 1. We have

∇(α)
∂i
∂j −∇(α)

∂j
∂i = Γ

(α),k
ij ∂k − Γ

(α),k
ji ∂k

= Γ
(α),k
ij ∂k − Γ

(α),k
ij ∂k

= 0

where Γ
(α),k
ij = Γ

(α)
ij,mg

mk.

2. Taking the partial derivative of gij in Equation (4.6) with respect to

θk, we obtain ∂kgij = Γ
(0)
ij,k + Γ

(0)
kj,i.
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5.2 Flatness of exponential and mixture families

Let’s introduce now the notion of exponential family. In general, if an n-
dimensional model M = {p(·; θ), θ ∈ Θ} can be expressed in terms of func-
tions {C, F1, · · · , Fn} on X and a function ψ on Θ such that

p(x; θ) = exp

[

C(x) +
n
∑

i=1

θiFi(x)− ψ(θ)

]

, (5.15)

then we say that M is an exponential family, and that the [θi] are its nat-
ural or its canonical parameters. Next, let’s consider the case where an n-
dimensional model M can be expressed in terms of functions {C, F1, · · · , Fn}
on X as

p(x; θ) = C(x) +

n
∑

i=1

θiFi(x), (5.16)

then we say that M is a mixture family, and that the [θi] are its mixture
parameters.
The following theorem gives the flatness result of exponential family.

Theorem 5.5. An exponential family

M =

{

p(·; θ) = exp

(

C(·) +
n
∑

i=1

θiFi(·)− ψ(θ)

)

, θ ∈ Θ

}

equipped with Otto metric is (1)-flat.

Proof. Let p(·; θ) ∈ M with M the exponential family. We have p(x; θ) =
exp {C(x) +

∑n
i=1 θ

iFi(x)− ψ(θ)} . One has

ℓ(x) = C(x) +
n
∑

i=1

θiFi(x)− ψ(θ)

Then

∂iℓ(x) = Fi(x)− ∂iψ(θ); ∂ijℓ(x) = −∂ijψ(θ); grad(∂ijℓ)(x) = 0.

Thus

Γ
(1)
ij,k = −grad(∂ijψ)(θ) · Eθ [grad(∂kl)] = 0.

This completes the proof.
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Similarly, we state the flatness for a mixture family.

Theorem 5.6. A mixture familly

M =

{

p(·; θ) = C(·) +
n
∑

i=1

θiFi(·)− ψ(θ), θ ∈ Θ

}

equiped with Otto metric is (−1)-flat.

Proof. Let p(·; θ) ∈ M with M the mixture family. We have p(x; θ) =
C(x) +

∑n
i=1 θ

iFi(x). One has

ℓ(x) = log p(x; θ).

Then

∂iℓ(x) =
Fj(x)

p(x; θ)
; ∂ijℓ(x) = −Fi(x)Fj(x)

p2(x; θ)
,

grad(∂ijℓ) = −grad([∂iℓ∂jℓ])

= −grad(∂iℓ)∂jℓ− ∂iℓgrad(∂jℓ).

Thus

grad(∂ijℓ)(x) · grad(∂kℓ)(x) = −grad(∂iℓ) · grad(∂kℓ)(x)∂jℓ− grad(∂jℓ)grad(∂kℓ)(x)∂iℓ(x).(5.17)

Using the previous equations and the definition of Γ
(α)
ij,k (5.8) we have

Γ
(−1)
ij,k = 0.

We conclude that the mixture family is (−1)-flat.

6 Wasserstein Gamma manifold

Let M be the set of Gamma distributions, that is,

M =

{

p(·;µ, β)|p(x;µ, β) =
(

β

µ

)β
xβ−1

Γ(β)
e−

xβ
µ ;µ > 0, β > 0

}

. (6.18)

Identifying (µ, β) as a local coordinate system, M can be regarded as a
manifold, the Gamma manifold.
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Theorem 6.1. The Otto metric and the coefficients of the α-connection on
the Gamma manifold with respect to (µ, β) coordinate are given by :

g11 =
β2

µ4
; g12 = g21 = 0; g22 =

1

µ2(β − 1)
.

Γ
(α),1
11 = −(1 + α)

3− α

2µ
.

Γ
(α),2
11 = (α− 1)

β(β − 1)(2µ2 − (1 + α))

µ2
.

Γ
(α),1
22 = (α− 1)

1 + 2α(1− β2)

2β2(1− β)
.

Γ
(α),2
22 = (1− α)2

(

log
(

µβ2β−1
)

+ 2β2 − β + 1
)

2β
.

Γ
(α),1
12 = Γ

(α),1
21 = −(α− 1)2

1

2β
.

Γ
(α),2
12 = Γ

(α),2
21 = (α− 1)

1 + 2α(1− β2)

2µ
.

Proof. One has

p(x;µ, β) =

(

β

µ

)β
xβ−1

Γ(β)
e−

xβ
µ ,

ℓ(x) := log p(x;µ, β) = β log

(

β

µ

)

+ (β − 1) log(x)− log(Γ(β))− xβ

µ
,

∂1ℓ(x) = −β
µ
+
xβ

µ2
; ∂2ℓ(x) = log(β) + 1− log(µ) + log(x)− Γ′(β)

Γ(β)
− x

µ
,

grad(∂1ℓ)(x) =
β

µ2
, grad(∂2ℓ)(x) =

1

x
− 1

µ

for x ∈ R
∗
+.

g11 =

∫

R+

grad(∂1ℓ)(x)grad(∂1ℓ)(x)p(x;µ, β)dx

=

∫

R+

β

µ2

β

µ2
p(x;µ, β)dx

=
β2

µ4
.
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g21 = g12 =

∫

R+

grad(∂1ℓ)(x)grad(∂2ℓ)(x)p(x;µ, β)dx

=

∫

R+

β

µ2

(

1

x
− 1

µ

)

p(x;µ, β)dx

=
β

µ2

∫

R+

(

1

x
− 1

µ

)

p(x;µ, β)dx

=
β

µ2

(

1

µ
− 1

µ

)

= 0.

g22 =

∫

R+

grad(∂2ℓ)(x)grad(∂2ℓ)(x)p(x;µ, β)dx

=

∫

R+

(

1

x
− 1

µ

)(

1

x
− 1

µ

)

p(x;µ, β)dx

=

∫

R+

(

1

x2
− 2

xµ
+

1

µ2

)

p(x;µ, β)dx

=
1

µ2
+

β

µ2(β − 1)
− 2

µ2

=
1

µ2(β − 1)
.

• Expression of Γ
(α),1
11 .

Γ
(α)
11,1 = E (grad(∂11ℓ)grad(∂1ℓ)) +

1− α

2
⊤α

11,1

where ⊤α
11,1 is defined by the relation 5.9 with i = 1; j = 1; k = 1.

E (grad(∂11ℓ)grad(∂1ℓ)) = −2β

µ5
.

E (grad(∂1ℓ)grad(∂1ℓ)∂1ℓ) =
β2

µ4

∫

R+

(

−β
µ
+
xβ

µ2

)

p(x;µ, β)dx

=
β2

µ4

(

−β
µ
+

β

µ2

∫

R+

xp(x;µ, β)dx

)

=
β2

µ4

(

−β
µ
+

β

µ2

(β + 1)µ

β

)

=
β2

µ5
.
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Then

Γ
(α)
11,1 = −(1 + α)

β2(3− α)

2µ5
.

However

Γ
(α),1
11 = Γ

(α)
11,1g

11

= −(1 + α)
β2(3− α)

2µ5
× µ4

β2

= −(1 + α)
3− α

2µ
.

• Expression of Γ
(α),2
11 .

Γ
(α)
11,2 = E (grad(∂11ℓ)grad(∂2ℓ)) +

1− α

2
⊤α

11,2

where ⊤α
11,2 is defined by the relation 5.9 with i = 1; j = 1; k = 2.

E (grad(∂11ℓ)grad(∂2ℓ)) =
2β

µ3

∫

R+

(

1

x
− 1

µ

)

p(x;µ, β)dx

=
2β

µ3

(
∫

R+

1

x
p(x;µ, β)dx− 1

µ

)

=
2β

µ3

(

1

µ
− 1

µ

)

= 0.

E (grad(∂1ℓ)grad(∂2ℓ)∂1ℓ) =
β

µ2

∫

R+

(

1

x
− 1

µ

)(

−β
µ
+
xβ

µ2

)

p(x;µ, β)dx

= − β

µ4
,

E (grad(∂1ℓ)grad(∂1ℓ)∂2ℓ) = − β

µ4
,

then

Γ
(α)
11,2 = (α− 1)

β(2µ2 − (1 + α))

µ4
.

Consequently

Γ
(α),2
11 = Γ

(α)
11,2g

22 = (α− 1)
β(β − 1)(2µ2 − (1 + α))

µ2
.
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• Expression of Γ
(α),1
12 .

Γ
(α)
12,1 = E (grad(∂12ℓ)grad(∂1ℓ)) +

1− α

2
⊤α

12,1

where ⊤α
12,1 is defined by the relation 5.9 with i = 1; j = 2; k = 1.

E (grad(∂12ℓ)grad(∂1ℓ)) =
β

µ2
× β

µ2
=
β2

µ4
,

E (grad(∂1ℓ)grad(∂2ℓ)∂1ℓ) = − β

µ4
,

E (grad(∂1ℓ)grad(∂1ℓ)∂2ℓ) =
β2

µ4

∫

R+

(

log(βeµ−1) + log(x)− Γ′(β)

Γ(β)
− x

µ

)

p(x;µ, β)dx

= − β

µ4
.

Then

Γ
(α)
12,1 = −(α− 1)2

β

2µ4
.

Consequently

Γ
(α),1
12 = Γ

(α)
12,1g

11 = −(α− 1)2
1

2β
.

• Expression of Γ
(α),2
12 .

Γ
(α)
12,2 = E (grad(∂12ℓ)grad(∂2ℓ)) +

1− α

2
⊤α

12,2

where ⊤α
12,2 is defined by the relation 5.9 with i = 1; j = 2; k = 2.

E (grad(∂12ℓ)grad(∂2ℓ)) =
1

µ2

∫

R+

(

1

x
− 1

µ

)

p(x;µ, β)dx

=
1

µ2

(

1

µ
− 1

µ

)

= 0.

E (grad(∂2ℓ)grad(∂2ℓ)∂1) =

∫

R+

(

1

x
− 1

µ

)2(

−β
µ
+
xβ

µ2

)

p(x;µ, β)dx

=
1

µ3(1− β)
.
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E (grad(∂2ℓ)grad(∂1ℓ)∂2) = −2
1 + β

µ3
.

Then

Γ
(α)
12,2 = (1− α)

1 + 2α(1− β2)

2(1− β)µ3
.

Consequently

Γ
(α),2
12 = Γ

(α)
12,2g

22 = (α− 1)
1 + 2α(1− β2)

2µ
.

• Expression of Γ
(α),1
22 .

Γ
(α)
22,1 = E (grad(∂22ℓ)grad(∂1ℓ)) +

1− α

2
⊤α

22,1

where ⊤α
22,1 is defined by the relation 5.9 with i = 2; j = 2; k = 1.

E (grad(∂22ℓ)grad(∂1ℓ)) = 0.

E (grad(∂2ℓ)grad(∂1ℓ)∂2) = −2
1 + β

µ3
.

E (grad(∂2ℓ)grad(∂2ℓ)∂1) = − 1

µ3(β − 1)
.

Then

Γ
(α)
22,1 = (1− α)

4β2 − α− 5

2µ3(1− β)
.

Consequently

Γ
(α),1
22 = Γ

(α)
22,1g

11 = (α− 1)
1 + 2α(1− β2)

2β2(1− β)
.

• Expression of Γ
(α),2
22 .

Γ
(α)
22,2 = E (grad(∂22ℓ)grad(∂2ℓ)) +

1− α

2
⊤α

22,2.



Wasserstein Riemannian geometry of Gamma densities 1269

where ⊤α
22,2 is defined by the relation 5.9 with i = 2; j = 2; k = 2.

E (grad(∂22ℓ)grad(∂2ℓ)) =
1

µ3β(β − 1)

[

log

(

β

µ

)β

+ 2β2 − β + 1

]

Then

Γ
(α)
22,2 = (1− α)2

log
(

β
µ

)β

+ 2β2 − β + 1

2µ2β(β − 1)
.

Consequently

Γ
(α),2
22 = Γ

(α)
22,2g

22 = (1− α)2
log
(

β
µ

)β

+ 2β2 − β + 1

2β
.

Theorem 6.2. The sectional curvature of the Gamma manifold M endowed
with the Otto metric with respect to (µ, β) coordinate is given by:

K =
(1− α)µ4

4β4(1− β)

[

(1− β)(1− β)3

(

log

(

β

µ

)β

+ 2β2 − β + 1

)

+ (4β2 − α− 5)(3α2 + 4αβ2(1− β) + 1)− 8β2 + 2β(α− 1) + 12
]

Proof. One has

K =
R1

122g11
g11g22 − g222

with

R
(α),1
122 =

2
∑

l=1

Γ
(α),l
12 Γ

(α),1
l2 −

2
∑

l=1

Γ
(α),l
22 Γ

(α),1
1l + ∂2Γ

(α),1
12 − ∂1Γ

(α),1
22 .

using the Theorem 6.1, the result follows.

Theorem 6.3. Let M the Gamma manifold endowed with the Otto metric
defined by relation 6.18. Set ν = β/µ. Then (ν, β) is a natural coordinate
system of 1-connection.

Proof. Set ν = β/µ.

p(x; ν, β) = (ν)β
xβ−1

Γ(β)
e−xν

= exp [− log x+ (β log x− νx)− (log Γ(β)− β log ν)] .

Hence the set of all Gamma distribution is an exponential family. Then,
using the Theorem 5.5 the result follows.



1270 C. Ogouyandjou, N. Wadagni

Acknowledgments

This work was supported by CEA-SMA. The authors would like to thank
the referees for their insightful and constructive comments and suggestions.

References

[1] S. I. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Lauritzen, C.
R. Rao, Differential geometry in statistical inference, Lecture notes-
monograph series (S. Shanti, Series Editor) 10.

[2] S. Amari, H. Nagaoko, Methods of information geometry, AMS, (2007).

[3] Y. Brenier, Polar factorization and monotone rearrangement of vector
valued functions, Comm. Pure Appl. Math., 44, no. 4, (1991), 375–417.

[4] R. Clark, Givens and Rae Michael Shortt: A class of Wasserstein met-
rics for probability distribution, Michigan Math. J., 31, (1984).

[5] M. Do Carmo, Riemannian Geometry, Birkhauser Inc., Boston, (1992).

[6] E. de Souza, Tensor Calculus for Engineers and Physicists, (2016),
Springer.

[7] A. Gbaguidi Amoussou, F. Djibril Moussa, C. Ogouyandjou, M. A. Diop,
New connections on the fiber-bundle of generalized statistical manifolds,
Balkan Society of Geometers Proc., 26, (2019), 23–32.

[8] J. Lott: Some geometric calculation on Wasserstein space, Commun.
Math. Phys., 277, (2008), 423–437.

[9] R. J. McCann, Polar factorization of maps on Riemannian manifolds,
Geom. Funct. Anal. 11, no. 3, (2001), 589–608.

[10] I. Olkin, F., Pukelsheim, The distance between two random vectors with
given dispersion matrices, Linear Algebra Appl., 48, (1982), 257–263.

[11] Sana Rebbah, Florence Nicol and Stéphane Puechmorel: The Geome-
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