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Abstract

In this paper, we introduce the concept of cyclic (α, β)-admissible
Z-contraction mapping with respect to ζ. We also establish the ex-
istence and uniqueness of fixed points for this class of mappings in
metric-like spaces. This work generalizes and extends some theorems
in the literature. An example and some consequences are given to
support the obtained results.

1 Introduction and preliminaries

The significance of fixed point theory lies in proving the existences and
uniqueness of solutions for many problems of Applied Sciences such as Dy-
namic system, Chemistry, Economics, and Engineering. Over the a long
time, Several mathematicians have been formulated and established the fa-
mous contractive Banach contraction principle in many different directions,
either by generalizing the domain of the mapping or by weakening the con-
tractive condition or in some cases indeed both, see for example ([10]-[16]).
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First, Harandi [8] introduced a new extension of the concept of partial
metric space, called a metric-like space. He established the existence and
uniqueness of fixed points in a metric-like space as well as in a partially or-
dered metric-like space. Clearly, this setting is a generalization of the stan-
dard space(metric space). Several authors discussed the existence of fixed
and common fixed point in metric-like space (for instance see [4]-[6]).

Also, the notation of Z-contraction was presented in 2015 by Khojasteh
et al. [9] . This concept is a type of nonlinear contraction defined by using
a specific function, called simulation function. Consequently, they proved
the existence and uniqueness of fixed point for Z-contraction mappings (see
[9],Theorem 2.8).

Otherwise, Alizadeh et al. [1] introduced the concept of cyclic (α, β)-
admissible mapping and proved some new fixed point results which generalize
and modify some recent results in the literature.

Definition 1.1. [8] Let X is a nonempty set. A function σ : X×X → [0,∞)
is said to be a metric-like space (or a dislocated metric) on X if for any
x, w, y ∈ X, the following conditions hold:

(σ1) σ(x, y) = 0 implies that x = y;

(σ2) σ(x, y) = σ(x, y);

(σ3) σ(x, y) ≤ σ(x, z) + σ(z, y).

The pair (X, σ) is called a metric-like space.

It is clear that every metric space and partial metric space is a metric-like
space, but the converse is not true.

Example 1.2. Let X = {0, 1} and

σ(x, y) =







2, if x = y = 0;

1, otherwise.

Then (X, σ) is a metric-like space, but it is not a partial metric space. Note
that σ(0, 0) 6≤ σ(0, 1).

Example 1.3. Let σk : X ×X → R
+ (k ∈ {1, 2}) be a mapping in X = R,

then σk defined by
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1. σ1(x, y) =| x | + | y | +a,

2. σ2(x, y) = x2 + y2.

Then, σ1(x, y), σ2(x, y) are metric like spaces on X, where a ≥ 0 and b ∈ R.

Moreover, each metric-like σ on X generates a topology τσ on X whose
base is the family of open σ-balls

Bσ(x, ǫ) = {y ∈ X :| σ(x, y)− σ(x, x) |< ǫ}, for all x ∈ X and ǫ > 0.

The metric-like space (X, σ) is called complete if for each Cauchy sequence
{Xn}

n
∞, there is some y ∈ Y such that

lim
n→∞

σ(xn, x) = σ(x, x) = lim
n,m→∞

σ(xn, xm).

A subset A of a metric-like space (X, σ) is bounded if there is a point b ∈ X

and a positive constant K such that σ(a, b) ≤ K for all a ∈ A.

Definition 1.4. ([3]) Let (X, σ) be a metric like spaces.

(a) Any sequence {xn} in metric like spaces is a Cauchy sequence if
limn,m→∞ σ(xn, xm) exists and is finite.

(b) (X, σ) is complete if every Cauchy sequence {xn} in metric like spaces
converges with regard to τσ to a point x ∈ X; that is,

lim
n→∞

σ(x, xn) = σ(x, x) = lim
n,m→∞

σ(xn, xm).

Definition 1.5. ([3]) Let T : (X, σ) → (X, σ) be a mapping in metric like
spaces (X, σ), then the mapping T is continuous if for any sequence {xn} in
X such that σ(xn, x) → σ(x, x) as n→ ∞, we have σ(Txn, Tx) → σ(Tx, Tx)
as n→ ∞.

Remark 1.6. Let X = {0, 1} be endowed with σ(x, y) = 1 for each x, y ∈ X.
Take xn = 1 for each n ∈ N. It is easy to see that xn → 0 and xn → 1.
In metric-like spaces, the limit of a convergent sequence is not necessarily
unique.

The following lemma is known and useful for the rest of paper.

Lemma 1.7. Let (X, σ) be a metric-like space. Let {xn} be a sequence in
X such that xn → x where x ∈ X and σ(x, y) = 0. Then for all y ∈ X, we
have limn→∞ σ(xn, y) = σ(x, y).
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Definition 1.8. [9] A function ζ : [0,∞)×[0,∞) → R is called a simulation
function if ζ satisfies the following conditions:
(ζ1) ζ(0, 0) = 0,
(ζ2) ζ(t, s) < s− t for all t, s > 0,
(ζ3) if {tn} and {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn =
ℓ ∈ (0,∞) > 0, then

lim
n→∞

sup ζ(tn, sn) < 0.

Definition 1.9. [1] Let f : X → X be a mapping and α, β : X → R
+ be

two functions. We say that f is a cyclic (α, β)-admissible mapping if

1. α(x) ≥ 1 for some x ∈ X ⇒ β(fx) ≥ 1,

2. β(x) ≥ 1 for some x ∈ X ⇒ α(fx) ≥ 1.

Example 1.10 ([9],[2]). For i ∈ {1, 2, 3, 4, 5, 6, 7}, let φi : [0,∞) → [0,∞)
be a continuous function with φi(t) = 0 if and only if t = 0. Define the
functions ζi : [0,∞)× [0,∞) → R, i = 1, 2, 3, 4, 5, 6, 7 as follows

1. ζ1(t, s) = φ1(s)− φ2(t) for all t, s ∈ [0,∞), where φ1(t) < t ≤ φ2(t) for
all t > 0.

2. ζ2(t, s) = s− f(t,s)
g(t,s)

for all t, s ∈ [0,∞), where f, g : [0,∞)2 → (0,∞) are

continuous functions with respect to each variable such that f(t, s) >
g(t, s) for all t, s > 0.

3. ζ3(t, s) = s− φ3(s)− t for all t, s ∈ [0,∞).

4. If ϕ : [0,∞) → [0, 1) is a function such that limt→r+ supϕ(t) < 1 for
all r > 0, and we define ζ4(t, s) = sϕ(s)− t for all t, s ∈ [0,∞).

In this paper, we introduce the concept of cyclic (α, β)-admissible Z-
contractions with respect to ζ . We also establish the existence of fixed points
for this class of mappings in metric-like spaces. Our work generalizes and
extends some theorems in the literature.

2 main result

In this section, we present the class of cyclic (α, β)-admissible Z-contraction
mapping and prove some fixed point theorems on complete metric-like space.
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Theorem 2.1. Let (X, σ) be a metric-like space and f : X → X be a cyclic
(α, β)-admissible Z-contraction mapping if there exist ψ : R+ → R

+ with
ψ(t) < t such that:

ζ(ψ(σ(fx, fy)), ψ(M(x, y))) ≥ 0 (2.1)

for all x, y ∈ X satisfying α(x)β(y) ≥ 1 where

M(x, y) = max{σ(x, y), (σ(x, fx)+σ(y, fy))×4−1, (σ(fx, y)+σ(x, fy))×4−1}

Assume that

1. there exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,

2. f is continuous, or

3. if {xn} ⊆ X such that xn → x and β(xn) ≥ 1 for all n, then β(x) ≥ 1,

then f has a fixed point z ∈ X such that σ(z, z) = 0. Moreover, if α(x) ≥ 1
and β(y) ≥ 1 for all x, y ∈ Fix(f), then f has a unique fixed point.

Proof. Since f is a cyclic (α, β)-admissible mapping and α(x0) ≥ 1 then
β(x1) = β(fx0) ≥ 1 which implies that α(fx1) = α(x2) ≥ 1. By continuing
this method, we have α(x2n) ≥ 1 and β(x2n−1) ≥ 1 for all n ∈ N. A gain, since
f is a cyclic (α, β)-admissible mapping and β(x0) ≥ 1, we have β(x2n) ≥ 1
and α(x2n−1) ≥ 1. Then, we deduce

α(xn) ≥ 1 and β(xn) ≥ 1 for all n ∈ N0. (2.2)

Equivalently, α(xn−1)β(xn) ≥ 1. Applying (2.1), we obtain

ζ(ψ(σ(fxn−1, fxn)), ψ(M(xn−1, xn))) = ζ(ψ(σ(xn, xn+1)), ψ(M(xn−1, xn)))

≥ 0, (2.3)

where

M(xn−1, xn) = max{σ(xn−1, xn), (σ(xn−1, fxn−1) + σ(xn, fxn))× 4−1, (2.4)

(σ(fxn−1, xn) + σ(fxn, xn−1))× 4−1}

= max{σ(xn−1, xn), (σ(xn−1, xn) + σ(xn, xn+1))× 4−1, (2.5)

(σ(xn, xn) + σ(xn+1, fxn−1))× 4−1}

= max{σ(xn−1, xn), (σ(xn−1, xn) + σ(xn, xn+1))× 4−1, (σ(xn+1, xn−1))× 4−1}

≤ max{σ(xn−1, xn), (σ(xn+1, xn) + σ(xn, xn+1))× 4−1}

≤ max{σ(xn−1, xn), σ(xn+1, xn)} (2.6)
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It follows that

ζ(ψ(σ(xn, xn+1)), ψ(max{σ(xn−1, xn), σ(xn+1, xn)}) ≥ 0, (2.7)

If σ(xn, xn+1) = 0 for some n, then xn = xn+1 = fxn, that is, xn is a fixed
point of f and so the proof is finished. Therefore, we suppose that xn 6= xn+1

for all n ≥ 0. Now, we shall show that σ(xn, xn+1) ≤ σ(xn−1, xn). Arguing by
contradiction, we assume σ(xn, xn+1) > σ(xn−1, xn). Therefore, we have two
cases.

Case 1:M(σ(xn−1, xn)) = σ(xn, xn+1). Then

0 ≤ ζ(ψ(σ(xn, xn+1)), ψ(σ(xn−1, xn)))

< ψ(σ(xn, xn+1))− ψ(σ(xn, xn+1)),

by using the properties of ψ, we have σ(xn+1, xn) < σ(xn, xn+1), which is
impossible.

Case 2: M(σ(xn−1, xn)) = σ(xn−1, xn). Then

0 ≤ ζ(ψ(σ(xn, xn+1)), ψ(σ(xn−1, xn)))

< ψ(σ(xn−1, xn))− ψ(σ(xn, xn+1)),

by using the properties of ψ, we get

σ(xn+1, xn) < σ(xn−1, xn),

Hence, we obtain

σ(xn, xn+1) ≤ σ(xn−1, xn) for all n ≥ 1, (2.8)

which implies that {σ(xn, xn+1)} is a decreasing sequence of positive real
numbers, so there exists r ≥ 0 such that

lim
n→∞

σ(xn, xn+1) = r.

Suppose that r > 0. By the properties of ψ ,(2.7), (2.8) and the condition
(ζ1),

0 ≤ lim sup
n→∞

ζ(ψ(σ(xn, xn+1)), ψ(σ(xn−1, xn)) < 0,

which is a contradiction. Therefore r = 0. This implies that

lim
n,m→∞

σ(xn, xn+1) = 0. (2.9)
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Now, we shall prove that

lim
n,m→∞

σ(xn, xm) = 0. (2.10)

Suppose to the contrary that there exists ǫ > 0, for which we can find subse-
quences {xmk} and {xnk} of {xn} with m(k) > n(k) > k such that for every
k,

σ(xn(k), xm(k))) ≥ ǫ. (2.11)

This means that
σ(xn(k), xm(k)−1)) < ǫ. (2.12)

By the triangular inequality and using (2.11) and (2.12), we get

ǫ ≤ σ(xn(k), xm(k)) ≤ σ(xn(k), xm(k)−1) + σ(xm(k)−1, xm(k))

< ǫ+ σ(xm(k)−1, xm(k))

Letting n → ∞ in the above inequalities and by using (2.10) and (2.11), we
have

lim
n,m→∞

σ(xn(k), xm(k)) = ǫ. (2.13)

Since
σ(xn(k), xm(k)) ≤ σ(xm(k), xn(k)+1) + σ(xn(k)+1, xn(k)),

and
σ(xn(k)+1, xm(k)+1) ≤ σ(xm(k), xm(k)+1) + σ(xn(k)+1, xn(k)),

then by letting the limit as k → ∞ in above inequalities and using (2.9) and
(2.13), we deduce that

lim
n,m→∞

σ(xn(k)+1, xm(k)) = ǫ. (2.14)

similarly, one can easily show that

lim
n,m→∞

σ(xn(k)+1, xm(k)+1) = lim
n,m→∞

σ(xn(k), xm(k)+1) = ǫ.

Again since f is a cyclic (α, β)-admissible Z-contraction mapping and α(xnk)β(xmk) ≥
1, then

M(xn(k), xm(k)) = max{σ(xn(k), xm(k)), (σ(xn(k), xn(k)+1) + σ(xm(k), xm(k)+1))× 4−1,

(σ(xn(k)+1, xm(k)) + σ(xm(k)+1, xn(k)))× 4−1}
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letting n→ ∞ in (2.15) and using (2.13), (2.14) and (2.9), we have

lim
n,m→∞

M(xn(k), xm(k)) = ǫ. (2.15)

If xn = xm for some n < m. then xn = fxn = fxm = xm+1 and since
{σ(xn, xn+1)} is decreasing sequence then

0 < σ(xn, xn+1) = σ(xm, xm+1) < σ(xm−1, xm) < ... < σ(xn, xn+1),

which is a contradiction. Then xn 6= xm for all n < m. The condition (ζ2)
implies that

lim sup
k→∞

ζ(ψ(σ(xn(k), xm(k))), ψ(M(xn(k), xm(k))))) < 0,

which is a contradiction. So we conclude that {xn} is a Cauchy sequence.
Since (X, σ) is complete, there exists u ∈ X such that

lim
n→∞

σ(xn, u) = σ(u, u) = lim
n→∞

σ(xn, xm) = 0. (2.16)

Now, if f is continuous, we obtain from (2.16) that

lim
n→∞

σ(xn+1, fu) = lim
n→∞

σ(fxn+1, fu) = σ(fu, fu). (2.17)

Otherwise, by Lemma 1.7 and (2.16), we also get

lim
n→∞

σ(xn, fu) = σ(u, fu). (2.18)

Combining (2.17) and (2.18), we deduce that σ(fu, u) = σ(u, fu). That is
fu = u.

Assume that condition (3) is held, that is α(xn)β(u) ≥ 1. From (2.1) we
get

0 ≤ ζ(ψ(σ(xn+1, fu)), ψ(M(xn, u))) = ζ(ψ(σ(fxn, fu)), ψ(M(xn, u))),

where

M(xn, u) = max{σ(xn, u), (σ(xn, fxn) + σ(u, fu))× 4−1, (σ(fxn, u) + σ(xn, fu))× 4−1}

= max{σ(xn, u), (σ(xn, xn+1) + σ(u, u))× 4−1, (σ(xn+1, u) + σ(xn, u))× 4−1}.

By Lemma 1.7 and (2.18)

lim
k→∞

σ(xn+1, fu) = lim
k→∞

M(xn, u) = σ(u, fu) > 0.
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From (ζ2)

0 ≤ lim sup
k→∞

ζ(ψ(σ(xn+1, fu)), ψ(M(xn, u))) < 0.

Since ψ is strictly increasing, we have σ(u, fu) < σ(u, fu), which is impos-
sible and hence σ(u, fu) = 0, that is fu = u and so u is a fixed point of
f.

Let us now show the uniqueness. Let v be another fixed point of f. Since
α(u)β(v) ≥ 1, it follows from (2.1) that

0 ≤ ζ(ψ(σ(fu, fv)), ψ(M(u, v))),

= ζ(ψ(σ(u, v)), ψ(σ(u, v))),

< ψ(σ(u, v))− ψ(σ(u, v)),

Since ψ is strictly increasing, we have σ(u, v) < σ(u, v), which is a contra-
diction. Hence u = v.

Corollary 2.2. Let (X, σ) be a metric space and f : X → X be a cyclic
(α, β)-admissible Z-contraction mapping if there exist ψ : R+ → R

+ with
ψ(t) < t such that:

ζ(ψ(σ(fx, fy)), ψ(σ(x, y))) ≥ 0 (2.19)

for all x, y ∈ X satisfying α(x)β(y) ≥ 1. Assume that

1. there exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,

2. f is continuous, or

3. if {xn} ⊆ X such that xn → x and β(xn) ≥ 1 for all n, then β(x) ≥ 1.

Then f has a unique fixed point.

Proof. The rest of proof follows from Theorem 2.1 by considering M(x, y) =
σ(x, y).

Corollary 2.3. Let (X, σ) be a metric like space and f : X → X be a cyclic
(α, β)-admissible Z-contraction mapping if there exist ψ : R+ → R

+ with
ψ(t) < t such that:

ζ(ψ(α(x)β(y)σ(fx, fy)), ψ(σ(x, y)))≥ 0 (2.20)

for all x, y ∈ X satisfying α(x)β(y) ≥ 1. Assume that
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1. there exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,

2. f is continuous, or

3. if {xn} ⊆ X such that xn → x and β(xn) ≥ 1 for all n, then β(x) ≥ 1.

Then f has a unique fixed point.

Proof. The rest of proof follows from Theorem 2.1 by considering M(x, y) =
σ(x, y) and α(x)β(y) ≥ 1.

Corollary 2.4. Let (X, σ) be a metric like space and f : X → X be a cyclic
α-admissible Z-contraction mapping if there exist ψ : R+ → R

+ with ψ(t) < t

such that:

ζ(ψ(α(x)α(y)σ(fx, fy)), ψ(σ(x, y)))≥ 0 (2.21)

for all x, y ∈ X satisfying α(x)α(y) ≥ 1. Assume that

1. there exists x0 ∈ X such that α(x0) ≥ 1 and α(fx0) ≥ 1,

2. f is continuous, or

3. if {xn} ⊆ X such that xn → x and α(xn) ≥ 1 for all n, then α(x) ≥ 1.

Then f has a unique fixed point.

Proof. The rest of proof follows from Theorem 2.1 by considering M(x, y) =
σ(x, y) and α(x)β(y) ≥ 1 and by taking the function β : X ×X → [0,+∞)
to be α.

Corollary 2.5. Let (X, σ) be a metric like space and f : X → X be a
mapping and α, β : X ×X → [0,∞) be two functions. Assume the following
conditions hold:

1. f is (α, β)−cyclic,

2. There exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,

3. There exists k ∈ [0, 1) such that if x, y ∈ X with α(x)β(y) ≥ 1, then

σ(Sx, Sy) ≤ kmax{σ(x, y), (σ(x, fx)+σ(y, fy))×4−1, (σ(fx, y)+σ(x, fy))×4−1},

4. f is continuous, or
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5. if {xn} ⊆ X such that xn → x and α(xn)β(xn) ≥ 1 for all n, then
α(x)β(x) ≥ 1.

Then f has a unique fixed point.

Proof. The rest of proof follows from Theorem 2.1, we assume that there
exists k ∈ [0, 1) such that Condition (3) holds. Define the simulation function
ζ : [0,+∞) × [0,+∞) → R by ζ(t, s) = ks − t. Note that if x, y ∈ X

with α(x)β(y) ≥ 1, then ζ(d(fx, fy),max{σ(x, y), (σ(x, fx) + σ(y, fy)) ×
4−1, (σ(fx, y) + σ(x, fy)) × 4−1}) ≥ 0. The last inequality together with
Conditions (1) ensure that f is generalized (α, β, Z)−contraction. Thus f
satisfies all conditions of Theorem 2.1 and hence f has a fixed point.

Corollary 2.6. Let (X, σ) be a metric like space and f : X → X be a
mapping and α, β : X ×X → [0,∞) be two functions. Assume the following
conditions hold:

1. f is (α, β)−cyclic,

2. There exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,

3. There exist a lower semi-continuous function ϕ : R+ → R
+ with ϕ(t) >

0 for all t > 0 and ϕ(0) = 0 such that if x, y ∈ X with α(x)β(y) ≥ 1,
then

σ(fx, fy) ≤ σ(x, y)− ϕ(σ(x, y)).

4. f is continuous, or

5. if {xn} ⊆ X such that xn → x and α(xn)β(xn) ≥ 1 for all n, then
α(x)β(x) ≥ 1.

Then f has a unique fixed point.

Proof. The rest of proof follows from Corollary 2.5 by defining ζ : [0,+∞)×
[0,+∞) → R via ζ(t, s) = s− ϕ(s)− t.

Example 2.7. Let X = [0,∞) endowed with the metric-like σ(x, y) = x+y.
Consider f : X → X given by

fx =

{

1
3
x2 if x ∈ [0, 1].

x+ 2, otherwise,
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Note that (X, σ) is a complete metric-like space. Define α, β : X → R
+ by

α(x) =

{

1 if x ∈ [0, 1],

0, otherwise,
β(x) =

{

1 if x ∈ [0, 1],

0, otherwise.

Let ζ(t, s) = s
1+s

− t for all s, t ≥ 0 and ψ(t) = t. Note that f is a cyclic
(α, β)-admissible. In fact, let x, y ∈ X such that α(x) ≥ 1 and β(x) ≥ 1. By
definition of α and β, this implies that x, y ∈ [0, 1]. Thus,

β(fx) ≥ 1, α(fx) ≥ 1.

Now, if {xn} ⊂ X such that β(xn) ≥ 1 and xn → X as n → ∞. Therefore
xn ∈ [0, 1], hence x ∈ [0, 1] i.e., β(x) ≥ 1.

Let α(x)β(y) ≥ 1. Then x, y ∈ [0, 1] and so, we have

ζ(ψ(σ(fx, fy)), ψ(σ(x, y))) =
σ(x, y)

1 + σ(x, y)
− σ(fx, fy)

=
x+ y

1 + x+ y
− σ(

1

3
x2,

1

3
y2)

=
x+ y

1 + x+ y
−
x2 + y2

3

=
3(x+ y)− (x2 + y2)(1 + x+ y)

3(1 + x+ y)

=
(3− x− x2 − xy − y2)x+ (3y − y2)y

3(1 + x+ y)
≥ 0.

So, the hypotheses of Corollary 2.2 hold and therefore, f has a unique fixed
point x = 0.

3 Consequences

Denote by Γ the set of all functions γ : R+ → R
+ satisfying the following

conditions:

1. γ is Lebesgue-integrable on each compact of R+;

2. for each ǫ > 0, we have
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∫ ǫ

0

γ(z)dz > 0

.

Theorem 3.1. Let (X, σ) be a metric space and f : X → X be a cyclic
(α, β)-admissible Z-contraction mapping if there exist ψ : R+ → R

+ with
ψ(t) < t ≤ φ(t) such that:

ζ(

∫ σ(fx,fy)

0

δ1(z))dz,

∫ max{σ(x,y),(σ(x,fx)+σ(y,fy))×4−1 ,(σ(fx,y)+σ(x,fy))×4−1}

0

δ2(z))dz ≥ 0.

Also, suppose that

1. there exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,

2. f is continuous.

Then f possesses a unique fixed point.

Proof. Take ψ(t) =
∫ t

0
δ1(z))dz, ϕ(t) =

∫ t

0
δ2(z))dz and ζ(t, s) = ψ(t)− φ(t)

for all s, t ≥ 0 . Note that ψ is an altering distance function and ϕ ∈ Φ.
Also, f is (α, β)−cyclic. So S satisfies all the conditions of Theorem 2.1.
Therefore, f has a unique fixed point.

Corollary 3.2. Let (X, σ) be a metric space and f : X → X be a cyclic
(α, β)-admissible Z-contraction mapping if there exist ψ : R+ → R

+ with
ψ(t) < t ≤ φ(t) such that:

ζ(

∫ σ(fx,fy)

0

δ1(z))dz,

∫ σ(x,y),(σ(x,fx)

0

δ2(z))dz ≥ 0.

Also, suppose that

1. there exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,

2. f is continuous.

Then f possesses a unique fixed point.

Proof. Take ψ(t) =
∫ t

0
δ1(z))dz, ϕ(t) =

∫ t

0
δ2(z))dz and ζ(t, s) = ψ(t)− φ(t)

for all s, t ≥ 0 . Note that ψ is an altering distance function and ϕ ∈ Φ.
Also, f is (α, β)−cyclic. So S satisfies all the conditions of Corollary 2.2.
Therefore, f has a unique fixed point.
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4 Conclusion

In this paper, we have presented new contraction type mappings expected to
hold simulation function and cyclic (α, β)-admissibility on complete metric-
like space. Our main result following the continuity of mapping and with
dropping the continuity. We obtained Theorem 3.1 which extended and im-
proved our results as a consequences results related with integral equations.
Inclosing, we think that the field for applying our result is not restricted to
only contractive mappings but extends to apply our results as a nonexpan-
sive mappings.
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