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Abstract

In this paper, we introduce the concept of cyclic (o, 5)-admissible
Z-contraction mapping with respect to (. We also establish the ex-
istence and uniqueness of fixed points for this class of mappings in
metric-like spaces. This work generalizes and extends some theorems
in the literature. An example and some consequences are given to
support the obtained results.

1 Introduction and preliminaries

The significance of fixed point theory lies in proving the existences and
uniqueness of solutions for many problems of Applied Sciences such as Dy-
namic system, Chemistry, Economics, and Engineering. Over the a long
time, Several mathematicians have been formulated and established the fa-
mous contractive Banach contraction principle in many different directions,
either by generalizing the domain of the mapping or by weakening the con-
tractive condition or in some cases indeed both, see for example ([10]-[16]).
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First, Harandi [8] introduced a new extension of the concept of partial
metric space, called a metric-like space. He established the existence and
uniqueness of fixed points in a metric-like space as well as in a partially or-
dered metric-like space. Clearly, this setting is a generalization of the stan-
dard space(metric space). Several authors discussed the existence of fixed
and common fixed point in metric-like space (for instance see [4]-[6]).

Also, the notation of Z-contraction was presented in 2015 by Khojasteh
et al. [9] . This concept is a type of nonlinear contraction defined by using
a specific function, called simulation function. Consequently, they proved
the existence and uniqueness of fixed point for Z-contraction mappings (see
[9],Theorem 2.8).

Otherwise, Alizadeh et al. [1] introduced the concept of cyclic (a, f)-
admissible mapping and proved some new fixed point results which generalize
and modify some recent results in the literature.

Definition 1.1. /8] Let X is a nonempty set. A function o : X x X — [0, 00)
is said to be a metric-like space (or a dislocated metric) on X if for any
r,w,y € X, the following conditions hold:

(01) o(z,y) =0 implies that © = y;

(02) U(Iay) = U(Iay);
(03) U(Iay) S O'(l’, Z) +U(Zay)
The pair (X, o) is called a metric-like space.

It is clear that every metric space and partial metric space is a metric-like
space, but the converse is not true.

Example 1.2. Let X = {0,1} and

2, ife=y=0;

o(z,y) =

1 otherwise.

Y

Then (X, 0) is a metric-like space, but it is not a partial metric space. Note
that 0(0,0) £ ¢(0,1).

Example 1.3. Let 0 : X x X — R* (k € {1,2}) be a mapping in X =R,
then oy defined by
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1ooy(x,y)=[z|+|y]|+a,
2. oy(x,y) = 2% + 9%
Then, o1(z,y),0a(x,y) are metric like spaces on X, where a > 0 and b € R.

Moreover, each metric-like 0 on X generates a topology 7, on X whose
base is the family of open o-balls

B,(z,e) ={y e X :|o(z,y) —o(x,x) |< €}, forallz € X and e > 0.

The metric-like space (X, o) is called complete if for each Cauchy sequence
{X,}%, there is some y € Y such that

lim o(x,,x) =0(zx,z) = lim o(x,, Tm).

n—00 n,M—>00

A subset A of a metric-like space (X, o) is bounded if there is a point b € X
and a positive constant K such that o(a,b) < K for all a € A.

Definition 1.4. ([3]) Let (X, 0) be a metric like spaces.

(a) Any sequence {x,} in metric like spaces is a Cauchy sequence if
limy, 100 0(Tn, Trm) exists and is finite.

(b) (X,0) is complete if every Cauchy sequence {x,} in metric like spaces
converges with regard to 1, to a point x € X ; that 1s,

lim o(z,2z,) =o(z,z) = lim o(z,,T,).
n—00 ,M—00

Definition 1.5. (/3]) Let T : (X,0) — (X, 0) be a mapping in metric like
spaces (X, o), then the mapping T is continuous if for any sequence {z,} in
X such that o(x,,x) — o(x,x) asn — oo, we have o(Tx,, Tx) = o(Tz, Tx)
as n — 00.

Remark 1.6. Let X = {0,1} be endowed with o(x,y) = 1 for each z,y € X.
Take x, = 1 for each n € N. It is easy to see that x,, — 0 and z, — 1.
In metric-like spaces, the limit of a convergent sequence is not necessarily
unique.

The following lemma is known and useful for the rest of paper.

Lemma 1.7. Let (X,0) be a metric-like space. Let {x,} be a sequence in
X such that x,, — x where v € X and o(x,y) = 0. Then for all y € X, we
have lim,, o, 0(x,,y) = o(x,y).
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Definition 1.8. [9] A function ¢ : [0, 00) x [0,00) — R is called a simulation
function if ( satisfies the following conditions:

(¢1) ¢(0,0) =0,

(C2) C(t,s) <s—t forallt,s>0,

(C3) if {tn} and {s,} are sequences in (0,00) such thatlim, . t, = lim,_, S,
l € (0,00) >0, then

lim sup (¢, s,) < 0.
n—oo

Definition 1.9. [1] Let f : X — X be a mapping and o, : X — R be
two functions. We say that f is a cyclic (o, 5)-admissible mapping if

1. a(x) > 1 for some x € X = [B(fx) > 1,

2. B(x) > 1 for some x € X = a(fx) > 1.
Example 1.10 ([9],[2]). Fori e {1,2,3,4,5,6,7}, let ¢; : [0,00) — [0, 00)
be a continuous function with ¢;(t) = 0 if and only if t = 0. Define the
functions ¢; : [0,00) x [0,00) = R, i =1,2,3,4,5,6,7 as follows

1. Gi(t,s) = ¢1(s) — @2(t) for allt,s € [0,00), where ¢:1(t) <t < ¢gaft) for
allt > 0.

2. (ot s) =s— ggzg forallt,s € [0,00), where f, g : [0,00)* = (0,00) are
continuous functions with respect to each variable such that f(t,s) >

g(t,s) forallt,s > 0.
3. (3(t,8) = s— p3(s) —t for allt,s € [0,00).

4. If ¢ : [0,00) — [0,1) is a function such that lim; .+ supp(t) < 1 for
all v > 0, and we define (4(t,s) = sp(s) —t for all t,s € [0, 00).

In this paper, we introduce the concept of cyclic («, 3)-admissible Z-
contractions with respect to (. We also establish the existence of fixed points
for this class of mappings in metric-like spaces. Our work generalizes and
extends some theorems in the literature.

2 main result

In this section, we present the class of cyclic («, §)-admissible Z-contraction
mapping and prove some fixed point theorems on complete metric-like space.
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Theorem 2.1. Let (X, 0) be a metric-like space and f : X — X be a cyclic
(o, B)-admissible Z-contraction mapping if there exist ¢ : RT — R with
W(t) <t such that:

CWlo(fz, fy)), v(M(z,y))) =0 (2.1)
for all x,y € X satisfying a(x)B(y) > 1 where

M (z,y) = max{o(z,y), (o(z, fr)+o(y, fy)) x4~ (o(fz,y)+o(z, fy)) x4~}
Assume that

1. there exists xo € X such that o(zo) > 1 and B(xy) > 1,

2. f is continuous, or

3. if {zn} C X such that x, — x and f(z,) > 1 for all n, then f(x) > 1,

then f has a fized point z € X such that o(z,z) = 0. Moreover, if a(x) > 1
and B(y) > 1 for all x,y € Fix(f), then f has a unique fized point.

Proof. Since f is a cyclic (a, §)-admissible mapping and «(z) > 1 then
B(x1) = B(fre) > 1 which implies that a(fz;) = a(xze) > 1. By continuing
this method, we have a(xs,) > 1 and B(x,_1) > 1 for alln € N. A gain, since
f is a cyclic (v, 8)-admissible mapping and 3(zg) > 1, we have [(z3,) > 1
and a(zy,_1) > 1. Then, we deduce

a(z,) > land f(x,) > 1 for alln € Ny. (2.2)
Equivalently, o(z,_1)5(z,) > 1. Applying (2.1), we obtain

CW(o(frn, f2n)), (M (2p-1,22))) = C((o(Tn, Tnt1)), V(M (Tn-1,n)))
0, (2.3)

v

where

M(xp_1,2,) = max{o(zn_1,2), (0(Tn_1, fTn1) + o(2n, fr,)) x 47,
(0(frn_1,20) + 0(fTn, 1p 1)) x 471}
max{o(Tn_1,n), (0(Tn_1,Tn) + (20, Tpy1)) X 471
(0(2p, ) + 0(Tpi1, fTn 1)) x 471}

max{o(Tn_1,Tn), (0(Tni1, Tn) + (T, Tpi1)) x 471}

max{o(Ty—1,Zn), 0(Tni1, Tn)}

VANVAN

(2.4)

(2.5)

max{o(Tn_1,Tn), (0 (Tn_1,Tn) + (X, Tni1)) X 471 (0(Tpy1, Tu1)) X 471}

(2.6)
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It follows that

C((0(@n, Tnp1)), Y(max{o (w1, 2n), 0 (Tny1, 2n)}) 2 0, (2.7)

If o(xy, xpy1) = 0 for some n, then z,, = z,41 = fx,, that is, x, is a fixed
point of f and so the proof is finished. Therefore, we suppose that x, # x,,1
for all n > 0. Now, we shall show that o(x,, z,+1) < o(x,_1,2,). Arguing by
contradiction, we assume o (x,, Z,11) > o(x,_1,,). Therefore, we have two
cases.

Case 1:M (o (xp_1,2,)) = 0(xp, Tpe1). Then

0 < (w(g(zmxn+l))a¢(a(xn—laxn)))
< Y(0(@n, Tpy1)) — Y(0(2n, Tni1),

by using the properties of ¢, we have o(z,41,%,) < 0(Tp,Tns1), which is
impossible.
Case 2: M(o(zp-1,2n)) = 0(p_1,2,). Then

0 < C(W(o(@n, nt1)), Y(0(Tp-1,70)))
< ¢(U(xn—la xn)) - @D(U("L’m xn-i—l))a

by using the properties of 1, we get
0(Tnt1, Tn) < 0(Tn—1, Tn),
Hence, we obtain
0(n, Tpy1) < o(xp_1,z,) for alln > 1, (2.8)

which implies that {o(x,,z,+1)} is a decreasing sequence of positive real
numbers, so there exists » > 0 such that

lim o(x,, Tye1) =1
n—oo

Suppose that r > 0. By the properties of ¢ ,(2.7), (2.8) and the condition

(G,
0 < limsup ¢ (1 (0(n, Tn41)), ¥ (0(Tn-1, 7)) <0,

n—oo

which is a contradiction. Therefore r = 0. This implies that

lim o(z,, Tpy1) = 0. (2.9)

7,1M—+00
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Now, we shall prove that

lim o(z,,z,) =0. (2.10)

7,1M—00

Suppose to the contrary that there exists € > 0, for which we can find subse-
quences {z,,k} and {z,k} of {z,} with m(k) > n(k) > k such that for every
k,
0 (Zn(), Tm(r))) 2 € (2.11)
This means that
U(:L’n(k), xm(k)—l)) < €. (2.12)

By the triangular inequality and using (2.11) and (2.12), we get

€ < 0(Tn)s Tmk) < T(Tnw)s Tmk)—1) + O (L) =15 Tmk))
< €+ a(xm(k)_l, :L’m(k))

Letting n — oo in the above inequalities and by using (2.10) and (2.11), we
have

lim O’(:L’n(k), xm(k)) = €. (2.13)
n,m—00
Since
T(Tn(k) s Tmk)) < T(Tmk) Trk)+1) + O(Tnk)+15 Tn(k))
and

T(Tnk)+15 Tmk)+1) < O(Tmk)s Tmk)+1) + O(Tne)+1, Tngk));
then by letting the limit as & — oo in above inequalities and using (2.9) and
(2.13), we deduce that

lim U(In(k)—i-la :L’m(k)) = €. (2.14)

7,1M—+00

similarly, one can easily show that

Jm o(@age 1 Tmyrr) = M0 0 (T, Tmy 1) = €

Again since f is a cyclic (o, #)-admissible Z-contraction mapping and «(x, k) B (k) >
1, then

M(:cn(k),xm(k)) = maX{O’(l’n(k)a xm(k))v (U(ﬂﬁn(k),xn(k)ﬂ) + a(xm(k),xm(k)ﬂ)) X 4‘1,

(0 (Tng)y+1, Tm(k)) + (T +1, Tngry)) X 471}
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letting n — oo in (2.15) and using (2.13), (2.14) and (2.9), we have

lim M(l’n(k), :L'm(k)) = €. (2.15)

7,1M—00

If x, = x,, for some n < m. then z, = fzr, = fr,, = x,.1 and since
{o(zp, zns1)} is decreasing sequence then

0 < o(xp, Tni1) = 0(Tmy Tma1) < 0(Tme1, Tm) < ... < (T, Tnt),

which is a contradiction. Then x, # x,, for all n < m. The condition ((3)
implies that

lim sup C(Y (0 (Zn(ky, Tm(r)))s (M (Znr)s Tmry)))) < 0,

k—o0

which is a contradiction. So we conclude that {x,} is a Cauchy sequence.
Since (X, o) is complete, there exists v € X such that

lim o(z,,u) = o(u,u) = lim o(z,,z,) = 0. (2.16)
n—oo n—o0

Now, if f is continuous, we obtain from (2.16) that

lim o(x,41, fu) = nh_)nolo o(frnit, fu) = o(fu, fu). (2.17)

n—oo

Otherwise, by Lemma 1.7 and (2.16), we also get

lim o(z,, fu) = o(u, fu). (2.18)

n—oo

Combining (2.17) and (2.18), we deduce that o(fu,u) = o(u, fu). That is
fu=u.

Assume that condition (3) is held, that is a(z,)8(u) > 1. From (2.1) we
get

0 < C(W(a(@nt, fu), (M (wn, u))) = C((o(fn, fu)), (M (20, u))),

where

M(z,,u) = max{o(xn,u), (0(xn, frn) + o(u, fu)) x 471 (o(frn, u) + o(zn, fu)) x 471}
= max{o(z,,u), (0(2n, Tny1) + o(u,u)) x 471 (0(Tpy1, u) + o(Tn,u)) x 471}

By Lemma 1.7 and (2.18)

lim o(zy41, fu) = lim M(z,,u) = o(u, fu) > 0.

k—o0 k—o0
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From ((3)

0 < limsup ((¢Y(o(xpa1, fu)), V(M (z,,u))) < 0.

k—o0
Since v is strictly increasing, we have o(u, fu) < o(u, fu), which is impos-

sible and hence o(u, fu) = 0, that is fu = u and so u is a fixed point of

f.
Let us now show the uniqueness. Let v be another fixed point of f. Since
a(u)B(v) > 1, it follows from (2.1) that

0 < (W(o(fu, fv)), p(M(u,v))),
= ((W(o(u,v)), ¥(o(u,v))),
< 1/}(0(u7 U)) - Q/J(U(u, U)),

Since 1 is strictly increasing, we have o(u,v) < o(u,v), which is a contra-
diction. Hence u = v. O

Corollary 2.2. Let (X,0) be a metric space and f : X — X be a cyclic
(cr, B)-admissible Z-contraction mapping if there exist ¢ : RT — R with
Y(t) <t such that:

CWlo(fz, fy),(o(z,y)) 20 (2.19)
for all x,y € X satisfying a(x)p(y) > 1. Assume that
1. there exists xg € X such that a(xg) > 1 and f(xy) > 1,
2. f is continuous, or
3. if {x,} C X such that x, — x and $(x,) > 1 for all n, then f(x) > 1
Then f has a unique fixed point.

Proof. The rest of proof follows from Theorem 2.1 by considering M (z,y) =
o(x,y). O

Corollary 2.3. Let (X, o) be a metric like space and f : X — X be a cyclic
(o, B)-admissible Z-contraction mapping if there exist ¥ : RT — RT with
W(t) <t such that:

CW(a(z)By)o(fx, fy), ¢¥(o(z,y))) >0 (2.20)
for all z,y € X satisfying a(x)B(y) > 1. Assume that
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1. there exists xog € X such that a(zo) > 1 and B(xy) > 1,

2. f is continuous, or

3. if {x,} C X such that x,, — x and 5(x,) > 1 for all n, then f(x) > 1.
Then f has a unique fixed point.

Proof. The rest of proof follows from Theorem 2.1 by considering M (x,y) =
o(z,y) and a(x)B(y) > 1. O

Corollary 2.4. Let (X,0) be a metric like space and f : X — X be a cyclic
a-admissible Z-contraction mapping if there exist ¢ : RY — RT with (t) < t
such that:

CW(a(@)aly)o(fz, fy),d(o(x,y))) =0 (2.21)

for all x,y € X satisfying a(x)a(y) > 1. Assume that
1. there exists xg € X such that a(zo) > 1 and o fxo) > 1,
2. f is continuous, or
3. if {x,} C X such that x,, — x and o(x,) > 1 for all n, then a(x) > 1.

Then f has a unique fixed point.

Proof. The rest of proof follows from Theorem 2.1 by considering M (x,y)
o(x,y) and a(x)B(y) > 1 and by taking the function 5 : X x X — [0, +o00
to be a.

o2

Corollary 2.5. Let (X,0) be a metric like space and f : X — X be a
mapping and o, 5 : X x X — [0,00) be two functions. Assume the following
conditions hold:

1. fis («, B)—cyclic,
2. There ezists xy € X such that a(xg) > 1 and (o) > 1,

3. There exists k € [0,1) such that if x,y € X with a(x)B(y) > 1, then

o(Sz, Sy) < kmax{o(z,y), (o(z, fx)+o(y, fy)) x4~ (o(fz,y)+o(z, fy)) x4},

4. [ 1is continuous, or
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5. if {zn} € X such that x, — x and o(z,)B(x,) > 1 for all n, then
a(x)p(r) = 1.

Then f has a unique fixed point.

Proof. The rest of proof follows from Theorem 2.1, we assume that there
exists k € [0, 1) such that Condition (3) holds. Define the simulation function
¢ : [0,4+00) x [0,+00) — R by ((t,s) = ks —t. Note that if z,y € X
with a(z)B(y) = 1, then ¢(d(fz, fy), max{o(z,y), (o(z, fz) + o(y, fy)) X
47 (o(fx,y) + oz, fy)) x 471}) > 0. The last inequality together with
Conditions (1) ensure that f is generalized («, 8, Z)—contraction. Thus f
satisfies all conditions of Theorem 2.1 and hence f has a fixed point. O

Corollary 2.6. Let (X,0) be a metric like space and f : X — X be a
mapping and o, 5 : X x X — [0,00) be two functions. Assume the following
conditions hold:

1. f s (a, B)—cyclic,
2. There ezists xy € X such that a(xg) > 1 and (o) > 1,

3. There exist a lower semi-continuous function ¢ : R™ — RT with ¢(t) >
0 for allt > 0 and p(0) = 0 such that if v,y € X with a(z)B(y) > 1,
then

o(fz, fy) < o(z,y) —plo(z,y)).
4. f is continuous, or

5. if {z,} € X such that z, — x and o(x,)B(x,) > 1 for all n, then
a(r)f(r) = 1.

Then f has a unique fixed point.

Proof. The rest of proof follows from Corollary 2.5 by defining ¢ : [0, +00) X
[0,400) = R via ((t,s) = s — ¢(s) — t. O

Example 2.7. Let X = [0, 00) endowed with the metric-like o(z,y) = z+y.
Consider f: X — X given by

fo = {%xz if x € [0,1].

x4+ 2, otherwise,
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Note that (X, 0) is a complete metric-like space. Define o, 3 : X — RT by

1 ifxe|0,1], 1 ofze|0,1],
a(z) = f [. ] B(z) = f [. ]
0, otherwise, 0, otherwise.
Let ((t,s) = ¢35 —t for all s,t > 0 and ¥(t) = t. Note that f is a cyclic
(o, B)-admissible. In fact, let x,y € X such that o(x) > 1 and B(z) > 1. By
definition of o and 3, this implies that x,y € [0,1]. Thus,

B(fx) >1, a(fz) > 1.

Now, if {x,} C X such that f(x,) > 1 and z, - X as n — oo. Therefore
€ [0,1], hence x € [0,1] i.e., B(x) > 1.

Let a(x)B(y) > 1. Then x,y € [0,1] and so, we have

oo ) vlaten)) = 7o atfa

T +y 1 5,1
= ey TG
r+y 2?2 + 9
l+z+y 3
3(x+y) — (2 +y)(1+2+y)
31+z+y)
_ Bz —ay e+ By -9y
3(1+z+y) -

So, the hypotheses of Corollary 2.2 hold and therefore, f has a unique fixed
point x = 0.
3 Consequences

Denote by I' the set of all functions v : Rt — R* satisfying the following
conditions:

1. v is Lebesgue-integrable on each compact of R™;

2. for each € > 0, we have
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/Oey(z)dz > 0

Theorem 3.1. Let (X,0) be a metric space and f : X — X be a cyclic
(o, B)-admissible Z-contraction mapping if there exist ¢ : RT — RT with
W(t) <t < @(t) such that:

o(fz,fy) max{o(z,y),(c(z,fz)+o(y,fy))x47 1 (o(fz,y)+o(z,fy)) x4 1}
¢ / 51(2))dz, / 5y(2))dz > 0.
0

0
Also, suppose that
1. there exists xg € X such that a(xg) > 1 and f(xy) > 1,

2. f is continuous.

Then f possesses a unique fixed point.

Proof. Take 9(t) = [, 01(2))dz, (t) = [ 62(2))dz and (L, ) = P(t) — ¢(t)
for all s,t > 0 . Note that 1 is an altering distance function and ¢ € ®.
Also, f is («, f)—cyclic. So S satisfies all the conditions of Theorem 2.1.
Therefore, f has a unique fixed point. O

Corollary 3.2. Let (X,0) be a metric space and f : X — X be a cyclic
(o, B)-admissible Z-contraction mapping if there exist ¢ : RT — RT with
Y(t) <t < @(t) such that:

o(fz,fy) a(zy),(o(z,fz)
C(/ 51(2))612,/ d2(2))dz > 0.
0 0

Also, suppose that
1. there exists xg € X such that a(xg) > 1 and f(xy) > 1,
2. f is continuous.

Then f possesses a unique fixed point.

Proof. Take ¢(t) = [, 61(2))dz, ¢(t) = [} d2(2))dz and ((t,s) = 1(t) — ¢(t)
for all s,t > 0 . Note that 1 is an altering distance function and ¢ € ®.
Also, f is (a,f)—cyclic. So S satisfies all the conditions of Corollary 2.2.
Therefore, f has a unique fixed point. O
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4 Conclusion

In this paper, we have presented new contraction type mappings expected to
hold simulation function and cyclic («, 8)-admissibility on complete metric-
like space. Our main result following the continuity of mapping and with
dropping the continuity. We obtained Theorem 3.1 which extended and im-
proved our results as a consequences results related with integral equations.
Inclosing, we think that the field for applying our result is not restricted to
only contractive mappings but extends to apply our results as a nonexpan-
sive mappings.
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