International Journal of Mathematics and Computer Science, **15**(2020), no. 4, 1309–1319

Contra Continuity on Double Fuzzy Topological Space

Taha H. Jasim¹, Sanaa I. Abdullah¹, Kanayo Stella Eke²

¹Department of Mathematics College of Computer Science and Mathematics Tikrit University Tikrit, Iraq

> ²Department of Mathematics Faculty of Science University of Lagos Lagos, Nigeria

email: tahahameed91@gmail.com, sanaibrahem2@gmail.com, skanayo@unilag.edu.ng

(Received August 7, 2020, Accepted September 15, 2020)

Abstract

In this paper, we introduce a new class of contra continuity namely double fuzzy contra continuity (for short df contra c), double fuzzy contra α^m - continuity (for short df contra $\alpha^m - c$), and double fuzzy contra α^m -generalized continuity (for short df contra α^m -gc). The relationship among them is studied and some basic properties are proved.

1 Introduction

After Zadeh [1] in 1965 developed the concept of fuzzy sets, Chang [2] in 1968 introduced a fuzzy topological concept through the use of fuzzy sets. Later Coker and Dimirci [3] in 1996 generalized fuzzy topological space by introducing the term intuitionistic. In 2005, Garcia and Rodabaugh [4] further

Key words and phrases: Double fuzzy topology, double fuzzy contra α^m – continuous function, double fuzzy α^m -open function, double fuzzy contra α^m -generalized continuous. AMS (MOS) Subject Classifications: 54A40. ISSN 1814-0432, 2020, http://ijmcs.future-in-tech.net generalized fuzzy intuitionistic topological space to double fuzzy topological space by replacing the term intuitionistic with the term double. Mohammed et al. [9] in 2017 presented and studied the concept $(r1, s1) - \alpha^m$ -fuzzy closed sets in double fuzzy topological spaces. In the same year, they generalized and studied some types of functions across $(r1, s1) - \alpha^m$ -fuzzy closed sets ([10], [11]) by introducing the notions of $\alpha^m - c$ ontinuous and α^m -generalized continuous in double fuzzy topological space.

In this paper, we present a concept of contra-closed set in double fuzzy topological space and provide a study of different types of functions by utilizing this concept. Illustrative examples are provided.

2 Preliminaries

In this section, we give some basic definitions that are useful to our research. **Definition 2.1** [4]: A double fuzzy topology (τ_X, τ_X^*) on a non-empty set X is a pair of functions $\tau_X, \tau_X^* : I^X \to I$, which satisfies the following properties:

(i) $\tau_X(\delta_1) \leq 1 - \tau_X * (\delta_1)$ for each $\delta_1 \in I^X$.

(ii) $\tau_X(\delta_1 \cap \delta_2) \ge \tau_X(\delta_1) \cap \tau_X(\delta_2)$ and $\tau_X * (\delta_1 \cap \delta_2) \le \tau_X * (\delta_1) \cup \tau_X * (\delta_2)$ for each $\delta_1, \delta_2 \in I^X$.

(ii) $\tau_X(\cup_1^i \delta_i) \ge \cap_1^i \tau_X(\delta_i)$ and $\tau_X * (\cup_1^i \delta_i) \le \cup_1^i \tau_X * (\delta_i)$ for each $\delta_i \in I^X$, $i \in \mathbb{N}$.

The triplex (X, τ_X, τ_X*) is called a double fuzzy topological spaces (dfts, for short), $\tau_X(\delta_1)$ and $\tau_X*(\delta_1)$ may be interpreted as a gradation of openness and gradation of non-openness for δ_1 .

Definition 2.2 [4,8]: Let X be a dfts, then, for each $r_1 \in I_{r1}, s_1 \in I_{s1}$ and $\delta \in I^X$, we define the double fuzzy closure and interior operator C_{τ_x,τ_x*} : $I^X \times I_{r_1} \times I_{s_1} \to I^X$ as follows: $C_{\tau_x,\tau_x*}(\delta, r_1, s_1) = \cap \{\lambda \in I^X : \delta \leq \lambda, \tau_X(1 - \lambda) \geq r_1, \tau_X * (1 - \lambda) \leq s_1\}.$ $I_{\tau_x,\tau_x*}(\delta, r_1, s_1) = \cup \{\lambda \in I^X : \lambda \leq \delta, \tau_X(\lambda) \geq r_1, \tau_X * (\lambda) \leq s_1\}.$

Definition 2.3: Let X be a dfts $\delta, \lambda \in I^X, r_1 \in I_{r_1}$ and $s_1 \in I_{s_1}$. A

fuzzy set δ is said to be:

(1) An (r_1, s_1) -fuzzy open set [8] $((r_1, s_1)$ -fo, for short) if $\tau_X(\delta) \ge r_1$ and $\tau_X * (\delta) \le s_1$. A fuzzy set δ is called an (r_1, s_1) -fuzzy closed set if $\tau_X(1-\delta) \ge r_1$ and $\tau_X * (1-\delta) \le s_1$.

(2) An (r_1, s_1) -fuzzy α -open set ([5], [6]) ((r_1, s_1) -f α -open, for short), if $\lambda \leq I_{\tau_x,\tau_x*}(C_{\tau_x,\tau_x*}(I_{\tau_x,\tau_x*}(\lambda, r_1, s_1), r_1, s_1), r_1, s_1)$ and an (r_1, s_1) -fuzzy α -closed set $((r_1, s_1)$ -f α -closed, for short), if $C_{\tau_x,\tau_x*}(I_{\tau_x,\tau_x*}(C_{\tau_x,\tau_x*}(\lambda, r_1, s_1), r_1, s_1), r_1, s_1) \leq \lambda$.

(3) An (r_1, s_1) -generalized fuzzy-closed set [7] $((r_0, s_1)$ -gf-closed, for short) if $C_{\tau_x,\tau_x*}(\delta, r_1, s_1) \leq \lambda$, whenever $\delta \leq \lambda, \tau_X(\lambda) \geq r_1, \tau_X*(\lambda) \leq s_1$. δ is called (r_1, s_1) -generalized fuzzy open $((r_1, s_1)$ -gf-open, for short) if and only if $1 - \delta$ is (r_1, s_1) -gf-closed set.

(4) An (r_1, s_1) -fuzzy α^m -closed sets $((r_1, s_1) - f\alpha^m$ -closed, for short) ([9],[11]) if and only if $I_{\tau_x,\tau_x*}(C_{\tau_x,\tau_x*}(\delta, r_1, s_1)r_1, s_1) \leq \lambda$, whenever $\delta \leq \lambda$ and λ is $(r_1, s_1) - \alpha$ -open. δ is called $(r_1, s_1) - f\alpha^m$ -open if and only if $1 - \delta$ is $(r_1, s_1) - \alpha^m$ -closed.

(5) An $(r_1, s_1) - \alpha^m$ -generalized fuzzy-closed set $((r_1, s_1) - \alpha^m$ -gf-closed, for short) ([9], [11]). If $\alpha^m C_{\tau_x,\tau_x*}(\delta, r_1, s_1) \leq \lambda$ such that $\delta \leq \lambda$ and λ is $(r_1, s_1) - f\alpha^m$ -open set. δ is called $(r_1, s_1) - \alpha^m$ -generalized fuzzy-open set $((r_1, s_1) - \alpha^m$ -gf-open, for short) if and only if $1 - \delta$ is an $(r_1, s_1) - \alpha^m$ -gf closed set.

Definition 2.4 [9,11]: If X is a double fuzzy topological space, for each $\delta, \lambda \in I^X$, $r_1 \in I_{r_1}$ and $s_1 \in I_{s_1}$, then the α^m – closure and α^m -Interior operator of δ is defined as:

 $\alpha^m C_{\tau_x,\tau_x*}(\delta,r_1,s_1) = \cap \{\lambda \in I^X : \delta \le \lambda, \lambda \ is \ (r_1,s_1) - f\alpha^m - closed\}.$

 $\alpha^m I_{\tau_x,\tau_x*}(\delta,r_1,s_1) = \cup \{\lambda \in I^X : \delta \ge \lambda, \lambda \text{ is } (r_1,s_1) - f\alpha^m - open\}.$

Definition 2.5: Let a function $f : X \to Y$, whenever $r_1 \in I_{r_1}$ and $s_1 \in I_{s_1}$. Then f is said to be:

(1) A double fuzzy continuous (see [8]) if and only if $\tau_X(f^{-1}(\delta)) \ge \tau_Y(\delta)$ and $\tau_X * (f^{-1}(\delta)) \le \tau_Y * (\delta)$ for each $\delta \in I^Y$.

(2) A double fuzzy- α^m - continuous (df- α^m - c, for short) ([10], [11]) if $f^{-1}(\delta)$

is an $(r_1, s_1) - f\alpha^m$ -open such that $\tau_Y(\delta) \ge r_1$ and $\tau_Y * (\delta) \le s_1$.

(3) A double fuzzy- α^m -open (df- α^m -open, for short) (see [10], [11]) if $f(\delta)$ is an $(r_1, s_1) - f\alpha^m$ -open in Y for each $\tau_X(\delta) \ge r_1$ and $\tau_X * (\delta) \le s_1$.

(4) A double fuzzy- α^m -generalized continuous (df- α^m -gc, for short)(see[10],[11]) if for each $\tau_Y(1-\delta) \ge r_1$ and $\tau_Y * (1-\delta) \le s_1[\tau_Y(\delta) \ge r_1, \tau_Y * (\delta) \le s_1]$, $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -gf-closed set $[(r_1, s_1) - \alpha^m$ -gf-open set], whenever $\delta \in I^Y$.

3 Contra continuous function

In this section, we define the concept of double fuzzy contra-continuous function and provide some examples.

Definition 3.1: A function $f : X \to Y$ is called a double fuzzy contracontinuous if $f^{-1}(\delta)$ is $(r_1, s_1) - f$ closed set in X for each (r_1, s_1) -f open δ set in Y.

Example 3.2: Let $X = \{p, q\}, Y = \{m, n\}$ with the fuzzy sets ω_1, ω_2 on X. Then $(\tau_X(\omega), \tau_X * (\omega))$ is define as:

$$\tau_X(\omega) = \begin{cases} 1, & \text{if } \omega \in \{0, 1\} \\ \frac{1}{2}, & \text{if } \omega(x) = \omega_1 \\ \frac{1}{4}, & \text{if } \omega(x) = \omega_2 \\ 0, & \text{otherwise} \end{cases}$$

$$\tau_X * (\omega) = \begin{cases} 0, & \text{if } \omega \in \{0, 1\} \\ \frac{1}{2}, & \text{if } \omega(x) = \omega_1 \\ \frac{3}{4}, & \text{if } \omega(x) = \omega_2 \\ 1, & \text{otherwise} \end{cases}$$

such that

 $\omega_1(p) = 0.4$, $\omega_1(q) = 0.4$, and $\omega_2(p) = 0.6$ $\omega_2(q) = 0.6$. Also, take fuzzy set ρ and defined $(\tau_Y(\rho), \tau_Y * (\rho))$ on Y by:

$$\tau_Y(\rho) = \begin{cases} 1, & \text{if } \rho \in \{0, 1\} \\ \frac{1}{2}, & \text{if } \rho(Y) = \rho_1 \\ 0, & \text{otherwise} \end{cases}$$

Contra Continuity on Double Fuzzy Topological Space

$$\tau_Y * (\rho) = \begin{cases} 0, & \text{if } \rho \in \{0, 1\} \\ \frac{1}{2}, & \text{if } \rho(Y) = \rho_1 \\ 1, & \text{otherwise} \end{cases}$$

such that $\rho(m) = 0.6$ and $\rho(n) = 0.6$.

Let $(\tau_X(\omega), \tau_X * (\omega))$ and $(\tau_Y(\rho), \tau_Y * (\rho))$ be two double fuzzy topological spaces and a function $f: X \to Y$ is define by:

 $\begin{array}{l} f(p) = m \text{ and } f(q) = n. \\ \text{Then } \tau_Y(\rho) \geq \frac{1}{2} \ , \ \tau_Y * (\rho) \leq \frac{1}{2}, \ f^{-1}(\rho) = \omega_2 \text{ and } \tau_X(1 - f^{-1}(\rho)) \geq \frac{1}{2} \ , \\ \tau_X * (1 - f^{-1}(\rho)) \leq \frac{1}{2}. \end{array}$

Now the concept of a double fuzzy contra $\alpha^m - c$ ontinuous function is define by:

Definition 3.3: A function $f : X \to Y$ is called a double fuzzy contra $\alpha^m - c$ ontinuous (df contra $\alpha^m - c$, for short) function if $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m - f$ closed set in X for each (r_1, s_1) -f open δ set in Y.

Example 3.4: Take the sets X, Y and fuzzy sets ω_1, ω_2, ρ . Define double fuzzy topological spaces $(\tau_X(\omega), \tau_X * (\omega))$ and $(\tau_Y(\rho), \tau_Y * (\rho))$ as in Example 3.2.

Now, $f^{-1}(\rho) = \omega_2 \leq 1$ $I_{\tau_x,\tau_x*}(C_{\tau_x,\tau_x*}(f^{-1}(\rho) = \omega_2, \frac{1}{2}, \frac{1}{2})\frac{1}{2}, \frac{1}{2}, 1) = I_{\tau_x,\tau_x*}(\omega_1, \frac{1}{2}, \frac{1}{2}) = \omega_2 \leq 1$.

So $(f^{-1}(\rho)$ is an $(\frac{1}{2}, \frac{1}{2}) - f\alpha^m$ -closed set. Thus f is df contra $\alpha^m - c$ function.

Theorem 3.5: Let $f: X \to Y$ be a function. Then f is df contra $\alpha^m - c$ function if and only if for each (r_1, s_1) -f closed set δ in Y, $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -f open set in X.

Proof: Let $\tau_Y(1-\delta) \ge r_1$, $\tau_Y * (1-\delta) \le s_1$, then $\tau_Y(\delta) \ge r_1$, $\tau_Y * (\delta) \le s_1$. Since f is df contra $\alpha^m - c$ function, so $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -f closed set in X. Hence, $1 - f^{-1}(\delta) = f^{-1}(1-\delta)$ is an $(r_1, s_1) - \alpha^m$ -f open set inX.

Conversely, let $\tau_Y(\delta) \ge r_1, \tau_Y * (\delta) \le s_1$. Then $\tau_Y(1-\delta) \ge r_1, \tau_Y * (1-\delta) \le s_1$. $f^{-1}(1-\delta) = 1 - f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m - f$ open set in X. Therefore, $f^{-1}(1-\delta)$ is an $(r_1, s_1) - \alpha^m - f$ open set in X. Hence $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m - f$ open set in X. Hence $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m - f$ open set in X.

Theorem 3.6: Let $f: X \to Y$ be a function. Then the following state-

ments are equivalent.

- (1) f is df-contra $\alpha^m c$ function.
- (2) For each $(r_1, s_1) f$ closed set δ , $f^{-1}(\delta)$ is an $(r_1, s_1) \alpha^m f$ open set.
- (3) For each (r_1, s_1) -f open set ω in Y, $f^{-1}(\omega)$ is an $(r_1, s_1) \alpha^m$ -f closed set.

Proof: (1) \longrightarrow (2) by theorem 3.5 (2) \longrightarrow (3) Let $\tau_Y(\delta) \ge r_1, \tau_Y * (\delta) \le s_1$. Put $\delta = 1 - \omega$. Then $\tau_Y(1-\delta) \ge r_1, \tau_Y * (1-\delta) \le s_1$, then by (2), $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -f open set. $f^{-1}(\delta) = f^{-1}(1-\omega) = 1 - f^{-1}(\omega)$ is an $(r_1, s_1) - \alpha^m$ -f open set. That is $f^{-1}(\omega)$ is an $(r_1, s_1) - \alpha^m - f$ closed set. (3) \longrightarrow (1) Its proved by definition (2.1).

Theorem 3.7: Suppose $f : X \to Y$ is a df-contra $\alpha^m - c$ function and $g: Y \to Z$ is df- continuous then gof is df-contra $\alpha^m - c$ function.

Proof: Let $\tau_Z(\delta) \ge r_1, \tau_Z * (\delta) \le s_1$, since g is df-continuous, so $\tau_Y(g^{-1}(\delta)) \ge r_1, \tau_Y * (g^{-1}(\delta)) \le s_1$.

Since f is a df-contra $\alpha^m - c$ function, then $f^{-1}(g^{-1}(\delta))$ is an $(r_1, s_1) - \alpha^m - f$ closed set.

Thus gof is df-contra $\alpha^m - c$ function.

Theorem 3.8: Let $f : X \to Y$ and $g : Y \to Z$ be a function, if f is df- α^m irr function and g is df-contra $\alpha^m - c$ function, then gof is df-contra $\alpha^m - c$ function. **Proof:** Let $\tau_Z(\delta) \ge r_1, \tau_Z * (\delta) \le s_1$, and since g is df-contra $\alpha^m - c$ function, so $g^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -f closed set in Y.

Since f is df- α^m irr function, then $f^{-1}(g^{-1}(\delta))$ is an $(r_1, s_1) - \alpha^m$ -f closed set in X.

 $f^{-1}(g^{-1}(\delta)) = gof^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -f closed set. Therefore gof is df-contra $\alpha^m - c$ function.

Theorem 3.9: Let $f : X \to Y$ be a surjective df- α^m -open function and $g: Y \to Z$ is a function such that gof is df-contra $\alpha^m - c$ function then g is df- contra $\alpha^m - c$ function.

Proof: Let $\tau_Z(1-\delta) \ge r_1$, $\tau_Z * (1-\delta) \le s_1$, since gof is df-contra $\alpha^m - c$ function.

then $f^{-1}(g^{-1}(\delta))$ is an $(r_1, s_1) - \alpha^m$ -f open set in X and since f is surjective df- α^m -open function.

Then $f(f^{-1}(g^{-1}(\delta))) = g^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -f open set in Y, such that $\tau_Z(1-\delta) \ge r_1, \tau_Z * (1-\delta) \le s_1$. Therefore g is df- contra $\alpha^m - c$ function.

1314

Definition 3.10: A function $f : X \to Y$ is called double fuzzy contra α^m -generalized continuous (df contra α^m -g c) function if and only if $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -g f closed set in X, for each $\tau_Y(\delta) \ge r_1, \tau_Y * (\delta) \le s_1$.

Example 3.11: Let $X = \{p, q\}, Y = \{m, n\}$ with the fuzzy sets ω_1, ω_2 . and we define $(\tau_X(\omega), \tau_X * (\omega))$ on X by:

$$\tau_X(\omega) = \begin{cases} 1, & \text{if } \omega \in \{0, 1\} \\ \frac{1}{2}, & \text{if } \omega(x) = \omega_1 \\ \frac{1}{4}, & \text{if } \omega(x) = \omega_2 \\ 0, & \text{otherwise} \end{cases}$$

$$\tau_X * (\delta) = \begin{cases} 0, & \text{if } \omega \in \{0, 1\} \\ \frac{1}{2}, & \text{if } \omega(x) = \omega_1 \\ \frac{3}{4}, & \text{if } \omega(x) = \omega_2 \\ 1, & \text{otherwise} \end{cases}$$

Also take fuzzy sets ρ_1 , ρ_2 and we define $(\tau_Y(\rho), \tau_Y * (\rho))$ on Y by:

$$\tau_Y(\rho) = \begin{cases} 1, & \text{if } \rho \in \{0, 1\} \\ \frac{1}{2}, & \text{if } \rho(x) = \rho_1 \\ \frac{1}{4}, & \text{if } \rho(x) = \rho_2 \\ 0, & \text{otherwise} \end{cases}$$

$$\tau_Y * (\psi) = \begin{cases} 0, & \text{if } \rho \in \{0, 1\} \\ \frac{1}{2}, & \text{if } \rho(x) = \rho_1 \\ \frac{3}{4}, & \text{if } \rho(x) = \rho_2 \\ 1, & \text{otherwise} \end{cases}$$

such that

 $\omega_1(p) = 0.3, \, \omega_1(q) = 0.4$ $\omega_2(p) = 0.7, \, \omega_2(q) = 0.6$ $p_1(m) = 0.7, \, p_1(n) = 0.8,$ $p_2(m) = 0.3, p_2(n) = 0.2,$

 $\rho(m) = 0.6 \text{ and } \rho(n) = 0.6.$ Let $(\tau_X(\omega), \tau_X * (\omega))$ and $(\tau_Y(\rho), \tau_Y * (\rho))$ be two double fuzzy topological spaces and a function $f: X \to Y$ is define by:

 $\begin{aligned} f(p) &= m \text{ and } f(q) = n. \\ \text{Then } \tau_Y(\rho) &\geq \frac{1}{2} , \ \tau_Y * (\rho) \leq \frac{1}{2}, \ f^{-1}(\rho_1) = (p0.7, q0.8), \ f^{-1}(\rho_1) \leq \omega_2, \ \omega_2 \text{ is an} \\ (\frac{1}{2}, \frac{1}{2}) - f\alpha^m \text{- closed set.} \\ \text{So, } \tau_Y(\rho) &\geq \frac{1}{2} , \ \tau_Y * (\rho) \leq \frac{1}{2}, \ f^{-1}(\rho_1) = (p0.7, q0.8) \ f^{-1}(\rho_1) \leq \omega_2, \ \omega_2 \text{ is an} \\ (\frac{1}{2}, \frac{1}{2}) - f\alpha^m \text{- closed set.} \\ . \ \alpha^m C_{\tau_x, \tau_x*}(f^{-1}(\rho_1), \frac{1}{2}, \frac{1}{2}) = \cap \{\omega_2 \in I^X : f^{-1}(\rho_1) \leq \omega_2, I_{\tau_x, \tau_x*}(C_{\tau_x, \tau_x*}(\omega_2, \frac{1}{2}, \frac{1}{2}) \frac{1}{2}, \frac{1}{2}) = \\ \omega_2\} = \omega_2 \leq \omega_2. \ \text{So, } f^{-1}(\rho_1) \text{ is an } (\frac{1}{2}, \frac{1}{2}) - \alpha^m \text{-gf-closed set implies df contra} \\ \alpha^m \text{-gc.} \end{aligned}$

Theorem 3.12: Every df-contra continuous is a df-contra α^m -g c function. **Proof:** Let $f: X \to Y$ be a df-contra continuous, and let $\tau_Y(\delta) \ge r_1, \tau_Y * (\delta) \le s_1$. So, $\tau_X(1 - f^{-1}(\delta)) \ge r_1, \tau_X * (1 - f^{-1}(\delta)) \le s_1$. Since, every (r_1, s_1) -f closed set is an $(r_1, s_1) - \alpha^m$ -g f closed set, then $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -g f closed set in X, for each $\tau_Y(\delta) \ge r_1, \tau_Y * (\delta) \le s_1$. Therefore f is df-contra α^m -g c function.

Remark 3.13: The converse of the theorem is not true. The following example proves it.

Example 3.14: See Example 3.12, f is a df-contra α^m -g c function, but f is not df-contra continuous.

Theorem 3.15: Every df-contra $\alpha^m - c$ function is a df-contra α^m -g c function.

Proof: Let $f: X \to Y$ be a df-contra $\alpha^m - c$ function, and let $\tau_Y(\delta) \ge r_1, \tau_Y * (\delta) \le s_1$.

So, $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -f closed set in X.

Since every $(r_1, s_1) - \alpha^m$ -f closed set is an $(r_1, s_1) - \alpha^m$ -g f closed set, then $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -g f closed set in X, for each $\tau_Y(\delta) \ge r_1, \tau_Y * (\delta) \le s_1$. Thus f is df-contra α^m -g c function.

Remark 3.16: The converse of the theorem is not true. The following example shows it.

1316

Example 3.17: Take the sets X, Y and dftss $(\tau_X(\omega), \tau_X * (\omega))$ and $(\tau_Y(\rho), \tau_Y * (\rho))$ as in Example 3.12 such that, $\omega_1(p) = 0.4$, $\omega_1(q) = 0.5$, $\omega_2(p) = 0.6$, $\omega_2(q) = 0.7$, and $p_1(m) = 0.4$, $p_1(n) = 0.7$, $p_2(m) = 0.4$, $p_2(n) = 0.7$, $p_3(m) = 0.6$, $p_3(n) = 0.5$. Let $(\tau_X(\omega), \tau_X * (\omega))$ and $(\tau_Y(\rho), \tau_Y * (\rho))$ be two double fuzzy topological spaces and a function $f : (X, \tau_X, \tau_X *) \to (Y, \tau_Y, \tau_Y *)$ be define as:

f(p) = m and f(q) = n.

So,
$$\tau_Y(\rho) \ge \frac{1}{2}$$
, $\tau_Y * (\rho) \le \frac{1}{2}$, $f^{-1}(\rho_1) = (p0.4, q0.7) \le \omega_1$, then
 $\alpha^m C_{\tau_x,\tau_x*}(f^{-1}(\rho_1), \frac{1}{2}, \frac{1}{2}) = \cap \{\omega_1 \in I^X : f^{-1}(\rho_1) \le \omega_1, I_{\tau_x,\tau_x*}(C_{\tau_x,\tau_x*}(\omega_1, \frac{1}{2}, \frac{1}{2}), \frac{1}{2}, \frac{1}{2}) = I_{\tau_x,\tau_x*}((0.4, 0.5), \frac{1}{2}, \frac{1}{2}) = \omega_1 \} = \omega_1 \le \omega_1.$

That is $f^{-1}(\rho_1)$ is an $(\frac{1}{2}, \frac{1}{2}) - \alpha^m$ -gf-closed set in X implies that df contra α^m -g c. But, $f^{-1}(\rho_1) = (p0.4, q0.7) \le \omega_2$, $I_{\tau_x,\tau_x*}(C_{\tau_x,\tau_x*}(f^{-1}(\rho_1), \frac{1}{2}, \frac{1}{2})\frac{1}{2}, \frac{1}{2}) = I_{\tau_x,\tau_x*}((0.4, 0.5), \frac{1}{2}, \frac{1}{2}) = \omega_1 \not\le \omega_2$. $f^{-1}(\rho_1)$ is not $(\frac{1}{2}, \frac{1}{2}) - f\alpha^m$ -closed set in X implies that f is not df-contra $\alpha^m - c$ function.

Theorem 3.18: A function $f: X \to Y$ is a df-contra α^m -g c function if and only if $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -g f open set in X, for each $\tau_Y(1 - \delta) \ge r_1, \tau_Y * (1 - \delta) \le s_1$. **Proof:** Let $\tau_Y(1 - \delta) \ge r_1, \tau_Y * (1 - \delta) \le s_1$. Then $\tau_Y(\delta) \ge r_1, \tau_Y * (\delta) \le s_1$. Since, f is df-contra α^m -g c function, so $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -g f closed set in X. Hence $1 - f^{-1}(\delta) = f^{-1}(1 - \delta)$ is an $(r_1, s_1) - \alpha^m$ -g f open set in X. Conversely $\tau_Y(\delta) \ge r_1, \tau_Y * (\delta) \le s_1$. Then $\tau_Y(1 - \delta) \ge r_1, \tau_Y * (1 - \delta) \le s_1$. Therefore $f^{-1}(1 - \delta)$ is an $(r_1, s_1) - \alpha^m$ -g f open set in X. $f^{-1}(1 - \delta) = 1 - f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -g f open set in X.

g f closed set in X. Thus f is df-contra α^m -g c function.

Theorem 3.19: Let $f : X \to Y$ be a df-contra α^m -g c function and $g : Y \to Z$ a df- continuous function. Then gof is df-contra α^m -g c function.

Proof: Let $\tau_Z(\delta) \ge r_1, \tau_Z * (\delta) \le s_1$. Since g is df- continuous, $\tau_Y(g^{-1}(\delta)) \ge r_1, \tau_Y * (g^{-1}(\delta)) \le s_1$. And, since f df-contra α^m -g c function. So, $f^{-1}(g^{-1}(\delta)) = (gof)^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -g f closed set in X. Therefore gof is df-contra α^m -g c function.

Theorem 3.20: Let $f: X \to Y$ be df-contra α^m -g c function and $g: Y \to Z$ a df-contra continuous function. Then gof is df-contra α^m -g c function. **Proof:** Let $\tau_Z(\delta) \ge r_1, \tau_Z * (\delta) \le s_1$. Since g is df- contra- continuous function then $\tau_Y(1-g^{-1}(\delta)) \ge r_1, \tau_Y * (1-g^{-1}(\delta)) \le s_1$. And, since f is df-contra α^m -g c function. then $f^{-1}(g^{-1}(\delta)) = (gof)^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -g f closed set in X.

Therefore gof is df-contra α^m -g c function.

Theorem 3.21: Suppose $f : X \to Y$ is df-contra α^m -g irr function and $g: Y \to Z$ is df-contra α^m -g c function. Then gof is df-contra α^m -g c function.

Proof: Let $\tau_Z(\delta) \ge r_1$, $\tau_Z * (\delta) \le s_1$. Since g is df-contra α^m -g c function then $g^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -g f closed set in Y. And, since f is df-contra α^m -g irr function.

Then $f^{-1}(g^{-1}(\delta)) = (gof)^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -g f closed set in X. Therefore gof is df-contra α^m -g c function.

Theorem 3.22: Let $f : X \to Y$ be df- continuous function. If f an $(r_1, s_1) - \alpha^m$ -g f open set in X is equal to $(r_1, s_1) - \alpha^m$ -g f closed set in X, then f is df-contra α^m -g c function.

Proof: Let $\tau_Y(\delta) \ge r_1$, $\tau_Y * (\delta) \le s_1$, so $\tau_Y(f^{-1}(\delta)) \ge r_1$, $\tau_X * (f^{-1}(\delta)) \le s_1$

Since every (r_1, s_1) -f open set is an $(r_1, s_1) - \alpha^m$ -g f open set, then $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -g f open set in X. Thus $f^{-1}(\delta)$ is an $(r_1, s_1) - \alpha^m$ -g f closed set in X.

Therefore, f is df-contra α^m -g c function.

1318

References

- [1] L. A. Zadeh, Fuzzy sets, Information and Control, 8, (1965), 338-353.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24,(1968), 182–190.
- [3] D. Coke, M. Dimirci, An introduction to intuitionistic fuzzy topological spaces in Sostak sense, Buseful, 67, (1996), 67–76.
- [4] J. G. Garcia, S. E. Rodabaugh, Order-theoretic, topological, categorical redundancides of interval-valued sets, grey sets, vague sets, intervalvalued intuitionistic sets, intuitionistic fuzzy sets and topologies, Fuzzy sets and System, 156, (2005), 445–484.
- [5] A. Ghareeb, Normality of double fuzzy topological spaces, Applied Math. Letters, 24, (2011), 533–540.
- [6] A. D. Kalamain, K. Sakthivl, C. S. Gowri, Generalized alpha closed sets in intuitionistic fuzzy topological spaces, Applied Mathematical Sciences 94, no. 6, (2012), 4691–4700.
- [7] S. E. Abbas, (r, s)-generalized intuitionistic fuzzy closed set, Journal of the Egyptian Mathematical Society, 14, (2006), 331–351.
- [8] F. M. Mohammed, M. S. M. Noorani, A. Ghareeb, Slightly double fuzzy continuous functions, Journal of the Egyptian Mathematical Society, 23, no. 1, (2015), 173–179.
- [9] F. M. Mohammed, S. I. Abdullah, S. H. Obaid, (p,q)-Fuzzy alpha^mclosed sets in double fuzzy topological spaces, Diyala Journal for Pure Sciences, 14, no. 1, (2017), 110–128.
- [10] Fatimah M. Mohammed, Sanaa I. Abdullah, Some Types of Continuous Functions Via (r_0, s_1) -fuzzy $\alpha^m c$ losed Sets, Tikrit Journal of Pure Sciences, (2017).
- [11] Sanaa I. Abdullah, The continuity in double fuzzy topological spaces Via $\alpha^m c$ losed Sets, Master Thesis, Tikrit University, (2018).