Contra Continuity on Double Fuzzy Topological Space

Taha H. Jasim ${ }^{1}$, Sanaa I. Abdullah ${ }^{1}$, Kanayo Stella Eke ${ }^{2}$
${ }^{1}$ Department of Mathematics
College of Computer Science and Mathematics
Tikrit University
Tikrit, Iraq
${ }^{2}$ Department of Mathematics
Faculty of Science
University of Lagos
Lagos, Nigeria

email: tahahameed91@gmail.com, sanaibrahem2@gmail.com, skanayo@unilag.edu.ng
(Received August 7, 2020, Accepted September 15, 2020)

Abstract

In this paper, we introduce a new class of contra continuity namely double fuzzy contra continuity (for short df contra c), double fuzzy contra α^{m} - continuity (for short df contra $\alpha^{m}-c$), and double fuzzy contra α^{m}-generalized continuity (for short df contra α^{m}-gc). The relationship among them is studied and some basic properties are proved.

1 Introduction

After Zadeh [1] in 1965 developed the concept of fuzzy sets, Chang [2] in 1968 introduced a fuzzy topological concept through the use of fuzzy sets. Later Coker and Dimirci [3] in 1996 generalized fuzzy topological space by introducing the term intuitionistic. In 2005, Garcia and Rodabaugh [4] further

Key words and phrases: Double fuzzy topology, double fuzzy contra α^{m} - continuous function, double fuzzy α^{m}-open function, double fuzzy contra α^{m}-generalized continuous.
AMS (MOS) Subject Classifications: 54A40.
ISSN 1814-0432, 2020, http://ijmcs.future-in-tech.net
generalized fuzzy intuitionistic topological space to double fuzzy topological space by replacing the term intuitionistic with the term double. Mohammed et al. [9] in 2017 presented and studied the concept ($r 1, s 1$) - α^{m}-fuzzy closed sets in double fuzzy topological spaces. In the same year, they generalized and studied some types of functions across $(r 1, s 1)-\alpha^{m}$-fuzzy closed sets ([10], [11]) by introducing the notions of α^{m} - continuous and α^{m}-generalized continuous in double fuzzy topological space.
In this paper, we present a concept of contra-closed set in double fuzzy topological space and provide a study of different types of functions by utilizing this concept. Illustrative examples are provided.

2 Preliminaries

In this section, we give some basic definitions that are useful to our research. Definition 2.1 [4]: A double fuzzy topology ($\left.\tau_{X}, \tau_{X} *\right)$ on a non-empty set X is a pair of functions $\tau_{X}, \tau_{X} *: I^{X} \rightarrow \mathrm{I}$, which satisfies the following properties:
(i) $\tau_{X}\left(\delta_{1}\right) \leq 1-\tau_{X} *\left(\delta_{1}\right)$ for each $\delta_{1} \in I^{X}$.
(ii) $\tau_{X}\left(\delta_{1} \cap \delta_{2}\right) \geq \tau_{X}\left(\delta_{1}\right) \cap \tau_{X}\left(\delta_{2}\right)$ and $\tau_{X} *\left(\delta_{1} \cap \delta_{2}\right) \leq \tau_{X} *\left(\delta_{1}\right) \cup \tau_{X} *\left(\delta_{2}\right)$ for each $\delta_{1}, \delta_{2} \in I^{X}$.
(ii) $\tau_{X}\left(\cup_{1}^{i} \delta_{i}\right) \geq \cap_{1}^{i} \tau_{X}\left(\delta_{i}\right)$ and $\tau_{X} *\left(\cup_{1}^{i} \delta_{i}\right) \leq \cup_{1}^{i} \tau_{X} *\left(\delta_{i}\right)$ for each $\delta_{i} \in I^{X}$, $i \in \mathbb{N}$.

The triplex $\left(X, \tau_{X}, \tau_{X} *\right)$ is called a double fuzzy topological spaces (dfts, for short), $\tau_{X}\left(\delta_{1}\right)$ and $\tau_{X} *\left(\delta_{1}\right)$ may be interpreted as a gradation of openness and gradation of non-openness for δ_{1}.

Definition $2.2[4,8]$: Let X be a dfts, then, for each $r_{1} \in I_{r 1}, s_{1} \in I_{s 1}$ and $\delta \in I^{X}$, we define the double fuzzy closure and interior operator $C_{\tau_{x}, \tau_{x} *}$: $I^{X} \times I_{r_{1}} \times I_{s_{1}} \rightarrow I^{X}$ as follows: $C_{\tau_{x}, \tau_{x} *}\left(\delta, r_{1}, s_{1}\right)=\cap\left\{\lambda \in I^{X}: \delta \leq \lambda, \tau_{X}(1-\lambda) \geq r_{1}, \tau_{X} *(1-\lambda) \leq s_{1}\right\}$.
$I_{\tau_{x}, \tau_{x} *}\left(\delta, r_{1}, s_{1}\right)=\cup\left\{\lambda \in I^{X}: \lambda \leq \delta, \tau_{X}(\lambda) \geq r_{1}, \tau_{X} *(\lambda) \leq s_{1}\right\}$.
Definition 2.3: Let X be a dfts $\delta, \lambda \in I^{X}, r_{1} \in I_{r 1}$ and $s_{1} \in I_{s 1}$. A
fuzzy set δ is said to be:
(1) An $\left(r_{1}, s_{1}\right)$-fuzzy open set [8] ($\left(r_{1}, s_{1}\right)$-fo, for short) if $\tau_{X}(\delta) \geq r_{1}$ and $\tau_{X} *(\delta) \leq s_{1}$. A fuzzy set δ is called an $\left(r_{1}, s_{1}\right)$-fuzzy closed set if $\tau_{X}(1-\delta) \geq r_{1}$ and $\tau_{X} *(1-\delta) \leq s_{1}$.
(2) An $\left(r_{1}, s_{1}\right)$-fuzzy α-open set ([5], [6]) ($\left(r_{1}, s_{1}\right)$-f α-open, for short), if $\lambda \leq$ $I_{\tau_{x}, \tau_{x} *}\left(C_{\tau_{x}, \tau_{x} *}\left(I_{\tau_{x}, \tau_{x} *}\left(\lambda, r_{1}, s_{1}\right), r_{1}, s_{1}\right), r_{1}, s_{1}\right)$ and an $\left(r_{1}, s_{1}\right)$-fuzzy α-closed set $\left(\left(r_{1}, s_{1}\right)\right.$-f α-closed, for short), if $C_{\tau_{x}, \tau_{x} *}\left(I_{\tau_{x}, \tau_{x} *}\left(C_{\tau_{x}, \tau_{x} *}\left(\lambda, r_{1}, s_{1}\right), r_{1}, s_{1}\right), r_{1}, s_{1}\right) \leq$ λ.
(3) An $\left(r_{1}, s_{1}\right)$-generalized fuzzy-closed set [7] ($\left(r_{0}, s_{1}\right)$-gf-closed, for short) if $C_{\tau_{x}, \tau_{x} *}\left(\delta, r_{1}, s_{1}\right) \leq \lambda$, whenever $\delta \leq \lambda, \tau_{X}(\lambda) \geq r_{1}, \tau_{X} *(\lambda) \leq s_{1} . \delta$ is called $\left(r_{1}, s_{1}\right)$-generalized fuzzy open ($\left(r_{1}, s_{1}\right)$-gf-open, for short) if and only if $1-\delta$ is $\left(r_{1}, s_{1}\right)$-gf-closed set.
(4) An $\left(r_{1}, s_{1}\right)$-fuzzy $\alpha^{m}-c$ losed sets $\left(\left(r_{1}, s_{1}\right)-f \alpha^{m}\right.$-closed, for short) ([9],[11]) if and only if $I_{\tau_{x}, \tau_{x} *}\left(C_{\tau_{x}, \tau_{x} *}\left(\delta, r_{1}, s_{1}\right) r_{1}, s_{1}\right) \leq \lambda$, whenever $\delta \leq \lambda$ and λ is $\left(r_{1}, s_{1}\right)-\alpha$-open. δ is called $\left(r_{1}, s_{1}\right)-f \alpha^{m}$-open if and only if $1-\delta$ is $\left(r_{1}, s_{1}\right)-\alpha^{m}$-closed.
(5) An $\left(r_{1}, s_{1}\right)-\alpha^{m}$-generalized fuzzy-closed set $\left(\left(r_{1}, s_{1}\right)-\alpha^{m}\right.$-gf-closed, for short) ([9], [11]). If $\alpha^{m} C_{\tau_{x}, \tau_{x} *}\left(\delta, r_{1}, s_{1}\right) \leq \lambda$ such that $\delta \leq \lambda$ and λ is $\left(r_{1}, s_{1}\right)-f \alpha^{m}$-open set. δ is called $\left(r_{1}, s_{1}\right)-\alpha^{m}$-generalized fuzzy-open set $\left(\left(r_{1}, s_{1}\right)-\alpha^{m}\right.$-gf-open, for short) if and only if $1-\delta$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-gf closed set.

Definition $2.4[9,11]$: If X is a double fuzzy topological space, for each $\delta, \lambda \in I^{X}, r_{1} \in I_{r_{1}}$ and $s_{1} \in I_{s_{1}}$, then the α^{m}-closure and α^{m}-Interior operator of δ is defined as:
$\alpha^{m} C_{\tau_{x}, \tau_{x} *}\left(\delta, r_{1}, s_{1}\right)=\cap\left\{\lambda \in I^{X}: \delta \leq \lambda, \lambda\right.$ is $\left(r_{1}, s_{1}\right)-f \alpha^{m}-$ closed $\}$.
$\alpha^{m} I_{\tau_{x}, \tau_{x} *}\left(\delta, r_{1}, s_{1}\right)=\cup\left\{\lambda \in I^{X}: \delta \geq \lambda, \lambda\right.$ is $\left.\left(r_{1}, s_{1}\right)-f \alpha^{m}-o p e n\right\}$.
Definition 2.5 : Let a function $f: X \rightarrow Y$, whenever $r_{1} \in I_{r_{1}}$ and $s_{1} \in I_{s_{1}}$. Then f is said to be:
(1) A double fuzzy continuous (see [8]) if and only if $\tau_{X}\left(f^{-1}(\delta)\right) \geq \tau_{Y}(\delta)$ and $\tau_{X} *\left(f^{-1}(\delta)\right) \leq \tau_{Y} *(\delta)$ for each $\delta \in I^{Y}$.
(2) A double fuzzy- $\alpha^{m}-$ continuous (df- $\alpha^{m}-c$, for short) ([10], [11]) if $f^{-1}(\delta)$
is an $\left(r_{1}, s_{1}\right)-f \alpha^{m}$-open such that $\tau_{Y}(\delta) \geq r_{1}$ and $\tau_{Y} *(\delta) \leq s_{1}$.
(3) A double fuzzy- α^{m}-open (df- α^{m}-open, for short) (see [10], [11]) if $f(\delta)$ is $\operatorname{an}\left(r_{1}, s_{1}\right)-f \alpha^{m}$-open in Y for each $\tau_{X}(\delta) \geq r_{1}$ and $\tau_{X} *(\delta) \leq s_{1}$.
(4) A double fuzzy- α^{m}-generalized continuous (df- α^{m}-gc, for short)(see[10],[11]) if for each $\tau_{Y}(1-\delta) \geq r_{1}$ and $\tau_{Y} *(1-\delta) \leq s_{1}\left[\tau_{Y}(\delta) \geq r_{1}, \tau_{Y} *(\delta) \leq s_{1}\right]$, $f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-gf-closed set [$\left(r_{1}, s_{1}\right)-\alpha^{m}$-gf-open set], whenever $\delta \in I^{Y}$.

3 Contra continuous function

In this section, we define the concept of double fuzzy contra-continuous function and provide some examples.
Definition 3.1: A function $f: X \rightarrow Y$ is called a double fuzzy contracontinuous if $f^{-1}(\delta)$ is $\left(r_{1}, s_{1}\right)-f$ closed set in X for each $\left(r_{1}, s_{1}\right)$-f open δ set in Y.
Example 3.2: Let $X=\{p, q\}, Y=\{m, n\}$ with the fuzzy sets ω_{1}, ω_{2} on X. Then $\left(\tau_{X}(\omega), \tau_{X} *(\omega)\right)$ is define as:

$$
\begin{gathered}
\tau_{X}(\omega)=\left\{\begin{array}{cc}
1, & \text { if } \omega \in\{0,1\} \\
\frac{1}{2}, & \text { if } \omega(x)=\omega_{1} \\
\frac{1}{4}, & \text { if } \omega(x)=\omega_{2} \\
0, & \text { otherwise }
\end{array}\right. \\
\tau_{X} *(\omega)=\left\{\begin{array}{cc}
0, & \text { if } \omega \in\{0,1\} \\
\frac{1}{2}, & \text { if } \omega(x)=\omega_{1} \\
\frac{3}{4}, & \text { if } \omega(x)=\omega_{2} \\
1, & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

such that
$\omega_{1}(p)=0.4, \omega_{1}(q)=0.4$, and $\omega_{2}(p)=0.6 \omega_{2}(q)=0.6$.
Also, take fuzzy set ρ and defined $\left(\tau_{Y}(\rho), \tau_{Y} *(\rho)\right)$ on Y by:

$$
\tau_{Y}(\rho)=\left\{\begin{array}{lc}
1, & \text { if } \rho \in\{0,1\} \\
\frac{1}{2}, & \text { if } \rho(Y)=\rho_{1} \\
0, & \text { otherwise }
\end{array}\right.
$$

$$
\tau_{Y} *(\rho)=\left\{\begin{array}{lc}
0, & \text { if } \rho \in\{0,1\} \\
\frac{1}{2}, & \text { if } \rho(Y)=\rho_{1} \\
1, & \text { otherwise }
\end{array}\right.
$$

such that $\rho(m)=0.6$ and $\rho(n)=0.6$.
Let $\left(\tau_{X}(\omega), \tau_{X} *(\omega)\right)$ and $\left(\tau_{Y}(\rho), \tau_{Y} *(\rho)\right)$ be two double fuzzy topological spaces and a function $f: X \rightarrow Y$ is define by:
$f(p)=m$ and $f(q)=n$.
Then $\tau_{Y}(\rho) \geq \frac{1}{2}, \tau_{Y} *(\rho) \leq \frac{1}{2}, f^{-1}(\rho)=\omega_{2}$ and $\tau_{X}\left(1-f^{-1}(\rho)\right) \geq \frac{1}{2}$, $\tau_{X} *\left(1-f^{-1}(\rho)\right) \leq \frac{1}{2}$.

Now the concept of a double fuzzy contra α^{m} - continuous function is define by:
Definition 3.3: A function $f: X \rightarrow Y$ is called a double fuzzy contra α^{m} - continuous (df contra $\alpha^{m}-c$, for short) function if $f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}-f$ closed set in X for each $\left(r_{1}, s_{1}\right)$-f open δ set in Y.

Example 3.4: Take the sets X, Y and fuzzy sets $\omega_{1}, \omega_{2}, \rho$. Define double fuzzy topological spaces $\left(\tau_{X}(\omega), \tau_{X} *(\omega)\right)$ and $\left(\tau_{Y}(\rho), \tau_{Y} *(\rho)\right)$ as in Example 3.2 .

Now, $f^{-1}(\rho)=\omega_{2} \leq 1$
$\left.I_{\tau_{x}, \tau_{x} *}\left(C_{\tau_{x}, \tau_{x} *}\left(f^{-1} \bar{\rho}\right)=\omega_{2}, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{2}, \frac{1}{2},\right)=I_{\tau_{x}, \tau_{x} *}\left(\omega_{1}, \frac{1}{2}, \frac{1}{2}\right)=\omega_{2} \leq 1$.
So $\left(f^{-1}(\rho)\right.$ is an $\left(\frac{1}{2}, \frac{1}{2}\right)-f \alpha^{m}$-closed set. Thus f is df contra $\alpha^{m}-c$ function.
Theorem 3.5: Let $f: X \rightarrow Y$ be a function. Then f is df contra $\alpha^{m}-c$ function if and only if for each $\left(r_{1}, s_{1}\right)$-f closed set δ in $\mathrm{Y}, f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-f open set in X.
Proof: Let $\tau_{Y}(1-\delta) \geq r_{1}, \tau_{Y} *(1-\delta) \leq s_{1}$, then $\tau_{Y}(\delta) \geq r_{1}, \tau_{Y} *(\delta) \leq s_{1}$. Since f is df contra $\alpha^{m}-c$ function, so $f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-f closed set in X. Hence, $1-f^{-1}(\delta)=f^{-1}(1-\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-f open set in X.

Conversely, let $\tau_{Y}(\delta) \geq r_{1}, \tau_{Y} *(\delta) \leq s_{1}$. Then $\tau_{Y}(1-\delta) \geq r_{1}, \tau_{Y} *(1-\delta) \leq s_{1}$. $f^{-1}(1-\delta)=1-f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}-f$ open set in X. Therefore, $f^{-1}(1-\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}-f$ open set in X. Hence $f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}-f$ closed set in X. That is f is df contra $\alpha^{m}-c$ function.

Theorem 3.6: Let $f: X \rightarrow Y$ be a function. Then the following state-
ments are equivalent.
(1) f is df-contra $\alpha^{m}-c$ function.
(2) For each $\left(r_{1}, s_{1}\right)-f$ closed set $\delta, f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}-f$ open set.
(3) For each $\left(r_{1}, s_{1}\right)$-f open set ω in $\mathrm{Y}, f^{-1}(\omega)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-f closed set.

Proof: $(1) \longrightarrow(2)$ by theorem $3.5(2) \longrightarrow(3)$
Let $\tau_{Y}(\delta) \geq r_{1}, \tau_{Y} *(\delta) \leq s_{1}$. Put $\delta=1-\omega$.
Then $\tau_{Y}(1-\delta) \geq r_{1}, \tau_{Y} *(1-\delta) \leq s_{1}$, then by $(2), f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}-\mathrm{f}$ open set.
$f^{-1}(\delta)=f^{-1}(1-\omega)=1-f^{-1}(\omega)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-f open set. That is $f^{-1}(\omega)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}-f$ closed set. (3) $\longrightarrow(1)$ Its proved by definition (2.1).

Theorem 3.7: Suppose $f: X \rightarrow Y$ is a df-contra $\alpha^{m}-c$ function and $g: Y \rightarrow Z$ is df- continuous then gof is df-contra $\alpha^{m}-c$ function.
Proof: Let $\tau_{Z}(\delta) \geq r_{1}, \tau_{Z} *(\delta) \leq s_{1}$, since g is df-continuous, so $\tau_{Y}\left(g^{-1}(\delta)\right) \geq$ $r_{1}, \tau_{Y} *\left(g^{-1}(\delta)\right) \leq s_{1}$.
Since f is a df-contra $\alpha^{m}-c$ function, then $f^{-1}\left(g^{-1}(\delta)\right)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}-f$ closed set.
Thus gof is df-contra $\alpha^{m}-c$ function.
Theorem 3.8: Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be a function, if f is df- α^{m} irr function and g is df-contra $\alpha^{m}-c$ function, then gof is df-contra $\alpha^{m}-c$ function. Proof: Let $\tau_{Z}(\delta) \geq r_{1}, \tau_{Z} *(\delta) \leq s_{1}$, and since g is df-contra $\alpha^{m}-c$ function, so $g^{-1}(\delta)$ is is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-f closed set in Y.
Since f is df- α^{m} irr function, then $f^{-1}\left(g^{-1}(\delta)\right)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$ - f closed set in X .
$f^{-1}\left(g^{-1}(\delta)\right)=g \circ f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-f closed set.
Therefore gof is df-contra $\alpha^{m}-c$ function.
Theorem 3.9: Let $f: X \rightarrow Y$ be a surjective df- α^{m}-open function and $g: Y \rightarrow Z$ is a function such that gof is df-contra $\alpha^{m}-c$ function then g is df- contra $\alpha^{m}-c$ function.
Proof: Let $\tau_{Z}(1-\delta) \geq r_{1}, \tau_{Z} *(1-\delta) \leq s_{1}$, since gof is df-contra $\alpha^{m}-c$ function.
then $f^{-1}\left(g^{-1}(\delta)\right)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-f open set in X and since f is surjective df- α^{m}-open function.
Then $f\left(f^{-1}\left(g^{-1}(\delta)\right)\right)=g^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-f open set in Y, such that $\tau_{Z}(1-\delta) \geq r_{1}, \tau_{Z} *(1-\delta) \leq s_{1}$. Therefore g is df- contra $\alpha^{m}-c$ function.

Definition 3.10: A function $f: X \rightarrow Y$ is called double fuzzy contra α^{m}-generalized continuous (df contra $\alpha^{m}-\mathrm{g}$ c) function if and only if $f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f closed set in X, for each $\tau_{Y}(\delta) \geq r_{1}, \tau_{Y} *(\delta) \leq s_{1}$.

Example 3.11: Let $X=\{p, q\}, Y=\{m, n\}$ with the fuzzy sets ω_{1}, ω_{2}. and we define $\left(\tau_{X}(\omega), \tau_{X} *(\omega)\right)$ on X by:

$$
\begin{gathered}
\tau_{X}(\omega)=\left\{\begin{array}{cc}
1, & \text { if } \omega \in\{0,1\} \\
\frac{1}{2}, & \text { if } \omega(x)=\omega_{1} \\
\frac{1}{4}, & \text { if } \omega(x)=\omega_{2} \\
0, & \text { otherwise }
\end{array}\right. \\
\tau_{X} *(\delta)=\left\{\begin{array}{cc}
0, & \text { if } \omega \in\{0,1\} \\
\frac{1}{2}, & \text { if } \omega(x)=\omega_{1} \\
\frac{3}{4}, & \text { if } \omega(x)=\omega_{2} \\
1, & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Also take fuzzy sets ρ_{1}, ρ_{2} and we define $\left(\tau_{Y}(\rho), \tau_{Y} *(\rho)\right)$ on Y by:

$$
\begin{gathered}
\tau_{Y}(\rho)=\left\{\begin{array}{lc}
1, & \text { if } \rho \in\{0,1\} \\
\frac{1}{2}, & \text { if } \rho(x)=\rho_{1} \\
\frac{1}{4}, & \text { if } \rho(x)=\rho_{2} \\
0, & \text { otherwise }
\end{array}\right. \\
\tau_{Y} *(\psi)=\left\{\begin{array}{lc}
0, & \text { if } \rho \in\{0,1\} \\
\frac{1}{2}, & \text { if } \rho(x)=\rho_{1} \\
\frac{3}{4}, & \text { if } \rho(x)=\rho_{2} \\
1, & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

such that

$$
\omega_{1}(p)=0.3, \omega_{1}(q)=0.4
$$

$\omega_{2}(p)=0.7, \omega_{2}(q)=0.6$
$p_{1}(m)=0.7, p_{1}(n)=0.8$,
$p_{2}(m)=0.3, p_{2}(n)=0.2$,
$\rho(m)=0.6$ and $\rho(n)=0.6$.
Let $\left(\tau_{X}(\omega), \tau_{X} *(\omega)\right)$ and $\left(\tau_{Y}(\rho), \tau_{Y} *(\rho)\right)$ be two double fuzzy topological spaces and a function $f: X \rightarrow Y$ is define by:
$f(p)=m$ and $f(q)=n$.
Then $\tau_{Y}(\rho) \geq \frac{1}{2}, \tau_{Y} *(\rho) \leq \frac{1}{2}, f^{-1}\left(\rho_{1}\right)=(p 0.7, q 0.8), f^{-1}\left(\rho_{1}\right) \leq \omega_{2}, \omega_{2}$ is an $\left(\frac{1}{2}, \frac{1}{2}\right)-f \alpha^{m}$ - closed set.
So, $\tau_{Y}(\rho) \geq \frac{1}{2}, \tau_{Y} *(\rho) \leq \frac{1}{2}, f^{-1}\left(\rho_{1}\right)=(p 0.7, q 0.8) f^{-1}\left(\rho_{1}\right) \leq \omega_{2}, \omega_{2}$ is an $\left(\frac{1}{2}, \frac{1}{2}\right)-f \alpha^{m}$ - closed set.
. $\alpha^{m} C_{\tau_{x}, \tau_{x} *}\left(f^{-1}\left(\rho_{1}\right), \frac{1}{2}, \frac{1}{2}\right)=\cap\left\{\omega_{2} \in I^{X}: f^{-1}\left(\rho_{1}\right) \leq \omega_{2}, I_{\tau_{x}, \tau_{x} *}\left(C_{\tau_{x}, \tau_{x} *}\left(\omega_{2}, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{2}, \frac{1}{2}\right)=\right.$ $\left.\omega_{2}\right\}=\omega_{2} \leq \omega_{2}$. So, $f^{-1}\left(\rho_{1}\right)$ is an $\left(\frac{1}{2}, \frac{1}{2}\right)-\alpha^{m}$-gf-closed set implies df contra α^{m}-gc.

Theorem 3.12: Every df-contra continuous is a df-contra $\alpha^{m}-\mathrm{g}$ c function. Proof: Let $f: X \rightarrow Y$ be a df-contra continuous, and let $\tau_{Y}(\delta) \geq r_{1}, \tau_{Y} *$ $(\delta) \leq s_{1}$.
So, $\tau_{X}\left(1-f^{-1}(\delta)\right) \geq r_{1}, \tau_{X} *\left(1-f^{-1}(\delta)\right) \leq s_{1}$.
Since, every $\left(r_{1}, s_{1}\right)$-f closed set is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f closed set, then $f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f closed set in X, for each $\tau_{Y}(\delta) \geq r_{1}, \tau_{Y} *(\delta) \leq s_{1}$.
Therefore f is df-contra $\alpha^{m}-\mathrm{g} \mathrm{c}$ function.
Remark 3.13: The converse of the theorem is not true. The following example proves it.
Example 3.14: See Example 3.12, f is a df-contra α^{m} - g c function, but f is not df-contra continuous.

Theorem 3.15: Every df-contra $\alpha^{m}-c$ function is a df-contra $\alpha^{m}-\mathrm{g}$ c function.
Proof: Let $f: X \rightarrow Y$ be a df-contra $\alpha^{m}-c$ function, and let $\tau_{Y}(\delta) \geq$ $r_{1}, \tau_{Y} *(\delta) \leq s_{1}$.
So, $f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-f closed set in X.
Since every $\left(r_{1}, s_{1}\right)-\alpha^{m}$-f closed set is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f closed set, then $f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f closed set in X, for each $\tau_{Y}(\delta) \geq r_{1}, \tau_{Y} *(\delta) \leq s_{1}$. Thus f is df-contra $\alpha^{m}-\mathrm{g}$ c function.

Remark 3.16: The converse of the theorem is not true. The following example shows it.

Example 3.17: Take the sets X, Y and dftss $\left(\tau_{X}(\omega), \tau_{X} *(\omega)\right)$ and $\left(\tau_{Y}(\rho), \tau_{Y} *\right.$ $(\rho))$ as in Example 3.12 such that, $\omega_{1}(p)=0.4, \omega_{1}(q)=0.5, \omega_{2}(p)=0.6$, $\omega_{2}(q)=0.7$, and $p_{1}(m)=0.4, p_{1}(n)=0.7, p_{2}(m)=0.4, p_{2}(n)=0.7$, $p_{3}(m)=0.6, p_{3}(n)=0.5$. Let $\left(\tau_{X}(\omega), \tau_{X} *(\omega)\right)$ and $\left(\tau_{Y}(\rho), \tau_{Y} *(\rho)\right)$ be two double fuzzy topological spaces and a function $f:\left(X, \tau_{X}, \tau_{X} *\right) \rightarrow\left(Y, \tau_{Y}, \tau_{Y} *\right)$ be define as:
$f(p)=m$ and $f(q)=n$.
$\operatorname{So}, \tau_{Y}(\rho) \geq \frac{1}{2}, \tau_{Y} *(\rho) \leq \frac{1}{2}, f^{-1}\left(\rho_{1}\right)=(p 0.4, q 0.7) \leq \omega_{1}$, then
$\alpha^{m} C_{\tau_{x}, \tau_{x} *}\left(f^{-1}\left(\rho_{1}\right), \frac{1}{2}, \frac{1}{2}\right)=\cap\left\{\omega_{1} \in I^{X}: f^{-1}\left(\rho_{1}\right) \leq \omega_{1}, I_{\tau_{x}, \tau_{x} *}\left(C_{\tau_{x}, \tau_{x} *}\left(\omega_{1}, \frac{1}{2}, \frac{1}{2}\right), \frac{1}{2}, \frac{1}{2}\right)=\right.$ $\left.I_{\tau_{x}, \tau_{x} *}\left((0.4,0.5), \frac{1}{2}, \frac{1}{2}\right)=\omega_{1}\right\}=\omega_{1} \leq \omega_{1}$.

That is $f^{-1}\left(\rho_{1}\right)$ is an $\left(\frac{1}{2}, \frac{1}{2}\right)-\alpha^{m}$-gf-closed set in X implies that df con$\operatorname{tra} \alpha^{m}$-g c. But, $f^{-1}\left(\rho_{1}\right)=(p 0.4, q 0.7) \leq \omega_{2}$,
$I_{\tau_{x}, \tau_{x} *}\left(C_{\tau_{x}, \tau_{x} *}\left(f^{-1}\left(\rho_{1}\right), \frac{1}{2}, \frac{1}{2}\right) \frac{1}{2}, \frac{1}{2}\right)=I_{\tau_{x}, \tau_{x} *}\left((0.4,0.5), \frac{1}{2}, \frac{1}{2}\right)=\omega_{1} \not \leq \omega_{2}$.
$f^{-1}\left(\rho_{1}\right)$ is not $\left(\frac{1}{2}, \frac{1}{2}\right)-f \alpha^{m}$-closed set in X implies that f is not df-contra $\alpha^{m}-c$ function.

Theorem 3.18: A function $f: X \rightarrow Y$ is a df-contra $\alpha^{m}-\mathrm{g}$ c function if and only if,$f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f open set in X, for each $\tau_{Y}(1-\delta) \geq$ $r_{1}, \tau_{Y} *(1-\delta) \leq s_{1}$.
Proof: Let $\tau_{Y}(1-\delta) \geq r_{1}, \tau_{Y} *(1-\delta) \leq s_{1}$.
Then $\tau_{Y}(\delta) \geq r_{1}, \tau_{Y} *(\delta) \leq s_{1}$.
Since, f is df-contra $\alpha^{m}-\mathrm{g}$ c function, so $f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}-\mathrm{g} \mathrm{f}$ closed set in X.
Hence $1-f^{-1}(\delta)=f^{-1}(1-\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f open set in X.
Conversely $\tau_{Y}(\delta) \geq r_{1}, \tau_{Y} *(\delta) \leq s_{1}$.
Then $\tau_{Y}(1-\delta) \geq r_{1}, \tau_{Y} *(1-\delta) \leq s_{1}$.
Therefore $f^{-1}(1-\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f open set in $\mathrm{X} . f^{-1}(1-\delta)=$ $1-f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f open set in X. So, $f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$ g f closed set in X. Thus f is df-contra $\alpha^{m}-\mathrm{g}$ c function.

Theorem 3.19: Let $f: X \rightarrow Y$ be a df-contra α^{m}-g c function and $g: Y \rightarrow Z$ a df- continuous function. Then gof is df-contra $\alpha^{m}-\mathrm{g}$ c function.
Proof: Let $\tau_{Z}(\delta) \geq r_{1}, \tau_{Z} *(\delta) \leq s_{1}$. Since g is df- continuous, $\tau_{Y}\left(g^{-1}(\delta)\right) \geq$ $r_{1}, \tau_{Y} *\left(g^{-1}(\delta)\right) \leq s_{1}$. And, since f df-contra $\alpha^{m}-\mathrm{g}$ c function.
So, $f^{-1}\left(g^{-1}(\delta)\right)=(g \circ f)^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}-\mathrm{g} \mathrm{f}$ closed set in X.

Therefore gof is df-contra $\alpha^{m}-\mathrm{g}$ c function.
Theorem 3.20: Let $f: X \rightarrow Y$ be df-contra α^{m}-g c function and $g: Y \rightarrow Z$ a df-contra continuous function. Then gof is df-contra $\alpha^{m}-\mathrm{g}$ c function.
Proof: Let $\tau_{Z}(\delta) \geq r_{1}, \tau_{Z} *(\delta) \leq s_{1}$. Since g is df- contra- continuous function then $\tau_{Y}\left(1-g^{-1}(\delta)\right) \geq r_{1}, \tau_{Y} *\left(1-g^{-1}(\delta)\right) \leq s_{1}$. And, since f is df-contra α^{m}-g c function. then $f^{-1}\left(g^{-1}(\delta)\right)=(g \circ f)^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f closed set in X.
Therefore gof is df-contra $\alpha^{m}-\mathrm{g}$ c function.
Theorem 3.21: Suppose $f: X \rightarrow Y$ is df-contra $\alpha^{m}-\mathrm{g}$ irr function and $g: Y \rightarrow Z$ is df-contra $\alpha^{m}-\mathrm{g}$ c function. Then gof is df-contra $\alpha^{m}-\mathrm{g}$ c function.
Proof: Let $\tau_{Z}(\delta) \geq r_{1}, \tau_{Z} *(\delta) \leq s_{1}$. Since g is df-contra α^{m}-g c function then $g^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}-\mathrm{g} \mathrm{f}$ closed set in Y. And, since f is df-contra $\alpha^{m}-\mathrm{g}$ irr function.
Then $f^{-1}\left(g^{-1}(\delta)\right)=(g \circ f)^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}-\mathrm{g} \mathrm{f}$ closed set in X.
Therefore gof is df-contra $\alpha^{m}-\mathrm{g}$ c function.
Theorem 3.22: Let $f: X \rightarrow Y$ be df- continuous function. If f an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f open set in X is equal to $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f closed set in X, then f is df-contra $\alpha^{m}-\mathrm{g}$ c function.
Proof: Let $\tau_{Y}(\delta) \geq r_{1}, \tau_{Y} *(\delta) \leq s_{1}$, so $\tau_{Y}\left(f^{-1}(\delta)\right) \geq r_{1}, \tau_{X} *\left(f^{-1}(\delta)\right) \leq s_{1}$
Since every $\left(r_{1}, s_{1}\right)$-f open set is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f open set, then $f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f open set in X. Thus $f^{-1}(\delta)$ is an $\left(r_{1}, s_{1}\right)-\alpha^{m}$-g f closed set in X.
Therefore, f is df-contra α^{m} - g c function.

References

[1] L. A. Zadeh, Fuzzy sets, Information and Control, 8, (1965), 338-353.
[2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24,(1968), 182-190.
[3] D. Coke, M. Dimirci, An introduction to intuitionistic fuzzy topological spaces in Sostak sense, Buseful, 67, (1996), 67-76.
[4] J. G. Garcia, S. E. Rodabaugh, Order-theoretic, topological, categorical redundancides of interval-valued sets, grey sets, vague sets, intervalvalued intuitionistic sets, intuitionistic fuzzy sets and topologies, Fuzzy sets and System, 156, (2005), 445-484.
[5] A. Ghareeb, Normality of double fuzzy topological spaces, Applied Math. Letters, 24, (2011), 533-540.
[6] A. D. Kalamain, K. Sakthivl, C. S. Gowri, Generalized alpha closed sets in intuitionistic fuzzy topological spaces, Applied Mathematical Sciences 94, no. 6, (2012), 4691-4700.
[7] S. E. Abbas, (r, s)-generalized intuitionistic fuzzy closed set, Journal of the Egyptian Mathematical Society,14, (2006), 331-351.
[8] F. M. Mohammed, M. S. M. Noorani, A. Ghareeb, Slightly double fuzzy continuous functions, Journal of the Egyptian Mathematical Society, 23, no. 1, (2015), 173-179.
[9] F. M. Mohammed, S. I. Abdullah, S. H. Obaid, (p, q)-Fuzzy alpha ${ }^{m}$ closed sets in double fuzzy topological spaces, Diyala Journal for Pure Sciences, 14, no. 1, (2017), 110-128.
[10] Fatimah M. Mohammed, Sanaa I. Abdullah, Some Types of Continuous Functions Via $\left(r_{0}, s_{1}\right)$-fuzzy $\alpha^{m}-c$ losed Sets, Tikrit Journal of Pure Sciences, (2017).
[11] Sanaa I. Abdullah, The continuity in double fuzzy topological spaces Via $\alpha^{m}-c$ losed Sets, Master Thesis, Tikrit University, (2018).

