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Abstract

In this paper, we introduce a new class of contra continuity namely
double fuzzy contra continuity (for short df contra c), double fuzzy
contra α

m- continuity (for short df contra α
m − c), and double fuzzy

contra α
m-generalized continuity (for short df contra α

m-gc). The
relationship among them is studied and some basic properties are
proved.

1 Introduction

After Zadeh [1] in 1965 developed the concept of fuzzy sets, Chang [2] in 1968
introduced a fuzzy topological concept through the use of fuzzy sets. Later
Coker and Dimirci [3] in 1996 generalized fuzzy topological space by intro-
ducing the term intuitionistic. In 2005, Garcia and Rodabaugh [4] further
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generalized fuzzy intuitionistic topological space to double fuzzy topological
space by replacing the term intuitionistic with the term double. Mohammed
et al. [9] in 2017 presented and studied the concept (r1, s1)−αm-fuzzy closed
sets in double fuzzy topological spaces. In the same year, they generalized
and studied some types of functions across (r1, s1) − αm-fuzzy closed sets
([10], [11]) by introducing the notions of αm−continuous and αm-generalized
continuous in double fuzzy topological space.
In this paper, we present a concept of contra-closed set in double fuzzy topo-
logical space and provide a study of different types of functions by utilizing
this concept. Illustrative examples are provided.

2 Preliminaries

In this section, we give some basic definitions that are useful to our research.
Definition 2.1 [4]: A double fuzzy topology (τX , τX∗) on a non-empty set X
is a pair of functions τX , τX∗ : IX →I, which satisfies the following properties:

(i) τX(δ1) ≤ 1− τX ∗ (δ1) for each δ1 ∈ IX .

(ii) τX(δ1 ∩ δ2) ≥ τX(δ1) ∩ τX(δ2) and
τX ∗ (δ1 ∩ δ2) ≤ τX ∗ (δ1) ∪ τX ∗ (δ2) for each δ1, δ2 ∈ IX .

(ii) τX(∪
i
1
δi) ≥ ∩i

1
τX(δi) and τX ∗ (∪i

1
δi) ≤ ∪i

1
τX ∗ (δi) for each δi ∈ IX ,

i ∈ N.

The triplex (X, τX , τX∗) is called a double fuzzy topological spaces (dfts,
for short), τX(δ1) and τX ∗(δ1) may be interpreted as a gradation of openness
and gradation of non-openness for δ1.

Definition 2.2 [4,8]: Let X be a dfts, then, for each r1 ∈ Ir1, s1 ∈ Is1
and δ ∈ IX , we define the double fuzzy closure and interior operator Cτx,τx∗ :
IX × Ir1 × Is1 → IX as follows:
Cτx,τx∗(δ, r1, s1) = ∩{λ ∈ IX : δ ≤ λ, τX(1− λ) ≥ r1, τX ∗ (1− λ) ≤ s1}.

Iτx,τx∗(δ, r1, s1) = ∪{λ ∈ IX : λ ≤ δ, τX(λ) ≥ r1, τX ∗ (λ) ≤ s1}.

Definition 2.3: Let X be a dfts δ, λ ∈ IX , r1 ∈ Ir1 and s1 ∈ Is1. A
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fuzzy set δ is said to be:
(1) An (r1, s1)-fuzzy open set [8] ((r1, s1)-fo, for short) if τX(δ) ≥ r1 and
τX∗(δ) ≤ s1. A fuzzy set δ is called an (r1, s1)-fuzzy closed set if τX(1−δ) ≥ r1
and τX ∗ (1− δ) ≤ s1.

(2) An (r1, s1)-fuzzy α-open set ([5], [6]) ( (r1, s1)-fα-open, for short), if λ ≤
Iτx,τx∗(Cτx,τx∗(Iτx,τx∗(λ, r1, s1), r1, s1), r1, s1) and an (r1, s1)-fuzzy α-closed set
((r1, s1)-fα-closed, for short), if Cτx,τx∗(Iτx,τx∗(Cτx,τx∗(λ, r1, s1), r1, s1), r1, s1) ≤
λ.

(3) An (r1, s1)-generalized fuzzy-closed set [7] ((r0, s1)-gf-closed, for short)
if Cτx,τx∗(δ, r1, s1) ≤ λ, whenever δ ≤ λ, τX(λ) ≥ r1, τX ∗ (λ) ≤ s1. δ is called
(r1, s1)-generalized fuzzy open ((r1, s1)-gf-open, for short ) if and only if 1−δ
is (r1, s1)-gf-closed set.

(4) An (r1, s1)-fuzzy α
m−closed sets ((r1, s1)−fα

m-closed, for short) ([9],[11])
if and only if Iτx,τx∗(Cτx,τx∗(δ, r1, s1)r1, s1) ≤ λ, whenever δ ≤ λ and λ is
(r1, s1) − α-open. δ is called (r1, s1) − fαm-open if and only if 1 − δ is
(r1, s1)− αm-closed.

(5) An (r1, s1) − αm-generalized fuzzy-closed set ((r1, s1) − αm-gf-closed,
for short) ([9], [11]). If αmCτx,τx∗(δ, r1, s1) ≤ λ such that δ ≤ λ and λ is
(r1, s1) − fαm-open set. δ is called (r1, s1) − αm-generalized fuzzy-open set
((r1, s1) − αm-gf-open, for short) if and only if 1 − δ is an (r1, s1) − αm -gf
closed set.

Definition 2.4 [9,11]: If X is a double fuzzy topological space, for each
δ, λ ∈ IX , r1 ∈ Ir1 and s1 ∈ Is1 , then the αm − closure and αm-Interior
operator of δ is defined as:
αmCτx,τx∗(δ, r1, s1) = ∩{λ ∈ IX : δ ≤ λ, λ is (r1, s1)− fαm − closed}.

αmIτx,τx∗(δ, r1, s1) = ∪{λ ∈ IX : δ ≥ λ, λ is (r1, s1)− fαm − open}.

Definition 2.5 : Let a function f : X → Y , whenever r1 ∈ Ir1 and s1 ∈ Is1 .
Then f is said to be:
(1) A double fuzzy continuous (see [8]) if and only if τX(f

−1(δ)) ≥ τY (δ) and
τX ∗ (f−1(δ)) ≤ τY ∗ (δ) for each δ ∈ IY .

(2) A double fuzzy-αm−continuous (df-αm−c, for short) ([10], [11]) if f−1(δ)
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is an (r1, s1)− fαm-open such that τY (δ) ≥ r1 and τY ∗ (δ) ≤ s1.

(3) A double fuzzy-αm-open (df-αm-open, for short) (see [10], [11]) if f(δ) is
an(r1, s1)− fαm-open in Y for each τX(δ) ≥ r1 and τX ∗ (δ) ≤ s1.

(4) A double fuzzy-αm-generalized continuous (df-αm-gc, for short)(see[10],[11])
if for each τY (1 − δ) ≥ r1 and τY ∗ (1 − δ) ≤ s1[τY (δ) ≥ r1, τY ∗ (δ) ≤ s1],
f−1(δ) is an (r1, s1)− αm-gf-closed set [(r1, s1) − αm-gf-open set], whenever
δ ∈ IY .

3 Contra continuous function

In this section, we define the concept of double fuzzy contra-continuous func-
tion and provide some examples.
Definition 3.1: A function f : X → Y is called a double fuzzy contra-
continuous if f−1(δ) is (r1, s1) − f closed set in X for each (r1, s1)-f open δ
set in Y .
Example 3.2: Let X = {p, q}, Y = {m,n} with the fuzzy sets ω1, ω2 on X .
Then (τX(ω), τX ∗ (ω)) is define as:

τX(ω) =



















1, if ω ∈ {0, 1}
1

2
, if ω(x) = ω1

1

4
, if ω(x) = ω2

0, otherwise

τX ∗ (ω) =



















0, if ω ∈ {0, 1}
1

2
, if ω(x) = ω1

3

4
, if ω(x) = ω2

1, otherwise

such that
ω1(p) = 0.4, ω1(q) = 0.4, and ω2(p) = 0.6 ω2(q) = 0.6.
Also, take fuzzy set ρ and defined (τY (ρ), τY ∗ (ρ)) on Y by:

τY (ρ) =











1, if ρ ∈ {0, 1}
1

2
, if ρ(Y ) = ρ1

0, otherwise
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τY ∗ (ρ) =











0, if ρ ∈ {0, 1}
1

2
, if ρ(Y ) = ρ1

1, otherwise

such that ρ(m) = 0.6 and ρ(n) = 0.6.
Let (τX(ω), τX ∗ (ω)) and (τY (ρ), τY ∗ (ρ)) be two double fuzzy topological
spaces and a function f : X → Y is define by:

f(p) = m and f(q) = n.
Then τY (ρ) ≥ 1

2
, τY ∗ (ρ) ≤ 1

2
, f−1(ρ) = ω2 and τX(1 − f−1(ρ)) ≥ 1

2
,

τX ∗ (1− f−1(ρ)) ≤ 1

2
.

Now the concept of a double fuzzy contra αm− continuous function is define
by:
Definition 3.3: A function f : X → Y is called a double fuzzy con-
tra αm − continuous (df contra αm − c, for short) function if f−1(δ) is an
(r1, s1)− αm − f closed set in X for each (r1, s1)-f open δ set in Y .

Example 3.4: Take the sets X, Y and fuzzy sets ω1, ω2, ρ. Define double
fuzzy topological spaces (τX(ω), τX ∗ (ω)) and (τY (ρ), τY ∗ (ρ)) as in Example
3.2.
Now,f−1(ρ) = ω2 ≤ 1
Iτx,τx∗(Cτx,τx∗(f

−1(ρ) = ω2,
1

2
, 1
2
)1
2
, 1
2
, ) = Iτx,τx∗(ω1,

1

2
, 1
2
) = ω2 ≤ 1 .

So (f−1(ρ) is an (1
2
, 1
2
)−fαm-closed set. Thus f is df contra αm− c function.

Theorem 3.5: Let f : X → Y be a function. Then f is df contra αm−c func-
tion if and only if for each (r1, s1)-f closed set δ in Y, f−1(δ) is an (r1, s1)−α

m-f
open set in X .
Proof: Let τY (1− δ) ≥ r1, τY ∗ (1− δ) ≤ s1, then τY (δ) ≥ r1, τY ∗ (δ) ≤ s1.
Since f is df contra αm− c function, so f−1(δ) is an (r1, s1)−αm-f closed set
in X. Hence, 1− f−1(δ) = f−1(1− δ) is an (r1, s1)− αm-f open set inX .

Conversely, let τY (δ) ≥ r1, τY ∗(δ) ≤ s1. Then τY (1−δ) ≥ r1, τY ∗(1−δ) ≤ s1.
f−1(1 − δ) = 1 − f−1(δ) is an (r1, s1) − αm − f open set in X . There-
fore, f−1(1 − δ) is an (r1, s1) − αm − f open set inX . Hence f−1(δ) is an
(r1, s1)− αm − f closed set inX . That is f is df contra αm − c function.

Theorem 3.6: Let f : X → Y be a function. Then the following state-
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ments are equivalent.
(1) f is df-contra αm − c function.
(2) For each (r1, s1)− f closed set δ, f−1(δ) is an (r1, s1)−αm − f open set.
(3) For each (r1, s1)-f open set ω in Y, f−1(ω) is an (r1, s1)−αm-f closed set.

Proof: (1) −→ (2) by theorem 3.5 (2) −→ (3)
Let τY (δ) ≥ r1, τY ∗ (δ) ≤ s1. Put δ = 1− ω.
Then τY (1−δ) ≥ r1, τY ∗(1−δ) ≤ s1, then by (2), f−1(δ) is an (r1, s1)−α

m-f
open set.
f−1(δ) = f−1(1 − ω) = 1 − f−1(ω) is an (r1, s1) − αm-f open set. That is
f−1(ω) is an (r1, s1)−αm− f closed set. (3) −→ (1) Its proved by definition
(2.1).

Theorem 3.7: Suppose f : X → Y is a df-contra αm − c function and
g : Y → Z is df- continuous then gof is df-contra αm − c function.
Proof: Let τZ(δ) ≥ r1,τZ ∗(δ) ≤ s1, since g is df-continuous, so τY (g

−1(δ)) ≥
r1, τY ∗ (g−1(δ)) ≤ s1.
Since f is a df-contra αm−c function, then f−1(g−1(δ)) is an (r1, s1)−α

m−f
closed set.
Thus gof is df-contra αm − c function.

Theorem 3.8: Let f : X → Y and g : Y → Z be a function, if f is
df-αm irr function and g is df-contra αm − c function, then gof is df-contra
αm−c function. Proof: Let τZ(δ) ≥ r1, τZ ∗(δ) ≤ s1, and since g is df-contra
αm − c function, so g−1(δ) is is an (r1, s1)− αm-f closed set in Y .
Since f is df- αm irr function, then f−1(g−1(δ)) is an (r1, s1)−αm-f closed set
in X.
f−1(g−1(δ)) = gof−1(δ) is an (r1, s1)− αm-f closed set.
Therefore gof is df-contra αm − c function.

Theorem 3.9: Let f : X → Y be a surjective df- αm-open function and
g : Y → Z is a function such that gof is df-contra αm − c function then g is
df- contra αm − c function.
Proof: Let τZ(1 − δ) ≥ r1, τZ ∗ (1 − δ) ≤ s1, since gof is df-contra αm − c

function.
then f−1(g−1(δ)) is an (r1, s1)− αm-f open set in X and since f is surjective
df- αm-open function.
Then f(f−1(g−1(δ))) = g−1(δ) is an (r1, s1)− αm-f open set in Y, such that
τZ(1− δ) ≥ r1, τZ ∗ (1− δ) ≤ s1. Therefore g is df- contra αm − c function.
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Definition 3.10: A function f : X → Y is called double fuzzy contra
αm-generalized continuous (df contra αm-g c) function if and only if f−1(δ)
is an (r1, s1)− αm-g f closed set in X , for each τY (δ) ≥ r1, τY ∗ (δ) ≤ s1.

Example 3.11: Let X = {p, q}, Y = {m,n} with the fuzzy sets ω1, ω2.
and we define (τX(ω), τX ∗ (ω)) on X by:

τX(ω) =



















1, if ω ∈ {0, 1}
1

2
, if ω(x) = ω1

1

4
, if ω(x) = ω2

0, otherwise

τX ∗ (δ) =



















0, if ω ∈ {0, 1}
1

2
, if ω(x) = ω1

3

4
, if ω(x) = ω2

1, otherwise

Also take fuzzy sets ρ1 , ρ2 and we define (τY (ρ), τY ∗ (ρ)) on Y by:

τY (ρ) =



















1, if ρ ∈ {0, 1}
1

2
, if ρ(x) = ρ1

1

4
, if ρ(x) = ρ2

0, otherwise

τY ∗ (ψ) =



















0, if ρ ∈ {0, 1}
1

2
, if ρ(x) = ρ1

3

4
, if ρ(x) = ρ2

1, otherwise

such that
ω1(p) = 0.3, ω1(q) = 0.4

ω2(p) = 0.7, ω2(q) = 0.6
p1(m) = 0.7, p1(n) = 0.8,
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p2(m) = 0.3, p2(n) = 0.2,

ρ(m) = 0.6 and ρ(n) = 0.6.
Let (τX(ω), τX ∗ (ω)) and (τY (ρ), τY ∗ (ρ)) be two double fuzzy topological
spaces and a function f : X → Y is define by:

f(p) = m and f(q) = n.
Then τY (ρ) ≥

1

2
, τY ∗ (ρ) ≤ 1

2
, f−1(ρ1) = (p0.7, q0.8), f−1(ρ1) ≤ ω2, ω2 is an

(1
2
, 1
2
)− fαm- closed set.

So, τY (ρ) ≥
1

2
, τY ∗ (ρ) ≤ 1

2
, f−1(ρ1) = (p0.7, q0.8) f−1(ρ1) ≤ ω2, ω2 is an

(1
2
, 1
2
)− fαm- closed set.

. αmCτx,τx∗(f
−1(ρ1),

1

2
, 1
2
) = ∩{ω2 ∈ IX : f−1(ρ1) ≤ ω2, Iτx,τx∗(Cτx,τx∗(ω2,

1

2
, 1
2
)1
2
, 1
2
) =

ω2} = ω2 ≤ ω2. So, f
−1(ρ1) is an (1

2
, 1
2
)− αm-gf-closed set implies df contra

αm-gc.

Theorem 3.12: Every df-contra continuous is a df-contra αm-g c function.
Proof: Let f : X → Y be a df-contra continuous, and let τY (δ) ≥ r1,τY ∗
(δ) ≤ s1.
So, τX(1− f−1(δ)) ≥ r1, τX ∗ (1− f−1(δ)) ≤ s1.
Since, every (r1, s1)-f closed set is an (r1, s1)−αm-g f closed set, then f−1(δ)
is an (r1, s1)− αm-g f closed set in X , for each τY (δ) ≥ r1,τY ∗ (δ) ≤ s1.
Therefore f is df-contra αm-g c function.

Remark 3.13: The converse of the theorem is not true. The following
example proves it.
Example 3.14: See Example 3.12, f is a df-contra αm-g c function, but f is
not df-contra continuous.

Theorem 3.15: Every df-contra αm − c function is a df-contraαm-g c func-
tion.
Proof: Let f : X → Y be a df-contra αm − c function, and let τY (δ) ≥
r1,τY ∗ (δ) ≤ s1.
So,f−1(δ) is an (r1, s1)− αm-f closed set in X .
Since every (r1, s1) − αm-f closed set is an (r1, s1) − αm-g f closed set, then
f−1(δ) is an (r1, s1)−α

m-g f closed set in X , for each τY (δ) ≥ r1,τY ∗(δ) ≤ s1.
Thus f is df-contra αm-g c function.

Remark 3.16: The converse of the theorem is not true. The following
example shows it.



Contra Continuity on Double Fuzzy Topological Space 1317

Example 3.17: Take the setsX , Y and dftss (τX(ω), τX∗(ω)) and (τY (ρ), τY ∗
(ρ)) as in Example 3.12 such that, ω1(p) = 0.4 , ω1(q) = 0.5, ω2(p) = 0.6,
ω2(q) = 0.7, and p1(m) = 0.4 , p1(n) = 0.7, p2(m) = 0.4, p2(n) = 0.7,
p3(m) = 0.6, p3(n) = 0.5. Let (τX(ω), τX ∗ (ω)) and (τY (ρ), τY ∗ (ρ)) be two
double fuzzy topological spaces and a function f : (X, τX , τX∗) → (Y, τY , τY ∗)
be define as:
f(p) = m and f(q) = n.

So,τY (ρ) ≥
1

2
,τY ∗ (ρ) ≤ 1

2
, f−1(ρ1) = (p0.4, q0.7) ≤ ω1, then

αmCτx,τx∗(f
−1(ρ1),

1

2
, 1
2
) = ∩{ω1 ∈ IX : f−1(ρ1) ≤ ω1, Iτx,τx∗(Cτx,τx∗(ω1,

1

2
, 1
2
), 1

2
, 1
2
) =

Iτx,τx∗((0.4, 0.5),
1

2
, 1
2
) = ω1} = ω1 ≤ ω1.

That is f−1(ρ1) is an (1
2
, 1
2
) − αm-gf-closed set in X implies that df con-

tra αm-g c. But, f−1(ρ1) = (p0.4, q0.7) ≤ ω2,
Iτx,τx∗(Cτx,τx∗(f

−1(ρ1),
1

2
, 1
2
)1
2
, 1
2
) = Iτx,τx∗((0.4, 0.5),

1

2
, 1
2
) = ω1 � ω2.

f−1(ρ1) is not (1
2
, 1
2
) − fαm-closed set in X implies that f is not df-contra

αm − c function.

Theorem 3.18: A function f : X → Y is a df-contra αm-g c function if and
only if ,f−1(δ) is an (r1, s1) − αm-g f open set in X , for each τY (1 − δ) ≥
r1,τY ∗ (1− δ) ≤ s1.
Proof: Let τY (1− δ) ≥ r1,τY ∗ (1− δ) ≤ s1.
Then τY (δ) ≥ r1,τY ∗ (δ) ≤ s1.
Since, f is df-contra αm-g c function, sof−1(δ) is an (r1, s1) − αm-g f closed
set in X .
Hence 1− f−1(δ) = f−1(1− δ) is an (r1, s1)− αm-g f open set in X.
Conversely τY (δ) ≥ r1,τY ∗ (δ) ≤ s1.
Then τY (1− δ) ≥ r1,τY ∗ (1− δ) ≤ s1.
Therefore f−1(1 − δ) is an (r1, s1) − αm-g f open set in X. f−1(1 − δ) =
1−f−1(δ) is an (r1, s1)−α

m-g f open set in X . So, f−1(δ) is an (r1, s1)−α
m-

g f closed set in X . Thus f is df-contra αm-g c function.

Theorem 3.19: Let f : X → Y be a df-contra αm-g c function and
g : Y → Z a df- continuous function. Then gof is df-contra αm-g c func-
tion.
Proof: Let τZ(δ) ≥ r1, τZ ∗ (δ) ≤ s1. Since g is df- continuous, τY (g

−1(δ)) ≥
r1, τY ∗ (g−1(δ)) ≤ s1. And, since f df-contra αm-g c function.
So, f−1(g−1(δ)) = (gof)−1(δ) is an (r1, s1)− αm-g f closed set in X .
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Therefore gof is df-contra αm-g c function.

Theorem 3.20: Let f : X → Y be df-contra αm-g c function and g : Y → Z

a df-contra continuous function. Then gof is df-contra αm-g c function.
Proof: Let τZ(δ) ≥ r1, τZ ∗ (δ) ≤ s1. Since g is df- contra- continuous func-
tion then τY (1−g

−1(δ)) ≥ r1, τY ∗(1−g−1(δ)) ≤ s1. And, since f is df-contra
αm-g c function. then f−1(g−1(δ)) = (gof)−1(δ) is an (r1, s1)−αm-g f closed
set in X .
Therefore gof is df-contra αm-g c function.

Theorem 3.21: Suppose f : X → Y is df-contra αm-g irr function and
g : Y → Z is df-contra αm-g c function. Then gof is df-contra αm-g c func-
tion.
Proof: Let τZ(δ) ≥ r1, τZ ∗ (δ) ≤ s1. Since g is df-contra αm-g c function
then g−1(δ) is an (r1, s1) − αm-g f closed set in Y. And, since f is df-contra
αm-g irr function.
Then f−1(g−1(δ)) = (gof)−1(δ) is an (r1, s1)− αm-g f closed set in X .
Therefore gof is df-contra αm-g c function.

Theorem 3.22: Let f : X → Y be df- continuous function. If f an
(r1, s1) − αm-g f open set in X is equal to (r1, s1) − αm-g f closed set in
X , then f is df-contra αm-g c function.
Proof: Let τY (δ) ≥ r1, τY ∗ (δ) ≤ s1, so τY (f

−1(δ)) ≥ r1, τX ∗ (f−1(δ)) ≤ s1
.
Since every (r1, s1)-f open set is an (r1, s1)− αm-g f open set, then f−1(δ) is
an (r1, s1)−αm-g f open set in X . Thus f−1(δ) is an (r1, s1)−αm-g f closed
set in X .
Therefore, f is df-contra αm-g c function.
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