On Classes of Janowski Functions of Complex Order Involving a q-Derivative Operator

Musthafa Ibrahim ${ }^{1}$, A. Senguttuvan ${ }^{2}$,
D. Mohankumar ${ }^{3}$, R. Ganapathy Raman ${ }^{3}$
${ }^{1}$ College of Engineering
University of Buraimi
Al Buraimi, Sultanate of Oman
${ }^{2}$ Department of Applied Mathematics and Science
College of Engineering
National University of Science and Technology
Muscat, Sultanate of Oman
${ }^{3}$ P. G. and Research Department of Mathematics
Pachaiyappa's College (Affliated to the University of Madras)
Chennai- 600 030, India
email: musthafa.ibrahim@gmail.com, senkutvan@gmail.com dmohankumarmaths@gmail.com, sirgana1@yahoo.co.in

(Received August 3, 2020, Accepted September 7, 2020)

Abstract

In this paper, we introduce a new class of analytic functions of complex order using q differential operator. Moreover, we obtain bounds for the coefficients, a sufficient condition and Fekete-Szegö inequalities for the defined class. Furthermore, we give applications for our main results.

1 Introduction

We start this paper with a very brief introduction on q-calculus and the notations which are required for our study. Quantum calculus, often called

Key words and phrases: Janowski starlike functions, Fekete-Szegö inequality, sufficient conditions, coefficient inequalities, q-calculus, differential operator.
AMS (MOS) Subject Classifications: 30C45.
ISSN 1814-0432, 2020, http://ijmcs.future-in-tech.net
q-calculus, is based on the idea of finite difference re-scaling. The q-derivative is merely a ratio which is given by

$$
D_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z}
$$

Note that as limit $q \rightarrow 1^{-}, D_{q} f(z)=f^{\prime}(z)$. Notations and symbols play a very important role in the study of q-calculus. Throughout this paper, we let

$$
[n]_{q}=\sum_{k=1}^{n} q^{k-1}, \quad[0]_{q}=0, \quad(q \in \mathbb{C})
$$

and the q-shifted factorial by

$$
(a ; q)_{n}= \begin{cases}1, & n=0 \\ (1-a)(1-a q) \ldots\left(1-a q^{n-1}\right), & n=1,2, \ldots\end{cases}
$$

Denote by \mathcal{A} the class of functions having a Taylor series expansion of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n}, \quad(z \in \mathcal{U}) \tag{1.1}
\end{equation*}
$$

The Hadamard product or convolution of functions $f(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n}$ and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ is given by

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} c_{n} b_{n} z^{n}, \quad(z \in \mathcal{U})
$$

Corresponding to a function $\mathcal{G}_{r, s}\left(a_{i}, b_{j} ; q, z\right)(i=1,2, \ldots, r ; j=1,2, \ldots, s)$ defined by

$$
\begin{equation*}
\mathcal{G}_{r, s}\left(a_{i}, b_{j} ; q, z\right):=z+\sum_{n=2}^{\infty} \frac{\left(a_{1} ; q\right)_{n-1}\left(a_{2} ; q\right)_{n-1} \ldots\left(a_{r} ; q\right)_{n-1}}{(q ; q)_{n-1}\left(b_{1} ; q\right)_{n-1} \ldots\left(b_{s} ; q\right)_{n-1}} z^{n} \tag{1.2}
\end{equation*}
$$

we now introduce an operator $\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z): \mathcal{U} \longrightarrow \mathcal{U}$ as follows:

$$
\begin{array}{r}
\mathcal{J}_{\alpha, \beta}^{0}\left(a_{1}, b_{1} ; q\right) f(z)=f(z) * \mathcal{G}_{r, s}\left(a_{i}, b_{j} ; q, z\right) . \\
\mathcal{J}_{\alpha, \beta}^{1}\left(a_{1}, b_{1} ; q\right) f(z)=\alpha \beta z^{2} D_{q}^{2}\left[f(z) * \mathcal{G}_{r, s}\left(a_{i}, b_{j} ; q, z\right)\right]+ \\
(\alpha-\beta) z D_{q}\left[f(z) * \mathcal{G}_{r, s}\left(a_{i}, b_{j} ; q, z\right)\right] \tag{1.3}\\
+(1-\alpha+\beta)\left[f(z) * \mathcal{G}_{r, s}\left(a_{i}, b_{j} ; q, z\right)\right] .
\end{array}
$$

On Classes of Janowski Functions

$$
\begin{equation*}
\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)=\mathcal{J}_{\alpha, \beta}^{m}\left(\mathcal{J}_{\alpha, \beta}^{m-1}\left(a_{1}, b_{1} ; q,\right) f(z)\right) \tag{1.4}
\end{equation*}
$$

If $f \in \mathcal{A}$, then from (1.3) and (1.4) we may easily deduce that

$$
\begin{gather*}
\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)=z+\sum_{n=2}^{\infty}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{m} \kappa_{n} c_{n} z^{n} \tag{1.5}\\
\left(m \in N_{0}=N \cup\{0\} \text { and } 0 \leq \beta \leq \alpha\right)
\end{gather*}
$$

where

$$
\kappa_{n}=\frac{\left(a_{1} ; q\right)_{n-1}\left(a_{2} ; q\right)_{n-1} \ldots\left(a_{r} ; q\right)_{n-1}}{(q ; q)_{n-1}\left(b_{1} ; q\right)_{n-1} \ldots\left(b_{s} ; q\right)_{n-1}}, \quad(|q|<1)
$$

Remark 1.1. The operator $\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)$ was motivated by [8]. In this remark, we list some special cases of the operator $\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f$.

1. If we let $q \rightarrow 1^{-}$, then the operator $\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f$ reduces to the operator introduced and studied by Karthikeyan et al. [3].
2. If we let $\beta=0$ in $\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f$, then we get the operator introduced by Reddy et al. [7].

Several notable classes of operators can be obtained by specializing the parameters involved in $\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)$ (see [2, 4, 9] and references cited therein.)

The class \mathcal{P} denotes the class of functions of function of the form $p(z)=$ $1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$ that are analytic in \mathcal{U} and such that $\operatorname{Re}(p(z))>0$ for all z in \mathcal{U}. We let $\mathcal{S}^{*}(\delta)$ and $\mathcal{C}(\delta)$ to denote the familiar classes of starlike of order δ and convex of order δ respectively.

Using the concept of subordination of analytic functions, Ma and Minda [6] introduced the class $\mathcal{S}^{*}(\phi)$ of functions in \mathcal{A} satisfying $\frac{z f^{\prime}(z)}{f(z)} \prec \phi$ where $\phi \in \mathcal{P}$ with $\phi^{\prime}(0)>0$ maps \mathcal{U} onto a region starlike with respect to 1 and symmetric with respect to real axis. This class specializes to several classes of univalent functions for suitable choice of ϕ. For instance, the class $\mathcal{S}^{*}\left(\frac{1+A z}{1+B z}\right)=: \mathcal{S}^{*}[A ; B]$ where $-1 \leq B<A \leq 1$ is the class of the Janowski starlike functions.

Using the operator $\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)$, we define $\mathcal{P}_{\alpha, \beta}^{m, q}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$ to be the class of functions $f \in \mathcal{A}_{1}$ satisfying the inequality

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{\mathcal{J}_{\alpha, \beta}^{m+1}\left(a_{1}, b_{1} ; q\right) f(z)}{\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)}-1\right) \prec \frac{1+A z}{1+B z}, \quad z \in \mathcal{U} \tag{1.6}
\end{equation*}
$$

where \prec denotes subordination, $\gamma \in \mathbb{C} \backslash\{0\}, A$ and B are arbitrary fixed numbers, $-1 \leq B<A \leq 1$, $m \in \mathbb{N}_{0}$.

Remark 1.2. It can be easily seen that several familiar and new subclasses of univalent functions can be obtained as special cases of the class $\mathcal{P}_{\alpha, \beta}^{m, q}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$.

Henceforth, we let a_{1}, \ldots, a_{r} and $b_{1}, \ldots, b_{s}\left(b_{j} \neq 0,-1,-2, \ldots ; j=\right.$ $1, \ldots, s$) to be real.

2 Main Results

2.1 Coefficient estimates

Theorem 2.1. Let the function $f(z) \in \mathcal{A}$ be in the class $\mathcal{P}_{\alpha, \beta}^{m, q}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$ and let
$\Gamma_{n}=\left|\left[(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right]\right|-\left[\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]$.
(a) If $\Gamma_{2} \leq 0$, then

$$
\begin{equation*}
\left|c_{j}\right| \leq \frac{(A-B)|\gamma|}{\left[1+\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{m}\left[\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right] \kappa_{j}} . \tag{2.7}
\end{equation*}
$$

(b) If $\Gamma_{n} \geq 0$, then

$$
\begin{align*}
& \left|c_{j}\right| \leq \frac{1}{\left[1+\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{m} \kappa_{n}} \\
& \quad \prod_{n=2}^{j} \frac{\left|(A-B) \gamma-\left(\alpha \beta[n-1]_{q}+q(\alpha-\beta)\right)\left([n-2]_{q}\right) B\right|}{\left\{\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right\}} . \tag{2.8}
\end{align*}
$$

(c) If $\Gamma_{k} \geq 0$ and $\Gamma_{k+1} \leq 0$ for $k=2,3, \ldots, j-2$,

$$
\begin{align*}
\left|c_{j}\right| \leq \frac{1}{[1+} & \left.\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{m}\left[\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right] \kappa_{n} \\
& \times\left\{\prod_{n=2}^{j} \frac{\left|(A-B) \gamma-\left(\alpha \beta[n-1]_{q}+q(\alpha-\beta)\right)\left([n-2]_{q}\right) B\right|}{\left\{\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right\}}\right\} . \tag{2.9}
\end{align*}
$$

The bounds in (2.7) and (2.8) are sharp for all admissible $A, B, \gamma \in \mathbb{C} \backslash\{0\}$ and for each j.

Proof. Let $f(z) \in \mathcal{P}_{\alpha, \beta}^{m, q}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$. Then there exists an analytic function $w(z)$ in \mathcal{U} with $w(0)=0$ and $|w(z)|<1$ such that

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{\mathcal{J}_{\alpha, \beta}^{m+1}\left(a_{1}, b_{1} ; q\right) f(z)}{\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)}-1\right)=\frac{1+A w(z)}{1+B w(z)} \tag{2.10}
\end{equation*}
$$

Simplifying (2.10), we have

$$
\begin{align*}
& \sum_{n=2}^{j}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{m}\left[\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right] \kappa_{n} c_{n} z^{n} \\
+ & \sum_{n=j+1}^{\infty} d_{n} z^{n}=\left\{(A-B) \gamma z+\sum_{n=2}^{j-1}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{m}\right. \\
& {\left.\left[(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right] \kappa_{n} c_{n} z^{n}\right\} w(z), } \tag{2.11}
\end{align*}
$$

for certain coefficients d_{n}. Let $z=r e^{i \theta}, r<1$. Applying the Parseval's formula on both sides of the above inequality and letting $r \rightarrow 1^{-}$, we get

$$
\begin{aligned}
& \sum_{n=2}^{j}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{2 m}\left[\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right]^{2} \kappa_{n}^{2}\left|c_{n}\right|^{2} \\
+ & \sum_{n=j+1}^{\infty}\left|d_{n}\right|^{2} \leq(A-B)^{2}|\gamma|^{2}+\sum_{n=2}^{j-1}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{2 m} \\
& \left|\left[(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right]\right|^{2} \kappa_{n}^{2}\left|c_{n}\right|^{2} .
\end{aligned}
$$

By some simplification, we obtain for $j \geq 2$

$$
\begin{align*}
& {\left[1+\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{2 m}\left[\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{2} \kappa_{j}^{2}\left|c_{j}\right|^{2}} \\
& \quad \leq(A-B)^{2}|\gamma|^{2}+\sum_{n=2}^{j-1}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{2 m} \\
& \left\{\left|\left[(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right]\right|^{2}-\left[\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{2}\right\} \kappa_{n}^{2}\left|c_{n}\right|^{2} . \tag{2.12}
\end{align*}
$$

For $j=2$, it follows from (2.12) that

$$
\begin{equation*}
\left|c_{2}\right| \leq \frac{(A-B)|\gamma|}{\left[1+\alpha \beta[2]_{q}+q(\alpha-\beta)\right]^{m}\left[\alpha \beta[2]_{q}+q(\alpha-\beta)\right] \kappa_{2}} \tag{2.13}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \left|\left[(A-B) \gamma-B\left(\alpha \beta[n-1]_{q}+q(\alpha-\beta)\right)[n-2]_{q}\right]\right| \geq \\
& \quad\left|\left[(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right]\right|-|B| \geq[n-2]_{q},
\end{aligned}
$$

if $\Gamma_{n} \geq 0$ then $\Gamma_{n-1} \geq 0$ for $n=2,3, \ldots$ Again, if $\Gamma_{n} \leq 0$ the $\Gamma_{n+1} \leq 0$ for $n=2,3, \ldots$, because

$$
\begin{aligned}
& \left|\left[(A-B) \gamma-B\left(\alpha \beta[n+1]_{q}+q(\alpha-\beta)\right)[n]_{q}\right]\right| \leq \\
& \left|\left[(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right]\right|+|B| \leq[n]_{q},
\end{aligned}
$$

If $\Gamma_{2} \leq 0$, then from the above discussion we can conclude that $\Gamma_{n} \leq 0$ for all $n>2$. It follows from (2.13) that

$$
\begin{equation*}
\left|c_{j}\right| \leq \frac{(A-B)|\gamma|}{\left[1+\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{m}\left[\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right] \kappa_{j}} \tag{2.14}
\end{equation*}
$$

If $\Gamma_{n-1} \geq 0$, then from the above observation $\Gamma_{2}, \Gamma_{3}, \ldots, \Gamma_{j-2} \geq 0$. From (2.13), we infer that the inequality (2.8) is true for $j=2$. We establish (2.8) by mathematical induction. Suppose (2.8) is valid for $n=2,3, \ldots,(j-1)$. Then it follows from (2.12) that

$$
\begin{gathered}
{\left[1+\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{2 m}\left[\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{2} \kappa_{j}^{2}\left|c_{j}\right|^{2}} \\
\leq(A-B)^{2}|\gamma|^{2}+\sum_{n=2}^{j-1}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{2 m} \\
\left\{\left|\left[(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right]\right|^{2}\right. \\
\left.-\left[\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{2}\right\} \kappa_{n}^{2}\left|c_{n}\right|^{2} \\
\leq(A-B)^{2}|\gamma|^{2}+\sum_{n=2}^{j-1}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{2 m} \\
\left\{\left|\left[(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right]\right|^{2}\right. \\
\left.-\left[\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{2}\right\} \kappa_{n}^{2} \times\left\{\frac{1}{\left[1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right]^{2 m} \kappa_{n}^{2}}\right. \\
\quad \prod_{j=2}^{n} \frac{\left|(A-B) \gamma-\left(\alpha \beta[j-1]_{q}+q(\alpha-\beta)\right)\left([j-2]_{q}\right) B\right|^{2}}{\left\{\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right\}^{2}}
\end{gathered}
$$

Thus, we get

$$
\begin{aligned}
& \left|c_{j}\right| \leq \frac{1}{\left[1+\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{m} \kappa_{n}} \\
& \prod_{n=2}^{j} \frac{\left|(A-B) \gamma-\left(\alpha \beta[n-1]_{q}+q(\alpha-\beta)\right)\left([n-2]_{q}\right) B\right|}{\left\{\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right\}}
\end{aligned}
$$

which completes the proof of (2.8).
Now, assume that $\Gamma_{n} \geq 0$ and $\Gamma_{n+1} \leq 0$ for $n=2,3, \ldots, j-2$. Then $\Gamma_{2}, \Gamma_{3}, \ldots, \Gamma_{n-1} \geq 0$ and $\Gamma_{n+2}, \Gamma_{n+3}, \ldots, \Gamma_{j-2} \leq 0$. Then (2.12) gives

$$
\begin{aligned}
& {\left[1+\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{2 m}\left[\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{2} \kappa_{j}^{2}\left|c_{j}\right|^{2}} \\
& \quad \leq(A-B)^{2}|\gamma|^{2}+\sum_{n=2}^{l}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{2 m} \\
& \left\{\left|\left[(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right]\right|^{2}-\left[\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{2}\right\} \kappa_{n}^{2}\left|c_{n}\right|^{2} \\
& \quad+\sum_{n=l+1}^{j-1}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{2 m} \\
& \left\{\left|\left[(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right]\right|^{2}-\left[\left(\alpha \beta[j]_{q}+q(\alpha-\beta)\right)[j-1]_{q}\right]^{2}\right\} \kappa_{n}^{2}\left|c_{n}\right|^{2} \\
& \quad \leq(A-B)^{2}|\gamma|^{2}+\sum_{n=2}^{l}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{2 m} \\
& \quad\left\{\left|\left[(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right]\right|^{2}\right\} \kappa_{n}^{2}\left|c_{n}\right|^{2}
\end{aligned}
$$

On substituting upper estimates for $c_{2}, c_{3}, \ldots, c_{l}$ obtained above and simplifying, we obtain (2.9).

Also, the bounds in (2.7) are sharp for the functions $f_{k}(z)$ given by

$$
\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f_{k}(z)= \begin{cases}z(1+B z)^{\frac{(A-B) b}{B \lambda(k-1)}} & \text { if } B \neq 0, \\ z \exp \left(\frac{A b}{\lambda(k-1)} z^{k-1}\right) & \text { if } B=0 .\end{cases}
$$

The bounds in (2.8) are sharp for the functions $f(z)$ given by

$$
\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f= \begin{cases}z(1+B z)^{\frac{(A-B) b}{B}} & \text { if } B \neq 0 \\ z \exp (A b z) & \text { if } B=0 .\end{cases}
$$

Remark 2.2. If we let $r=2, s=1, a_{1}=b_{1}, a_{2}=q, \alpha=1, \beta=0$, and $q \rightarrow 1^{-}$in Theorem 2.1, then we get the result due to Attiya [1].

2.2 Fekete-Szegö Problem.

We use the following lemmas to prove the results in this subsection:

Lemma 2.3. [5] If $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ is a function with positive real part, then for each complex number μ

$$
\begin{equation*}
\left|p_{2}-\mu p_{1}^{2}\right| \leq 2 \max (1,|2 \mu-1|) \tag{2.15}
\end{equation*}
$$

and the result is sharp for the functions given by

$$
p(z)=\frac{1+z^{2}}{1-z^{2}}, \quad p(z)=\frac{1+z}{1-z} .
$$

Theorem 2.4. If $f(z) \in \mathcal{P}_{\alpha, \beta}^{m, q}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$, then for $\mu \in \mathbb{C}$ we have

$$
\begin{align*}
& \left|c_{3}-\mu c_{2}^{2}\right| \leq \frac{(A-B)|\gamma|}{\left[1+\left(\alpha \beta[3]_{q}+q(\alpha-\beta)\right)[2]_{q}\right]^{m}\left[\left(\alpha \beta[3]_{q}+q(\alpha-\beta)\right)[2]_{q}\right]\left|\kappa_{3}\right|} \times \\
& \quad \max \left\{1 ; \left\lvert\, B-\frac{2 \gamma(A-B)}{\left[\alpha \beta[2]_{q}+q(\alpha-\beta)\right] \kappa_{2}}\right.\right. \\
& \left.\left.\quad+\frac{2(A-B) \gamma \mu\left[1+\left(\alpha \beta[3]_{q}+q(\alpha-\beta)\right)[2]_{q}\right]^{m}\left[\left(\alpha \beta[3]_{q}+q(\alpha-\beta)\right)[2]_{q}\right] \kappa_{3}}{\left[1+\alpha \beta[2]_{q}+q(\alpha-\beta)\right]^{2 m}\left[\alpha \beta[2]_{q}+q(\alpha-\beta)\right]^{2} \kappa_{2}^{2}} \right\rvert\,\right\} . \tag{2.16}
\end{align*}
$$

Proof. As $f(z) \in \mathcal{P}_{\alpha, \beta}^{m, q}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$, by (1.6) we have

$$
1+\frac{1}{\gamma}\left(\frac{\mathcal{J}_{\alpha, \beta}^{m+1}\left(a_{1}, b_{1} ; q\right) f(z)}{\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)}-1\right)=\frac{1+A w(z)}{1+B w(z)} .
$$

Let

$$
h(z)=\frac{1+w(z)}{1-w(z)}=1+p_{1} z+p_{2} z^{2}+\cdots .
$$

Then $\operatorname{Re}(h(z))>0$ and $h(0)=1$. Hence,

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{\mathcal{J}_{\alpha, \beta}^{m+1}\left(a_{1}, b_{1} ; q\right) f(z)}{\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)}-1\right)=\frac{1-A+h(z)(1+A)}{1-B+h(z)(1+B)} . \tag{2.17}
\end{equation*}
$$

From (2.17), we obtain

$$
\begin{align*}
& \left(1-\frac{1}{\gamma}\right)+\frac{1}{\gamma}\left\{\left[1+\alpha \beta[2]_{q}+q(\alpha-\beta)\right]^{m}\left[\alpha \beta[2]_{q}+q(\alpha-\beta)\right] \kappa_{2} c_{2}\right\} z \\
& +\frac{1}{\gamma}\left\{\left[1+\left(\alpha \beta[3]_{q}+q(\alpha-\beta)\right)[2]_{q}\right]^{m}\left[\left(\alpha \beta[3]_{q}+q(\alpha-\beta)\right)[2]_{q}\right] \kappa_{3} c_{3}\right. \\
& \left.-\left[1+\alpha \beta[2]_{q}+q(\alpha-\beta)\right]^{2 m}\left[\alpha \beta[2]_{q}+q(\alpha-\beta)\right] \kappa_{2}^{2} c_{2}^{2}\right\} z^{2}+\cdots \\
& \tag{2.18}\\
& \quad=1+\frac{p_{1}(A-B)}{2} z+\frac{(A-B)}{2}\left(p_{2}-p_{1}^{2}\left(\frac{1+B}{2}\right)\right) z^{2}+\cdots
\end{align*}
$$

Equating the coefficients at z and z^{2} on both sides of the above equation, we get

$$
c_{2}=\frac{p_{1} \gamma(A-B)}{\left[1+\alpha \beta[2]_{q}+q(\alpha-\beta)\right]^{m}\left[\alpha \beta[2]_{q}+q(\alpha-\beta)\right] \kappa_{2}}
$$

and

$$
\begin{aligned}
& c_{3}=\frac{1}{\left[1+\left(\alpha \beta[3]_{q}+q(\alpha-\beta)\right)[2]_{q}\right]^{m}\left[\left(\alpha \beta[3]_{q}+q(\alpha-\beta)\right)[2]_{q}\right] \kappa_{3}} \\
& {\left[\frac{(A-B) \gamma}{2}\left(p_{2}-p_{1}^{2}\left(\frac{1+B}{2}\right)\right)\right]} \\
& +\frac{p_{1}^{2} \gamma^{2}(A-B)^{2}}{\left[1+\left(\alpha \beta[3]_{q}+q(\alpha-\beta)\right)[2]_{q}\right]^{m}\left[\left(\alpha \beta[3]_{q}+q(\alpha-\beta)\right)[2]_{q}\right]\left[\alpha \beta[2]_{q}+q(\alpha-\beta)\right] \kappa_{2} \kappa_{3}} .
\end{aligned}
$$

On computation, we have

$$
\begin{equation*}
c_{3}-\mu c_{2}^{2}=\frac{(A-B) \gamma}{2\left[1+\left(\alpha \beta[3]_{q}+q(\alpha-\beta)\right)[2]_{q}\right]^{m}\left[\left(\alpha \beta[3]_{q}+q(\alpha-\beta)\right)[2]_{q}\right] \kappa_{3}}\left(p_{2}-\delta p_{1}^{2}\right) . \tag{2.19}
\end{equation*}
$$

where

$$
\begin{aligned}
\delta=\left(\frac{1+B}{2}\right. & -\frac{2 \gamma(A-B)}{\left[\alpha \beta[2]_{q}+q(\alpha-\beta)\right] \kappa_{2}} \\
& \left.+\frac{2(A-B) \gamma \mu\left[1+\left(\alpha \beta[3]_{q}+q(\alpha-\beta)\right)[2]_{q}\right]^{m}\left[\left(\alpha \beta[3]_{q}+q(\alpha-\beta)\right)[2]_{q}\right] \kappa_{3}}{\left[1+\alpha \beta[2]_{q}+q(\alpha-\beta)\right]^{2 m}\left[\alpha \beta[2]_{q}+q(\alpha-\beta)\right]^{2} \kappa_{2}^{2}}\right)
\end{aligned}
$$

On rearranging the terms and taking modulus on both sides, the result follows on the application of the Lemma2.3.

2.3 A sufficient condition for a function to be in $\mathcal{P}_{\alpha, \beta}^{m, q}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$

Theorem 2.5. Let the function $f(z)$ defined by (1.1) and let

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{m}\left\{\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right. \\
& \left.\quad+\left|(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right|\right\} \kappa_{n}\left|c_{n}\right| \leq(A-B)|\gamma| . \tag{2.20}
\end{align*}
$$

holds, then $f(z)$ belongs to $\mathcal{P}_{\alpha, \beta}^{m, q}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$.
Proof. Suppose that the inequality holds. Then we have for $z \in \mathcal{U}$

$$
\begin{aligned}
& \left|\mathcal{J}_{\alpha, \beta}^{m+1}\left(a_{1}, b_{1} ; q\right) f(z)-\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)\right|-\mid(A-B) \gamma \mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)- \\
& B\left[\mathcal{J}_{\alpha, \beta}^{m+1}\left(a_{1}, b_{1} ; q\right) f(z)-\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)\right] \mid \\
& =\left|\sum_{n=2}^{\infty}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{m}\left[\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right] \kappa_{n} c_{n} z^{n}\right| \\
& -\mid(A-B) \gamma z+\sum_{n=2}^{\infty}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{m} \\
& {\left[(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right] \kappa_{n} c_{n} z^{n} \mid} \\
& \leq \sum_{k=2}^{\infty}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{m}\left\{\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right. \\
& \left.+\left|(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right|\right\} \kappa_{n}\left|c_{n}\right| r^{n}-(A-B)|\gamma| r .
\end{aligned}
$$

Letting $r \rightarrow 1^{-}$, we have

$$
\begin{aligned}
& \left|\mathcal{J}_{\alpha, \beta}^{m+1}\left(a_{1}, b_{1} ; q\right) f(z)-\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)\right|-\mid(A-B) \gamma \mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)- \\
& B\left[\mathcal{J}_{\alpha, \beta}^{m+1}\left(a_{1}, b_{1} ; q\right) f(z)-\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)\right] \mid \\
& \leq \sum_{k=2}^{\infty}\left(1+\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right)^{m}\left\{\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right. \\
& \left.\quad+\left|(A-B) \gamma-B\left(\alpha \beta[n]_{q}+q(\alpha-\beta)\right)[n-1]_{q}\right|\right\} \kappa_{n}\left|c_{n}\right|-(A-B)|\gamma| \leq 0 .
\end{aligned}
$$

Hence it follows that

$$
\frac{\left|\frac{\mathcal{J}_{\alpha, \beta}^{m+1}\left(a_{1}, b_{1} ; q\right) f(z)}{\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)}-1\right|}{\left|B\left[\frac{\mathcal{J}_{\alpha, \beta}^{m+1}\left(a_{1}, b_{1} ; q\right) f(z)}{\mathcal{J}_{\alpha, \beta}\left(a_{1}, b_{1} ; q\right) f(z)}-1\right]-(A-B) \gamma\right|}<1, \quad z \in \mathcal{U} .
$$

Letting

$$
w(z)=\frac{\frac{\mathcal{J}_{\mathcal{\alpha}, \beta}^{m+1}\left(a_{1}, b_{1} ; q\right) f(z)}{\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)}-1}{B\left[\frac{\mathcal{J}_{\alpha, \beta}^{m+1}\left(a_{1}, b_{1} ; q\right) f(z)}{\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)}-1\right]-(A-B) \gamma},
$$

then $w(0)=0, w(z)$ is analytic in $|z|<1$ and $|w(z)|<1$. Hence we have

$$
\frac{\mathcal{J}_{\alpha, \beta}^{m+1}\left(a_{1}, b_{1} ; q\right) f(z)}{\mathcal{J}_{\alpha, \beta}^{m}\left(a_{1}, b_{1} ; q\right) f(z)}=\frac{1+[B+\gamma(A-B)] w(z)}{1+B w(z)}
$$

which shows that $f(z)$ belongs to $\mathcal{P}_{\alpha, \beta}^{m, q}\left(\gamma ; a_{1}, b_{1} ; A, B\right)$.
For $\beta=0, \alpha=\lambda, a_{i}=q^{\alpha_{i}}, b_{j}=q^{\beta_{j}}, \alpha_{i}, \beta_{j} \in \mathbb{C}, \beta_{j} \neq 0,1,2, \ldots,(i=$ $1, \ldots, r, j=1, \ldots, s)$ and $q \rightarrow 1^{-}$in Theorem 2.5, we have the following result.

Corollary 2.6. [10] Let the function $f(z)$ defined by (1.1) and let

$$
\begin{gathered}
\sum_{n=2}^{\infty}[1+(n-1) \lambda]^{m}\{(n-1)+|(A-B) \gamma-B(n-1)|\} \lambda \Gamma_{n}\left|c_{n}\right| \leq(A-B)|\gamma| \\
\left(\text { where } \Gamma_{n}=\frac{\left(\alpha_{1}\right)_{n-1}\left(\alpha_{2}\right)_{n-1} \ldots\left(\alpha_{r}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1} \ldots\left(\beta_{s}\right)_{n-1}(n-1)!}\right)
\end{gathered}
$$

holds. Then $f(z)$ belongs to $\mathcal{H}_{\lambda}^{m}\left(b ; \alpha_{1}, \beta_{1} ; A, B\right)$.
If we let $r=2, s=1, a_{1}=b_{1}, a_{2}=q, \alpha=1, \beta=0$, and $q \rightarrow 1^{-}$in Theorem 2.5, then we get the following result:

Corollary 2.7. [1] Let the function $f(z)$ be defined by (1.1) and let

$$
\sum_{n=2}^{\infty} n^{m}\{(n-1)+|(A-B) \gamma-B(n-1)|\}\left|c_{n}\right| \leq(A-B)|\gamma|
$$

hold. Then $f(z)$ belongs to $\mathcal{H}^{m}(\gamma ; A, B)$.
Acknowledgment. The authors would like to thank Dr. K. R. Karthikeyan, College of Engineering, National University of Science and Technology, Muscat, Sultanate of Oman for his valuable suggestions.

References

[1] A. A. Attiya, On a generalization class of bounded starlike functions of complex order, Appl. Math. Comput., 187, (2007), no. 1, 62-67.
[2] M. Darus, A new look at q-hypergeometric functions, TWMS J. Appl. Eng. Math., 4, (2014), no. 1, 16-19.
[3] K. R. Karthikeyan, A. Selvam, P. Sooriya Kala, On a class of analytic function defined using differential operator, Acta Univ. Apulensis Math. Inform., no. 31 (2012), 163-178.
[4] K. R. Karthikeyan, M. Ibrahim, S. Srinivasan, Fractional class of analytic functions defined using q-differential operator, Aust. J. Math. Anal. Appl., 15, (2018), no. 1, Art. 9, 15 pp.
[5] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20, (1969), 8-12.
[6] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Int. Press, Cambridge, MA.
[7] K. A. Reddy, K. R. Karthikeyan, G. Murugusundaramoorthy, Inequalities for the Taylor coefficients of spiralike functions involving q differential operator, Eur. J. Pure Appl. Math., 12, (2019), no. 3, 846856.
[8] D. Răducanu, On a subclass of univalent functions defined by a generalized differential operator, Math. Rep. (Bucur.), 13(63) (2011), no. 2, 197-203.
[9] C. Selvaraj, K. R. Karthikeyan, Differential sandwich theorems for certain subclasses of analytic functions, Math. Commun., 13, (2008), no. 2, 311-319.
[10] C. Selvaraj, K. R. Karthikeyan, Certain classes of analytic functions of complex order involving a family of generalized differential operators, J. Math. Inequal., 2, (2008), no. 4, 449-458.

