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Abstract

In this paper, we introduce a new class of analytic functions of com-

plex order using q differential operator. Moreover, we obtain bounds

for the coefficients, a sufficient condition and Fekete-Szegö inequalities

for the defined class. Furthermore, we give applications for our main

results.

1 Introduction

We start this paper with a very brief introduction on q-calculus and the
notations which are required for our study. Quantum calculus, often called
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q-calculus, is based on the idea of finite difference re-scaling. The q-derivative
is merely a ratio which is given by

Dqf(z) =
f(qz)− f(z)

(q − 1)z
.

Note that as limit q → 1−, Dqf(z) = f ′(z). Notations and symbols play
a very important role in the study of q-calculus. Throughout this paper, we
let

[n]q =
n

∑

k=1

qk−1, [0]q = 0, (q ∈ C)

and the q-shifted factorial by

(a; q)n =

{

1, n = 0

(1− a)(1− aq) . . . (1− aqn−1) , n = 1, 2, . . . .

Denote by A the class of functions having a Taylor series expansion of
the form

f(z) = z +
∞
∑

n=2

cnz
n, (z ∈ U) . (1.1)

The Hadamard product or convolution of functions f(z) = z +
∑

∞

n=2 cnz
n

and g(z) = z +
∑∞

n=2 bnz
n is given by

(f ∗ g)(z) = z +
∞
∑

n=2

cnbnz
n, (z ∈ U).

Corresponding to a function Gr, s(ai, bj ; q, z) (i = 1, 2, . . . , r; j = 1, 2, . . . , s)
defined by

Gr, s(ai, bj ; q, z) := z +

∞
∑

n=2

(a1; q)n−1(a2; q)n−1 . . . (ar; q)n−1

(q; q)n−1(b1; q)n−1 . . . (bs; q)n−1
zn, (1.2)

we now introduce an operator Jm
α,β(a1, b1; q)f(z) : U −→ U as follows:

J 0
α, β(a1, b1; q)f(z) = f(z) ∗ Gr, s(ai, bj ; q, z).

J 1
α, β(a1, b1; q)f(z) = αβz2D2

q [f(z) ∗ Gr, s(ai, bj ; q, z)]+

(α− β)zDq[f(z) ∗ Gr, s(ai, bj ; q, z)]

+(1− α + β) [f(z) ∗ Gr, s(ai, bj ; q, z)] .

(1.3)
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Jm
α,β(a1, b1; q)f(z) = Jm

α,β(J
m−1
α, β (a1, b1; q, )f(z)). (1.4)

If f ∈ A, then from (1.3) and (1.4) we may easily deduce that

Jm
α, β(a1, b1; q)f(z) = z +

∞
∑

n=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
m

κncnz
n,

(1.5)
(m ∈ N0 = N ∪ {0} and 0 ≤ β ≤ α) ,

where

κn =
(a1; q)n−1(a2; q)n−1 . . . (ar; q)n−1

(q; q)n−1(b1; q)n−1 . . . (bs; q)n−1
, (|q| < 1) .

Remark 1.1. The operator Jm
α,β(a1, b1; q)f(z) was motivated by [8]. In this

remark, we list some special cases of the operator Jm
α,β(a1, b1; q)f .

1. If we let q → 1−, then the operator Jm
α,β(a1, b1; q)f reduces to the

operator introduced and studied by Karthikeyan et al. [3].

2. If we let β = 0 in Jm
α,β(a1, b1; q)f , then we get the operator introduced

by Reddy et al. [7].

Several notable classes of operators can be obtained by specializing the pa-
rameters involved in Jm

α,β(a1, b1; q)f(z) (see [2, 4, 9] and references cited
therein.)

The class P denotes the class of functions of function of the form p(z) =
1+p1z+p2z

2+p3z
3+ · · · that are analytic in U and such that Re (p(z)) > 0

for all z in U . We let S∗(δ) and C(δ) to denote the familiar classes of starlike
of order δ and convex of order δ respectively.

Using the concept of subordination of analytic functions, Ma and Minda

[6] introduced the class S∗(φ) of functions in A satisfying zf
′

(z)
f(z)

≺ φ where

φ ∈ P with φ
′

(0) > 0 maps U onto a region starlike with respect to 1
and symmetric with respect to real axis. This class specializes to several
classes of univalent functions for suitable choice of φ. For instance, the class
S∗( 1+Az

1+Bz
) =: S∗[A;B] where −1 ≤ B < A ≤ 1 is the class of the Janowski

starlike functions.
Using the operator Jm

α,β(a1, b1; q)f(z), we define Pm, q
α, β (γ; a1, b1;A,B) to

be the class of functions f ∈ A1 satisfying the inequality

1 +
1

γ

(

Jm+1
α, β (a1, b1; q)f(z)

Jm
α,β(a1, b1; q)f(z)

− 1

)

≺
1 + Az

1 +Bz
, z ∈ U , (1.6)
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where ≺ denotes subordination, γ ∈ C \ {0}, A and B are arbitrary fixed
numbers, −1 ≤ B < A ≤ 1, m ∈ N0.

Remark 1.2. It can be easily seen that several familiar and new subclasses of
univalent functions can be obtained as special cases of the class Pm, q

α, β (γ; a1, b1;A,B).

Henceforth, we let a1, . . . , ar and b1, . . . , bs (bj 6= 0, −1, −2, . . . ; j =
1, . . . , s) to be real.

2 Main Results

2.1 Coefficient estimates

Theorem 2.1. Let the function f(z) ∈ A be in the class Pm, q
α, β (γ; a1, b1;A,B)

and let

Γn =
∣

∣ [(A− B)γ −B (αβ[n]q + q(α− β)) [n− 1]q]
∣

∣−[(αβ[j]q + q(α− β)) [j − 1]q] .

(a) If Γ2 ≤ 0, then

|cj | ≤
(A− B) | γ |

[1 + (αβ[j]q + q(α− β)) [j − 1]q]
m [(αβ[j]q + q(α− β)) [j − 1]q] κj

.

(2.7)

(b) If Γn ≥ 0, then

| cj |≤
1

[1 + (αβ[j]q + q(α− β)) [j − 1]q]
m
κn

j
∏

n=2

| (A− B)γ − (αβ[n− 1]q + q(α− β)) ([n− 2]q)B |

{(αβ[n]q + q(α− β)) [n− 1]q}
.

(2.8)

(c) If Γk ≥ 0 and Γk+1 ≤ 0 for k = 2, 3, . . . , j − 2,

| cj |≤
1

[1 + (αβ[j]q + q(α− β)) [j − 1]q]
m [(αβ[j]q + q(α− β)) [j − 1]q] κn

×

{

j
∏

n=2

| (A−B)γ − (αβ[n− 1]q + q(α− β)) ([n− 2]q)B |

{(αβ[n]q + q(α− β)) [n− 1]q}

}

.

(2.9)

The bounds in (2.7) and (2.8) are sharp for all admissible A, B, γ ∈ C \ {0}
and for each j.
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Proof. Let f(z) ∈ Pm, q
α, β (γ; a1, b1;A,B). Then there exists an analytic func-

tion w(z) in U with w(0) = 0 and |w(z)| < 1 such that

1 +
1

γ

(

Jm+1
α, β (a1, b1; q)f(z)

Jm
α,β(a1, b1; q)f(z)

− 1

)

=
1 + Aw(z)

1 +Bw(z)
(2.10)

Simplifying (2.10), we have

j
∑

n=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
m [(αβ[n]q + q(α− β)) [n− 1]q] κncnz

n

+

∞
∑

n=j+1

dnz
n =

{

(A− B)γz +

j−1
∑

n=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
m

[(A− B)γ − B (αβ[n]q + q(α− β)) [n− 1]q] κncnz
n

}

w(z),

(2.11)
for certain coefficients dn. Let z = reiθ, r < 1. Applying the Parseval’s
formula on both sides of the above inequality and letting r → 1−, we get

j
∑

n=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
2m [(αβ[n]q + q(α− β)) [n− 1]q]

2
κ2
n|cn|

2

+
∞
∑

n=j+1

|dn|
2 ≤ (A− B)2|γ|2 +

j−1
∑

n=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
2m

∣

∣ [(A−B)γ −B (αβ[n]q + q(α− β)) [n− 1]q]
∣

∣

2
κ2
n|cn|

2.

By some simplification, we obtain for j ≥ 2

[1 + (αβ[j]q + q(α− β)) [j − 1]q]
2m [(αβ[j]q + q(α− β)) [j − 1]q]

2
κ2
j |cj|

2

≤ (A− B)2|γ|2 +

j−1
∑

n=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
2m

{

∣

∣ [(A−B)γ −B (αβ[n]q + q(α− β)) [n− 1]q]
∣

∣

2
− [(αβ[j]q + q(α− β)) [j − 1]q]

2
}

κ2
n|cn|

2.

(2.12)
For j = 2, it follows from (2.12) that

|c2| ≤
(A−B) | γ |

[1 + αβ[2]q + q(α− β)]m [αβ[2]q + q(α− β)]κ2
. (2.13)
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Since
∣

∣ [(A− B)γ − B (αβ[n− 1]q + q(α− β)) [n− 2]q]
∣

∣ ≥
∣

∣ [(A− B)γ −B (αβ[n]q + q(α− β)) [n− 1]q]
∣

∣− |B| ≥ [n− 2]q,

if Γn ≥ 0 then Γn−1 ≥ 0 for n = 2, 3, . . .. Again, if Γn ≤ 0 the Γn+1 ≤ 0
for n = 2, 3, . . . , because

∣

∣ [(A− B)γ − B (αβ[n+ 1]q + q(α− β)) [n]q]
∣

∣ ≤
∣

∣ [(A− B)γ − B (αβ[n]q + q(α− β)) [n− 1]q]
∣

∣+ |B| ≤ [n]q,

If Γ2 ≤ 0, then from the above discussion we can conclude that Γn ≤ 0
for all n > 2. It follows from (2.13) that

|cj| ≤
(A−B) | γ |

[1 + (αβ[j]q + q(α− β)) [j − 1]q]
m [(αβ[j]q + q(α− β)) [j − 1]q] κj

.

(2.14)
If Γn−1 ≥ 0, then from the above observation Γ2, Γ3, . . . , Γj−2 ≥ 0. From

(2.13), we infer that the inequality (2.8) is true for j = 2. We establish (2.8)
by mathematical induction. Suppose (2.8) is valid for n = 2, 3, . . . , (j − 1).
Then it follows from (2.12) that

[1 + (αβ[j]q + q(α− β)) [j − 1]q]
2m [(αβ[j]q + q(α− β)) [j − 1]q]

2
κ2
j |cj|

2

≤ (A−B)2|γ|2 +

j−1
∑

n=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
2m

{

∣

∣ [(A−B)γ −B (αβ[n]q + q(α− β)) [n− 1]q]
∣

∣

2

− [(αβ[j]q + q(α− β)) [j − 1]q]
2}

κ2
n|cn|

2

≤ (A−B)2|γ|2 +

j−1
∑

n=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
2m

{

∣

∣ [(A−B)γ −B (αβ[n]q + q(α− β)) [n− 1]q]
∣

∣

2

− [(αβ[j]q + q(α− β)) [j − 1]q]
2}

κ2
n ×

{

1

[1 + (αβ[n]q + q(α− β)) [n− 1]q]
2m

κ2
n

n
∏

j=2

| (A− B)γ − (αβ[j − 1]q + q(α− β)) ([j − 2]q)B |2

{(αβ[j]q + q(α− β)) [j − 1]q}2

}
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Thus, we get

| cj | ≤
1

[1 + (αβ[j]q + q(α− β)) [j − 1]q]
m
κn

j
∏

n=2

| (A− B)γ − (αβ[n− 1]q + q(α− β)) ([n− 2]q)B |

{(αβ[n]q + q(α− β)) [n− 1]q}
,

which completes the proof of (2.8).
Now, assume that Γn ≥ 0 and Γn+1 ≤ 0 for n = 2, 3, . . . , j − 2. Then

Γ2, Γ3, . . . , Γn−1 ≥ 0 and Γn+2, Γn+3, . . . , Γj−2 ≤ 0. Then (2.12) gives

[1 + (αβ[j]q + q(α− β)) [j − 1]q]
2m [(αβ[j]q + q(α− β)) [j − 1]q]

2
κ2
j |cj|

2

≤ (A− B)2|γ|2 +
l

∑

n=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
2m

{

∣

∣ [(A− B)γ − B (αβ[n]q + q(α− β)) [n− 1]q]
∣

∣

2
− [(αβ[j]q + q(α− β)) [j − 1]q]

2
}

κ2
n|cn|

2

+

j−1
∑

n=l+1

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
2m

{

∣

∣ [(A− B)γ − B (αβ[n]q + q(α− β)) [n− 1]q]
∣

∣

2
− [(αβ[j]q + q(α− β)) [j − 1]q]

2
}

κ2
n|cn|

2

≤ (A− B)2|γ|2 +

l
∑

n=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
2m

{

∣

∣ [(A− B)γ − B (αβ[n]q + q(α− β)) [n− 1]q]
∣

∣

2
}

κ2
n|cn|

2

On substituting upper estimates for c2, c3, . . . , cl obtained above and sim-
plifying, we obtain (2.9).

Also, the bounds in (2.7) are sharp for the functions fk(z) given by

Jm
α,β(a1, b1; q)fk(z) =











z(1 +Bz)
(A−B)b
Bλ(k−1) if B 6= 0,

z exp

(

Ab
λ(k−1)

zk−1

)

if B = 0.

The bounds in (2.8) are sharp for the functions f(z) given by

Jm
α,β(a1, b1; q)f =

{

z(1 +Bz)
(A−B)b

B if B 6= 0,

z exp(Abz) if B = 0.

Remark 2.2. If we let r = 2, s = 1, a1 = b1, a2 = q, α = 1, β = 0, and
q → 1− in Theorem 2.1, then we get the result due to Attiya [1].
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2.2 Fekete-Szegö Problem.

We use the following lemmas to prove the results in this subsection:

Lemma 2.3. [5] If p(z) = 1 + p1z + p2z
2 + · · · is a function with positive

real part, then for each complex number µ

| p2 − µp21 |≤ 2max (1, | 2µ− 1 |) (2.15)

and the result is sharp for the functions given by

p(z) =
1 + z2

1− z2
, p(z) =

1 + z

1− z
.

Theorem 2.4. If f(z) ∈ Pm, q
α, β (γ; a1, b1;A,B), then for µ ∈ C we have

| c3 − µc22 |≤
(A−B) | γ |

[1 + (αβ[3]q + q(α− β)) [2]q]
m [(αβ[3]q + q(α− β)) [2]q] |κ3|

×

max

{

1;

∣

∣

∣

∣

B −
2γ(A−B)

[αβ[2]q + q(α− β)] κ2

+
2(A− B)γµ [1 + (αβ[3]q + q(α− β)) [2]q]

m [(αβ[3]q + q(α− β)) [2]q] κ3

[1 + αβ[2]q + q(α− β)]2m [αβ[2]q + q(α− β)]2 κ2
2

∣

∣

∣

∣

∣

}

.

(2.16)

Proof. As f(z) ∈ Pm, q
α, β (γ; a1, b1;A,B), by (1.6) we have

1 +
1

γ

(

Jm+1
α, β (a1, b1; q)f(z)

Jm
α,β(a1, b1; q)f(z)

− 1

)

=
1 + Aw(z)

1 +Bw(z)
.

Let

h(z) =
1 + w(z)

1− w(z)
= 1 + p1z + p2z

2 + · · · .

Then Re(h(z)) > 0 and h(0) = 1. Hence,

1 +
1

γ

(

Jm+1
α, β (a1, b1; q)f(z)

Jm
α, β(a1, b1; q)f(z)

− 1

)

=
1− A+ h(z)(1 + A)

1−B + h(z)(1 +B)
. (2.17)
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From (2.17), we obtain

(

1−
1

γ

)

+
1

γ
{[1 + αβ[2]q + q(α− β)]m [αβ[2]q + q(α− β)] κ2c2} z

+
1

γ
{[1 + (αβ[3]q + q(α− β)) [2]q]

m [(αβ[3]q + q(α− β)) [2]q] κ3c3

− [1 + αβ[2]q + q(α− β)]2m [αβ[2]q + q(α− β)] κ2
2c

2
2

}

z2 + · · ·

= 1 +
p1(A− B)

2
z +

(A−B)

2

(

p2 − p21(
1 +B

2
)

)

z2 + · · · .

(2.18)
Equating the coefficients at z and z2 on both sides of the above equation, we
get

c2 =
p1γ(A−B)

[1 + αβ[2]q + q(α− β)]m [αβ[2]q + q(α− β)] κ2

and

c3 =
1

[1 + (αβ[3]q + q(α− β)) [2]q]
m [(αβ[3]q + q(α− β)) [2]q] κ3

[

(A− B)γ

2

(

p2 − p21

(

1 +B

2

))]

+
p21γ

2(A− B)2

[1 + (αβ[3]q + q(α− β)) [2]q]
m [(αβ[3]q + q(α− β)) [2]q] [αβ[2]q + q(α− β)] κ2κ3

.

On computation, we have

c3 − µc22 =
(A−B)γ

2 [1 + (αβ[3]q + q(α− β)) [2]q]
m [(αβ[3]q + q(α− β)) [2]q] κ3

(

p2 − δp21
)

.

(2.19)
where

δ =

(

1 +B

2
−

2γ(A−B)

[αβ[2]q + q(α− β)] κ2

+
2(A−B)γµ [1 + (αβ[3]q + q(α− β)) [2]q]

m [(αβ[3]q + q(α− β)) [2]q] κ3

[1 + αβ[2]q + q(α− β)]2m [αβ[2]q + q(α− β)]2 κ2
2

)

On rearranging the terms and taking modulus on both sides, the result follows
on the application of the Lemma2.3.
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2.3 A sufficient condition for a function to be in

Pm, q
α, β (γ; a1, b1;A,B)

Theorem 2.5. Let the function f(z) defined by (1.1) and let

∞
∑

n=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
m {(αβ[n]q + q(α− β)) [n− 1]q

+ |(A− B)γ − B (αβ[n]q + q(α− β)) [n− 1]q|} κn | cn |≤ (A− B) | γ | .
(2.20)

holds, then f(z) belongs to Pm, q
α, β (γ; a1, b1;A,B).

Proof. Suppose that the inequality holds. Then we have for z ∈ U

| Jm+1
α, β (a1, b1; q)f(z)−J m

α, β(a1, b1; q)f(z) | −
∣

∣(A−B)γJm
α,β(a1, b1; q)f(z)−

B
[

Jm+1
α, β (a1, b1; q)f(z)−Jm

α, β(a1, b1; q)f(z)
]
∣

∣

=

∣

∣

∣

∣

∣

∞
∑

n=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
m [(αβ[n]q + q(α− β)) [n− 1]q] κncnz

n

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

(A− B)γz +
∞
∑

n=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
m

[(A−B)γ − B (αβ[n]q + q(α− β)) [n− 1]q] κncnz
n

∣

∣

∣

∣

≤

∞
∑

k=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
m {(αβ[n]q + q(α− β)) [n− 1]q

+ |(A−B)γ −B (αβ[n]q + q(α− β)) [n− 1]q|}κn | cn | rn − (A− B) | γ | r.

Letting r → 1−, we have

| Jm+1
α, β (a1, b1; q)f(z)−J m

α, β(a1, b1; q)f(z) | −
∣

∣(A−B)γJm
α,β(a1, b1; q)f(z)−

B
[

Jm+1
α, β (a1, b1; q)f(z)−Jm

α, β(a1, b1; q)f(z)
]
∣

∣

≤

∞
∑

k=2

(1 + (αβ[n]q + q(α− β)) [n− 1]q)
m {(αβ[n]q + q(α− β)) [n− 1]q

+ |(A−B)γ −B (αβ[n]q + q(α− β)) [n− 1]q|}κn | cn | −(A− B) | γ |≤ 0.
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Hence it follows that
∣

∣

∣

∣

J
m+1
α, β

(a1,b1; q)f(z)

Jm
α, β

(a1,b1; q)f(z)
− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

B

[

J
m+1
α, β

(a1,b1; q)f(z)

Jm
α,β

(a1,b1; q)f(z)
− 1

]

− (A−B)γ

∣

∣

∣

∣

∣

< 1, z ∈ U .

Letting

w(z) =

J
m+1
α, β

(a1,b1; q)f(z)

Jm
α, β

(a1,b1; q)f(z)
− 1

B

[

J
m+1
α, β

(a1,b1; q)f(z)

Jm
α,β

(a1,b1; q)f(z)
− 1

]

− (A−B)γ

,

then w(0) = 0, w(z) is analytic in | z |< 1 and | w(z) |< 1. Hence we have

Jm+1
α, β (a1, b1; q)f(z)

Jm
α, β(a1, b1; q)f(z)

=
1 + [B + γ(A−B)]w(z)

1 +Bw(z)

which shows that f(z) belongs to Pm, q
α, β (γ; a1, b1;A,B).

For β = 0, α = λ, ai = qαi , bj = qβj , αi, βj ∈ C, βj 6= 0, 1, 2, . . . , (i =
1, . . . , r, j = 1, . . . , s) and q → 1− in Theorem 2.5, we have the following
result.

Corollary 2.6. [10] Let the function f(z) defined by (1.1) and let

∞
∑

n=2

[1+(n−1)λ]m
{

(n−1)+ | (A−B)γ−B(n−1) |
}

λΓn | cn |≤ (A−B) | γ |

(

where Γn =
(α1)n−1(α2)n−1 . . . (αr)n−1

(β1)n−1 . . . (βs)n−1(n− 1)!

)

holds. Then f(z) belongs to Hm
λ (b; α1, β1;A,B).

If we let r = 2, s = 1, a1 = b1, a2 = q, α = 1, β = 0, and q → 1− in
Theorem 2.5, then we get the following result:

Corollary 2.7. [1] Let the function f(z) be defined by (1.1) and let

∞
∑

n=2

nm
{

(n− 1)+ | (A− B)γ − B(n− 1) |
}

| cn |≤ (A− B) | γ |

hold. Then f(z) belongs to Hm(γ;A,B).
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