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Abstract

In a graph G a set S of vertices is called a dominating set of G if
every vertex in V (G) − S is adjacent to some vertex in S. Let S be
a minimum dominating set G. If V (G)−S contains a dominating set
say S

′

of G, then S
′

is called an inverse dominating set with respect
to S. A dominating set S of a graph G is non-split dominating set if
the induced subgraph V (G) − S is connected. A Wrapped butterfly
network WBF (n), n ≥ 3, is obtained by merging the first and last
levels of a butterfly network BF (n), n ≥ 3. In this paper we determine
the domination, inverse domination and non-split domination numbers
of WBF (n).

1 Introduction

In the past few decades the problem concerning domination of graphs plays
a major role in research branch of graph theory. Historically, the domination
type problems mainly arise from chess game to obtain minimum number
of queens needed to attack or dominate every square on the chessboard.
Domination problems used to find the sets of representatives, in monitor-
ing communication or electrical networks, and in land surveying where it is
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necessary to minimize the number of places a surveyor must stand in order
to take height measurements for an entire region. It also plays a vital role
in parallel processing and supercomputing, which continues to exert great
influence in the development of modern science and engineering. Similarly
inverse domination plays a major role in communication and electrical net-
work which was introduced by Kulli and Sigarkanti. The inverse domination
number which is the minimum cardinality of a dominating set whose comple-
ment contains a minimum dominating set, motivated to find the two disjoint
minimum dominating set for any network gives the full back up at any crit-
ical situation.
It is a natural question why to devote special attention to the case of two
disjoint dominating sets rather than k disjoint dominating sets for a general
k. The reason is that, by Ores observation, the trivial necessary minimum
degree condition is also sufficient for the existence of two disjoint dominat-
ing sets. For all fixed k ≥ 3, it is NP-complete to decide the existence of k
disjoint dominating sets and no minimum degree condition is sufficient for
the existence of three disjoint dominating sets. One can find applications
for two disjoint dominating sets in networks. In any network (or graphs),
dominating sets are central sets and they play a vital in routing problems in
parallel computing. Also finding efficient dominating sets is always concern
in finding optimal central sets in networks.
Suppose S is a dominating set in a graph (or network) G, when the network
fails in some nodes in S, the inverse dominating set in V S will take care of the
role of S. In this aspect, it is worthwhile to concentrate on dominating and
inverse dominating sets in graphs.The network of processors and interconnec-
tions play a vital role in facilitating the communication between processors in
parallel computers. Some of the popular interconnection networks are rings,
toroids, hypercube, Butterfly Graphs and wrapped Butterfly networks. The
domination problem has been proved to be NP-complete [4]. In this paper we
consider the domination, inverse domination, split and non-split domination
problems for the wrapped butterfly network WBF (n), n ≥ 3.

2 Basic Concepts

Definition 2.1. [1] A dominating set S of a graph G is a subset of vertices
of G with the condition that every vertex in V \ S is adjacent to some vertex
in S. Such a set with the minimum cardinality yields the domination number
denoted by γ(G).
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Definition 2.2. [5] Let S be a minimum dominating set of G. If V D con-
tains a dominating set say S

′

, then S
′

is called an inverse dominating set
with respect to S. The inverse domination number γ

′

(G) of G is the order
of a smallest inverse dominating set in G.

Definition 2.3. [6] A dominating set of a graph G = (V,E) is a non-split
dominating set. If the induced subgraph V − D is connected. The non-split
domination number γns(G) of G is the minimum cardinality of a non-split
dominating set.

Following results on domination number and inverse domination number
for connected graphs exist in the literature already.

Theorem 2.4. [2] For any graph G of order p and maximum degree ∆, we
have γ(G) ≥ p/(∆ + 1).

Theorem 2.5. [6] If G is a connected graph with p vertices and q edges,
then we have γns(G) ≥ 2p− q − 1/2.

Theorem 2.6. [3] For any graph G, γ(G) ≤ γns(G) .

Theorem 2.7. [5] Let S be a minimum dominating set of G. If for every
vertex v ∈ S, the induced subgraph < N [v] > is a complete graph of order at
least two, then γ(G) = γ

′

(G).

3 Main results

In this section we determine a lower bound for the domination number, in-
verse domination number, and non-split domination number of wrapped but-
terfly networks.

Definition 3.1. [8] The n-dimensional butterfly network BF (n) has vertex
set V = {(x; i)/x = (x1, x2, xn), xi = 0 or 1, 1 ≤ i ≤ n}. Two vertices (x; i)
and (y; j) are linked by an edge in BF (n) if and only if j = i+ 1 and either
(i) x = y, or (ii) x differs from y in precisely the jth bit.
Wrapped butterfly, denoted by WBF (n) is an n- level graph with n.2n vertices
and each vertex of degree 4.

Lemma 3.2. Let G be the connected undirected graph WBF (n), n ≥ 3.
Then γ(G) ≥ n.2n−2

Proof.
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Let S be a dominating set in G. In general WBF (n) has n rows, each
containing 2n vertices representing the columns. We divide the columns into
two halves H1 and H2 as the columns represented by the first 2n−1 vertices
and the columns represented by the next 2n−1 vertices respectively. Also let
L1, L2, L3, ..., Ln denotes the levels in WBF (n).
Claim 1: For H1, when n is even, we need atleast 2n−2 +2n−3 vertices from
any of the three consecutive levels except top and bottom level in H1.
Proof of Claim 1: Assume the three consecutive levels as i− 1, i,i+ 1.
To dominate level i we had atleast 2n−2 vertices from level i−1 or level i+1.
Now we have three cases, i.e.) Let T be the dominating set in level i or level
i− 1, or level i+ 1.
Case(i): If T be the dominating set in level i
a) Suppose we choose the 2n−2 vertices from level i consecutively then it
dominates only 2n−2 vertices in level i−1 and level i+1 but we have remaining
consecutive 2n−2 vertices in all three levels i, i−1, i+1 are still not dominated.
To dominate those remaining vertices we need again 2n−2 vertices . Thus we
have atleast 2.2n−2 vertices to dominate all the three levels.
b) Divide the first row of H1 into 4 sets of 2n−3 vertices from the 4 quarters
of the consecutive columns in H1. Suppose we choose the first quarter and
the third quarter vertices among 2n−1 vertices in level i, now it dominates all
the 4 quarters in level i+1, also first and third quarter in level i−1, here we
have remaining 2n−2 vertices in level i− 1. For dominating these vertices we
need to choose atleast 2n−3 vertices from level i or level i − 1 then we have
atleast 2n−2 + 2n−3 vertices to dominate all the three levels in H1.
Case(ii): If T be the dominating set in level i+ 1.
Now we choose the 2n−2 vertices from level i+1 then it dominates only 2n−2

vertices in level i and not dominate the vertices in level i−1. For dominating
this level we again choose 2n−2 vertices from level i. Thus we have atleast
2.2n−2 vertices to dominate all the three levels.
Case(iii): If T be the dominating set in level i− 1.
Now we choose the 2n−2 vertices from level i− 1 then it dominates only 2n−2

vertices in level i and not dominate the vertices in level i+1. For dominating
this level we again choose 2n−2 vertices from level i. Thus we have atleast
2.2n−2 vertices to dominate all the three levels. Among all the above cases,
case(i)b is the best case. Hence the claim for H1. Similarly it is true in the
Claim for H2. So we have in G for (n−2

3
) consecutive level (leaving top and

bottom level), then

|S| ≥ 2.
[(n− 2

3

)

(2n−2 + 2n−3)
]
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.
Claim 2: To dominate top and bottom level in H1 we need atleast 2n−2

vertices.
Proof of Claim 2: By using previous claim, there are atleast 2.2n−3 vertices
which are not dominated in top and bottom level. Therefore, we need atleast
2n−2 vertices in level 1 or in level n to dominate both top and bottom level in
H1. Claim is also true for H2. So we need 2.2n−2 vertices to dominate both
top and bottom level in G. Hence forWBF (n), the cardinality of dominating
set

|S| ≥ 2.
[(n− 2

3

)

(2n−2 + 2n−3) + 2n−2

]

|S| ≥ n.2n−2.

Hence the proof is true for when n even.
Claim 3: Suppose when n is odd, we need atleast 2n−2 + 2n−3 vertices from
any of the three consecutive levels except top or bottom level in H1. By
using Claim 1 we prove claim 3 in similar manner. Also it holds for H2. So
we have in G for (n−1

3
) consecutive level (leaving top or bottom level), then

|S| ≥ 2.
[(n− 1

3

)

(2n−2 + 2n−3)
]

.

Claim 4: To dominate top or bottom level in H1 we need atleast 2n−2

vertices.
Proof of Claim 4: By using previous claim, there are atleast 2.2n−3 vertices
which are not dominated in top or bottom level. Therefore, we need atleast
2n−3 vertices in level 1 or in level n to dominate both top and bottom level in
H1. Claim is also true for H2. So we need 2.2n−3 vertices to dominate both
top or bottom level in G. Hence for WBF (n), the cardinality of dominating
set

|S| ≥ 2.
[(n− 1

3

)

(2n−2 + 2n−3)
]

+ 2n−2.

|S| ≥ n.2n−2.

Hence the proof is true for when n is odd.
Therefore, the proof holds for both even and odd cases.
Claim 5: When n is the multiple of 3.
Proof of Claim 5: Similarly using by claim1, case(i)b, we have

|S| ≥ 2.
[(n

3

)

(2n−2 + 2n−3)
]

.

|S| ≥ n.2n−2.
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Hence For any G connected undirected graph WBF (n), n ≥ 3. Then we
have γ(G) ≥ n.2n−2.
Lemma 3.3. [7] Let G be the connected undirected graph WBF (n), n ≥
3.Then γ(G) ≤ n.2n−2.
By Lemma 3.2 and Lemma 3.3, we have the following theorem.
Theorem 3.4. Let G be the connected undirected graph WBF (n), n ≥ 3.
Then γ(G) = n.2n−2.
Lemma 3.5. Let G be the connected undirected graph WBF (n), n ≥ 3.
Then γ

′

(G) ≤ n.2n−2.
Proof.
WBF (n) has n rows, each containing 2n vertices representing the columns.
We divide the columns into two halves H1 and H2 as the columns represented
by the first 2n−1 vertices and the columns represented by the next 2n−1 ver-
tices respectively. Let D be the minimum dominating set in H1. We select
vertices from H1 in a set D

′

= V \D as follows:
1. Divide the first row of H1 into 4 sets of 2n−3 vertices from the 4 quarters of
the consecutive columns in H1. Select the second and fourth quarter vertices
in D

′

.
2. Divide the ithrow of H1 into 2i+1 sets, S1, S2, S3, ..., S2i+1, each consisting
of 2n−i−2 vertices from the 2i+1 sets of consecutive columns of size 2n−i−2

in Row i, 2 ≤ i ≤ n − 3. Select 2i−1 sets from among S1, S2, S3, ..., S2i+1,
in D

′

such that the vertices in the selected set Sj are not dominated by
end vertices in Level (i − 1), of straight edges and oblique edges incident
at them, 2 ≤ i ≤ n − 3. The number of selected vertices Hi in Level i is
2i−1 × 2n−i−2 = 2n−3.
3. Select 2n−3 number of vertices at Level n−2 such that they are consecutive
pairs satisfying the condition that they are not dominated by end vertices of
straight edges and oblique edges in Level n− 3.
4. Include in D

′

, the mirror images in H2 of the already selected vertices in
H1. We claim that D

′

is a dominating set of G. It is clear from the choice
of vertices in D

′

, that none of the 4 neighbouring vertices of any vertex in
D

′

belongs to D
′

. Hence every vertex in D
′

belonging to Level i dominates
2 vertices in Level (i − 1) and 2 vertices in Level i, 2 ≤ i ≤ n − 2. This
implies that all vertices in Level i which are not in D

′

are dominated by the
vertices in D

′

belonging to Level (i+ 1), 2 ≤ i ≤ n− 2. Vertices in D
′

from
Level 1 dominate vertices in Level n. Thus D

′

is an inverse dominating set
of WBF (n), n ≥ 3. The cardinality of D

′

is 2(2n−1 + (n− 4)2n−3) = n.2n−2.
Hence γ

′

(G) ≤ n.2n−2.
Theorem 3.6. Let G be the connected undirected graph WBF (n), n ≥ 3.
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Then we have γ
′

(G) = n.2n−2.
Proof.
By Theorem 3.4 γ(G) = n.2n−2 and by the virtue of the definition of inverse
domination we know that γ(G) ≤ γ

′

(G). Thus γ
′

(G) ≥ n.2n−2. By the
Lemma 3.5 γ

′

(G) ≤ n.2n−2. Therefore γ
′

(G) = n.2n−2.
Theorem 3.7. [3] A dominating set D of a graph G is minimal if and only
if for each vertex v ∈ D, one of the following conditions is satisfied:
i) there exists a vertex u ∈ V −D such that N(u) ∪D = {v}; and
ii) v is an isolated vertex in 〈D〉.
Theorem 3.8. [6] A nonsplit dominating set D of a graph G is minimal if
and only if for each vertex v ∈ D, one of the following conditions is satisfied:
i) there exists a vertex u ∈ V −D such that N(u) ∪D = {v}; and
ii) v is an isolated vertex in 〈D〉; and
iii)N(v) ∪ (v −D) = ∅.
Lemma 3.9. Let G be the connected undirected graph WBF (n), n ≥ 3.
Then γns(G) ≤ n.2n−2.
Proof.
WBF (n) has n rows, each containing 2n vertices representing the columns.
We divide the columns into two halves H1 and H2 as the columns represented
by the first 2n−1 vertices and the columns represented by the next 2n−1 ver-
tices respectively. Proof follows from Lemma 3.5.
Theorem 3.10. Let G be the connected undirected graph WBF (n), n ≥ 3.
Then γns(G) = n.2n−2.
Proof.
By Theorem 3.4 γ(G) = n.2n−2. Since γns(G) ≥ γ(G), we have γns(G) ≥
n.2n−2. By Lemma 3.9 γns(G) ≤ n.2n−2. These two results imply that
γns(G) = n.2n−2. Hence the proof.
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Figure 1: WB(4) with dominating set marked in red and inverse and non-
split dominating set marked in blue.

4 Conclusion

In this paper we find the domination number, inverse domination number and
non-split domination number for WBF (n), where n ≥ 3. It is interesting to
note that γ(G) = γ

′

(G) = γns(G). Finding Graphs satisfying this property
it would be an intersting line of research to identify graph G with γ(G) =
γ

′

(G) = γns(G).
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