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Abstract

We study a class of combinatorial designs called Kirkman sys-

tems, and we show that infinitely many Kirkman systems are well-

distributed in a precise sense. Steiner triple systems of order n can

achieve a minimum block sum of n. Kirkman triple systems form par-

allel classes from the blocks of Steiner triple systems. We prove that

there is an infinite number of Kirkman triple systems that have a min-

imum block sum of n. We expand this to quadruple systems. These

concepts can then be applied to distributed storage to spread data

across the servers, and servers across locations, using Kirkman triple

systems, while having data well distributed by popularity, measured

by the minimum block sum.

1 Introduction

Due to their unique combinatorial design, Steiner systems have many appli-
cations in coding theory. One application is related to distributed storage
and information retrieval [1]. A very large database is often stored on several
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servers, with no one server containing all the data. Different chunks of data
have different levels of popularity in being accessed. The ideal situation is to
spread the chunks of data over several servers so that each server is accessed
the same number of times. This will result in more efficient accessing of the
data.

Dau and Milenkovic [1] use Steiner triple systems to achieve this by meet-
ing both of the following requirements:

• Data is distributed across servers based on popularity.

Each chunk of data is assigned a value indicating its popularity. If
there are n chunks of data, then each chuck is assigned a unique value
from {0, 1, ..., n−1}, where smaller values represent more popular data
and larger values represent less popular data. Chunks of data are dis-
tributed across the servers so that the sum of the values on any server
(“min-sum”) is never less than n.

• The number of instances that the same chunks of data are on the same
server is limited.

Using Steiner triple systems, any two chunks of data are on only one
server.

For example, suppose a database has 9 chunks of data, with popularity of
access of each chunk measured by the integers {0, 1, ..., 8}, with the smallest
number representing the most popular and the largest number representing
the least popular. We might want to distribute this data over 12 servers such
that:

• each server has three chunks of data,

• the sum of the popularity on any server (“min-sum”) is never less than
9, and

• any two chunks of data are on exactly one server.

This can be accomplished, using a Steiner triple system, as shown in Table
1.

This paper takes this concept one step further. The servers could be
located in different geographical locations, so as to reduce the risk that all the
servers could be destroyed in one catastrophic event. The different locations
could be different buildings, different cities, different countries or any other
separate locations. We will group the servers in different locations, so that
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Server Chunks of Data Sum of Popularity
A 0, 1, 8 9
B 0, 2, 7 9
C 0, 3, 6 9
D 0, 4, 5 9
E 1, 2, 6 9
F 1, 3, 5 9
G 1, 4, 7 12
H 2, 3, 4 9
I 2, 5, 8 15
J 3, 7, 8 18
K 4, 6, 8 18
L 5, 6, 7 18

Table 1: Chunks of Data Distributed by Server

if transmissions between locations were to be disrupted, each location would
continue to have access to all of the data. Using the above example, we would
want four locations, each containing three servers, which when combined
contain all the chunks of data, but continue to have the above restrictions on
the popularity of data on any one server. This grouping can be accomplished,
using a Kirkman triple system, by grouping the servers as shown in Table 2.

Location Servers
I A, H, L
II B, F, K
III C, G, I
IV D, E, J

Table 2: Servers Distributed by Location

This results in each location having access to all the data, while continuing
to meet the min-sum requirement and to have no two chunks of data on more
than one server.

Note that a Kirkman triple system can be used to address how to group
chunks of data by location so that all the data is in one location, but Kirkman
systems have not been used to address popularity. We use Kirkman systems
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to address distribution by location, while reflecting levels of popularity.
This paper uses combinatorial design theory to prove both of the follow-

ing:

1. There is an infinite number of Kirkman triple systems that have min-
sums that reach their upper bounds.

2. There is an infinite number of Kirkman quadruple systems that have
min-sums that reach their upper bounds.

These conclusions can then be used to distribute servers by location so
that each location has all of the data, while the chunks of data have been
distributed across the servers by popularity.

2 Preliminaries

This paper uses notation consistent with that of Dau and Milenkovic [1].

2.1 Steiner systems

A Steiner triple system is a pair (S,B), where S is a set of n elements and B
is a set of 3-subsets of S, called blocks, with every two elements of S being
contained in exactly one B ∈ B. Such a system will be referred to as STS(n).

In general, a Steiner system (S,B) will be denoted as S(t, k, n), where
|S| = n, each block is of size k and every t elements of S are contained in
exactly one B ∈ B.

Definition 2.1 (parallel class). A parallel class in (S,B) is a subset of B
that partitions S.

Definition 2.2 (resolvable). A Steiner system (S,B) is resolvable if the
blocks of B can be partitioned into parallel classes.

Definition 2.3 (Kirkman triple systems). A resolvable Steiner triple sys-
tem of order n is known as a Kirkman triple system, and is denoted KTS(n).

Definition 2.4 (min-sum of design B). [1, page 1647] The min-sum of
Steiner system (S,B) for S = {0, 1, ..., n− 1} is

minΣ(B) := min
B∈B

sum(B),
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where
sum(B) =

∑

x∈B

x.

In situations where B is obvious, we will sometimes write this as minΣ for
convenience.

Dau and Milenkovic [1] addressed the min-sum of Steiner triple systems
in 2018, based in part on Bose and Skolem constructions. To date, there
has been no expansion of the min-sum to Kirkman triple systems. This
paper applies the min-sum concept to Kirkman triple systems and Kirkman
quadruple systems.

2.2 Kirkman triple systems

We first consider the possible values of n for Kirkman triple systems of order
n.

For STS(n) with design (S,B), the following are well known [2, Theorem
1.1.3]

n ≡ 1 or 3 (mod 6),

|B| =
n(n− 1)

6
.

Each x ∈ S must be contained in r = n−1
2

blocks of B. The size of each
parallel class, π, must be

|π| =
n

3
.

Therefore, since 2 | (n− 1) and 3 | n, to be a Kirkman triple system,

n ≡ 3 (mod 6).

Kirkman triple systems deal with blocks of length 3. The following section
examines blocks of length 4.

2.3 Kirkman quadruple systems

This subsection examines S(3, 4, n) of design (S,B), where:

• |B| = 4, for all B ∈ B;

• Every three elements of S is contained in exactly one B ∈ B; and
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• (S,B) is resolvable; i.e, the blocks, B of B, can be partitioned into
parallel classes.

For S(3, 4, n), the following are well known [2, page 146]

n ≡ 2 or 4 (mod 6),

|B| =
n(n− 1)(n− 2)

24
.

The size of each parallel class, π, must be

|π| =
n

4
,

since each of the n elements must be in exactly one B ∈ π. Therefore, to be
a Kirkman quadruple system (“KQS”),

n ≡ 4 or 8 (mod 12).

The number of parallel classes is

|B|

|π|
=

(n− 1)(n− 2)

6
.

3 Kirkman systems that reach the upper bound

for the min-sum

3.1 The upper bound on min-sum

Dau and Milenkovic [1, page 1647] proved that the upper bound on the
min-sum for any Steiner system S(t, k, n) is

minΣ ≤
n(k − t+ 1) + k(t− 2)

2
.

Therefore, the upper bounds on the min-sum for STS(n) and SQS(n) are n
and n + 2, respectively.

In this section, we prove that there is an infinite number of Kirkman
triple systems and Kirkman quadruple systems, constructed from designs of
a smaller order, that reach the upper bound for the min-sum.



Kirkman Systems that Attain the Upper Bound ... 435

3.2 Kirkman triple systems that reach the upper bound

for the min-sum

The following will show that there is an infinite number of Kirkman triple
systems that reach the upper bound on the min-sum.

Theorem 3.1. Let (S,B) be a KTS(n) with minΣ(B) = n. Then there
exists a KTS(3n), (S ′,B′), with minΣ(B

′) = 3n.

Proof. Let π1, π2, ..., πn−1

2

be the parallel classes of (S,B), where S = {0, 1, ..., n−

1}. Let (ai,j , bi,j, ci,j) be the blocks of πi for 1 ≤ i ≤ n−1
2
, and 1 ≤ j ≤ n

3
,

arranged so that ai,j < bi,j < ci,j, and

ai,j + bi,j + ci,j ≥ n.

Define the parallel classes of (S ′,B′) as follows

• π′
0 = {(t, t+ n, t+ 2n) | 0 ≤ t ≤ n− 1}.

• π′
1,i = {(ai,j, bi,j, ci,j+2n), (ai,j+n, bi,j+n, ci,j), (ai,j+2n, bi,j+2n, ci,j+

n) | 1 ≤ j ≤ n
3
} for 1 ≤ i ≤ n−1

2
.

• π′
2,i = {(ai,j, ci,j, bi,j+2n), (ai,j+n, ci,j+n, bi,j), (ai,j+2n, ci,j+2n, bi,j+

n) | 1 ≤ j ≤ n
3
} for 1 ≤ i ≤ n−1

2
.

• π′
3,i = {(bi,j, ci,j, ai,j+2n), (bi,j+n, ci,j+n, ai,j), (bi,j+2n, ci,j+2n, ai,j+

n) | 1 ≤ j ≤ n
3
} for 1 ≤ i ≤ n−1

2
.

Items 1 and 2, below, show that (S ′,B′) is STS(3n). Item 3 shows that
it is resolvable. Item 4 proves that minΣ(B

′) = 3n.

1. Each block is unique.

Since each block, (ai,j, bi,j, ci,j), is Steiner, any two elements determine
the third, and each of three are distinct.

Look at the following three groups of coordinates:

• The coordinates ai,j , bi,j , and ci,j are in the range [0, n− 1].

• When we add n to a coordinate, it is in the range [n, 2n− 1].

• When we add 2n to a coordinate, it is in the range [2n, 3n− 1].
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So for π′
1,i, π

′
2,i and π′

3,i, any two blocks will have the same coordinates
only if the same ai,j, bi,j , and ci,j are included in both, with the same
additions of 0, n, or 2n. But, it is obvious that this never occurs.
Therefore, each block is unique.

2. The total number of blocks in B′ is 3n(3n−1)
6

.

Total number of blocks = |π′

0|+

3
∑

k=1

n−1

2
∑

i=1

|π′

k,i|

= n+ 3 ·
n− 1

2
· n

=
3n(3n− 1)

6
.

3. Each parallel class includes all the elements of S ′ = {0, 1, ..., 3n− 1}.

For π′
0, it is obvious that all the elements of S ′ are included.

Each parallel class in π′
1,i, π

′
2,i and π′

3,i is created by taking a parallel
class from KTS(n) and adding to each coordinate of that parallel class
0, n and 2n. Since each original parallel class from KTS(n) contains
the elements of S, each new parallel class includes all the elements of
S ′ = {0, 1, ..., 3n− 1}.

4. minΣ(B
′) = 3n.

We need to show that sum of the coordinates of each block is greater
than or equal to 3n.

For π′
0,

t + t+ n+ t + 2n = 3t+ 3n ≥ 3n.

The parallel classes π′
1,i, π

′
2,i and π′

3,i are created by adding at least 2n
to each block of B. Since each block of B has a sum of at least n, the
sum of each block from π′

1, π
′
2 and π′

3 is at least 3n.

Therefore, (S ′,B′) is a KTS(3n) with minΣ(B
′) = 3n.

Corollary 3.2. For every k ≥ 1, there exists a KTS(n = 3k) with the
maximum min-sum.

Proof. This is a proof by mathematical induction.
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Base case. For k = 1, we have n = 3. Then

S1 = {0, 1, 2}

B1 = {(0, 1, 2)}

π1 = {(0, 1, 2)}

minΣ(B1) = 3 = n.

Therefore, there exists KTS(n) with minΣ(B1) = n for k = 1.
Inductive Case. Assume that there exists k ≥ 1, such that for n = 3k,

there exists (Sk,Bk), a KTS(n) where Sk = {0, 1, ..., n−1} with minΣ(Bk) =
n. Then, based on Theorem 3.1, there exists (Sk+1,Bk+1), a KTS(3n) where
Sk+1 = {0, 1, ..., 3n− 1} with minΣ(Bk+1) = 3n.

Therefore, there exists KTS(n = 3k) for all k ≥ 1, with the maximum
min-sum.

3.3 Kirkman quadruple systems that reach the upper

bound for the min-sum

The following looks at KQS(n) from a graphical standpoint.

Definition 3.3 (KQS(n) graph). AKQS(n) graph is a regular graph (i.e.,

each vertex has the same degree), with n vertices and n(n−1)(n−2)
6

edges, which

contains n(n−1)(n−2)
24

4-cycles, which can be grouped into (n−1)(n−2)
6

parallel
classes. Each 3-cycle is included in exactly one of the 4-cycles.

Let G be a KQS(n) graph with vertex labels S = {0, 1, ..., n− 1}. Each
of the 4-cycles are the blocks of the KQS. We know that each pair of vertices
(a, b), where a, b ∈ S, appears in n−2

2
4-cycles.

For SQS(n),

number of blocks =
n(n− 1)(n− 2)

24
, and

total number of edges = 4
n(n− 1)(n− 2)

24
=

n(n− 1)(n− 2)

6
,

since each block has 4 edges. The total number of unique edges is n(n−1)
2

.
For SQS(2n),

number of blocks =
2n(2n− 1)(2n− 2)

24
=

n(2n− 1)(2n− 2)

12
, and

total number of edges = 4
2n(2n− 1)(2n− 2)

24
=

n(2n− 1)(2n− 2)

3
.
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The following shows that a KQS(2n) with minΣ = 2n + 2 can be con-
structed from two KQS(n) with minΣ = n+ 2. First, we need to show that
for

• S = {0, 1, ..., n− 1}, where 4 | n, and

• T = {(a, b) | a < b; a, b ∈ S},

T can be partitioned into n
2
-subsets: p1, p2, ..., pn−1, such that the pairs of

each pi partition S for for each i ∈ {1, 2, ..., n− 1}.

First, Lemma 3.4 will prove this where 2 | n, 4 ∤ n. Then, Corollary 3.6
proves this for 2 | n.

Lemma 3.4. (Partition of {(a, b) | a < b; a, b ∈ S})
Let

• S = {0, 1, ..., n− 1}, where 2 | n, 4 ∤ n,

• T = {(a, b) | a < b; a, b ∈ S}.

T can be partitioned into n
2
-subsets: p1, p2, ..., pn−1, called parallel classes,

such that the pairs of each pi partition S for each i ∈ {1, 2, ..., n− 1}.

Proof. For the trivial case of n = 2,

S = {0, 1},

T = {(0, 1)},

p1 = {(0, 1)}.

The following addresses n > 2. Let

pEi =

{

(

i, i+
n

2

)

, (i+ t, i− t) (mod n) | t = 1, 2, ...,
n

2
− 1

}

for i ∈

{

0, 1, ...,
n

2
− 1

}

,

pOi =

{

(2t, 2t+ i) (mod n) | t = 1, 2, ...,
n

2

}

for i ∈

{

1, 3, ...,
n

2
− 2

}

.

pOi+1 =

{

(2t + 1, 2t+ 1 + i) (mod n) | t = 1, 2, ...,
n

2

}

for i ∈

{

1, 3, ...,
n

2
− 2

}

.
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Then, let

PE =

{

pEi | i = 1, 2, ...,
n

2
− 1

}

,

PO =

{

pOi, pOi+1 | i = 1, 3, ...,
n

2
− 2

}

,

Since 2 | n and 4 ∤ n,

• for each pair (x, y) ∈ pEi, the difference between the two elements in
the pair is either even or n

2
, and

• for each pair (2t, 2t+ i) ∈ pOi, and each pair (2t+1, 2t+1+ i) ∈ pOi+1,
the difference between the two elements in the pair is always i, an odd
number less than n

2
.

Therefore, there are no pairs in a pi ∈ PE that are in any pj ∈ PO, and vice
versa.

Next, we will show that any pair appears exactly once in any pEi ∈ PE .
The order of the elements in pair do not matter.

• Suppose there exists (i, i+ n
2
) = (j, j+ n

2
) where i 6= j. Then, i ≡ j+ n

2

(mod n). However, there are no pi, pj ∈ PE where j − i ≡ n
2
(mod n),

because | j − i |< n
2
. Therefore, this is a contradiction.

• Suppose there exists (i + t, i − t) = (j + s, j − s) where i 6= j. Then,
there are two possible cases:

– Case 1. i+ t ≡ j + s (mod n), and i− t ≡ j − s (mod n).
Then, from the first equation we have i− j + t ≡ s. Substituting
this into the second equation we get

i− t ≡ j − i+ j − t (mod n)

2i ≡ 2j,

which is not possible because i 6= j ∈ {0, 1, ..., n
2
− 1}.

– Case 2. i+ t ≡ j − s (mod n), and i− t ≡ j + s (mod n).
Then, from the first equation we have i−j+ t ≡ −s. Substituting
this into the second equation we get

i− t ≡ j − i+ j − t

2i ≡ 2j,

which is not possible because i 6= j ∈ {0, 1, ..., n
2
− 1}.
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• Suppose there exists
(

i, i+ n
2

)

= (j+ t, j− t) where i 6= j. Then, there
are two possible cases:

– Case 1. i ≡ j + t (mod n), and i+ n
2
≡ j − t (mod n).

Substituting the first equation into the second equation we get

j + t +
n

2
≡ j − t (mod n)

2t+
n

2
≡ 0

t ≡
n

4
or

3n

4
,

which is not possible because t ∈ {1, 2, ..., n
2
− 1} and 4 ∤ n.

– Case 2. i ≡ j − t (mod n), and i+ n
2
≡ j + t (mod n).

Substituting the first equation into the second equation we get

j − t+
n

2
≡ j + t (mod n)

n

2
≡ 2t

t ≡
n

4
or

3n

4
,

which is not possible because t ∈ {1, 2, ..., n
2
− 1} and 4 ∤ n.

Therefore, any pair appears exactly once in any pEi.
Next, we will show that any pair appears exactly once in any pOi. Sup-

pose, (2t1, 2t1 + i) = (2t2, 2t2 + i), where t1 6= t2. Since, t1, t2 ∈ {1, 2, ..., n
2
},

the only possibility is that 2t1 ≡ 2t2 + i and 2t1 + i ≡ 2t2. Substituting the
first equation into the second

2t2 + i+ i ≡ 2t2 (mod n)

2i ≡ 0.

But this is not possible because i ∈ {1, 3, ..., n
2
− 2}.

Similarly, any pair appears exactly once in any pOi+1.
Next, we will show that any pair in pOi does not appear in pOi+1. Suppose

(2t1, 2t1+i) = (2t2+1, 2t2+1+j). The only possibility is for 2t1 ≡ 2t2+1+j

and 2t1+ i ≡ 2t2+1. Substituting the first equation into the second equation

2t2 + 1 + j + i ≡ 2t2 + 1 (mod n)

j + i ≡ 0.
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But, this is not possible because i, j ∈ {1, 3, ..., n
2
− 2}.

Therefore, all the pairs of PE ∪ PO are distinct.
Also, it is obvious for each pi ∈ PE ∪ PO,

S = {x1, x2 | (x1, x2) ∈ pi},

since each x ∈ S occurs only once in each pi and each pi has
n
2
pairs.

Since
| PE ∪ PO |=

n

2
+

n

2
− 1 = n− 1,

we have identified all of the parallel classes.
Since each pair included in the parallel classes of PE ∪ PO is unique, and

the number of all pairs is (n− 1)n
2
, then

{(a, b) | (a, b) ∈ p, for p ∈ PE ∪ PO} = {(a, b) | a < b; a, b ∈ S} = T.

Therefore, T can be partitioned into the n − 1 subsets of PE ∪ PO, each
of size n

2
, such that the pairs of each pi ∈ PE ∪ PO partition S.

Corollary 3.5. Let

• S = {0, 1, ..., n− 1}, where 2 | n,

• T = {(a, b) | a < b; a, b ∈ S},

and p1, p2, ..., pn−1 partition T such that the pairs of each pi partition S for
each i ∈ {1, 2, ..., n− 1}. Then

T ′ = {(a, b) | a < b; a, b ∈ S ′ = {0, 1, ..., 2n− 1}}

can be partitioned into n-subsets: p′1, p
′
2, ..., p

′
2n−1, such that the pairs of each

p′i partition S ′ for each i ∈ {1, 2, ..., 2n− 1}.

Proof. Let G1 be a complete graph with n vertices labeled 0, 1, ..., n−1. The
pairs of each pi, for 1 ≤ i ≤ n− 1, correspond to the edges of G1. Let G2 be
a complete graph, with vertices labeled n, n+1, ..., 2n− 1, isomorphic to G1

such that each vertex v of G1 corresponds to vertex v + n of G2. Let p
∗
i , for

1 ≤ i ≤ n− 1, be the parallel classes for G2 such that

p∗i = {(a+ n, b+ n) | (a, b) ∈ pi} for 1 ≤ i ≤ n− 1.

Define the parallel classes for S ′ as follows, which we group into P1 and P2:
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• P1: p
′
i = pi ∪ p∗i for 1 ≤ i ≤ n− 1.

Since each p′i is a union of a parallel class from G1 and a parallel class
from G2, it is obvious that the pairs of each p′i partition S ′.

• P2: p′n+t = {(j, n + (j + t (mod n))) | j = 0, 1, ..., n − 1} for t ∈
{0, 1, ..., n− 1}.
For these pairs, the first coordinate comes from G1 and the second
coordinate from G2. Each pair in p′n+t has a second coordinate that
is t larger than the G2 vertex that corresponds to the first coordinate.
Therefore, each pair is unique, and the pairs of each p′n+t partition S ′.

Then,
|P1|+ |P2| = n− 1 + n = 2n− 1.

Therefore, we have identified 2n−1 parallel classes, each of size n. Therefore,
T ′ can be partitioned into n-subsets: p′1, p

′
2, ..., p

′
2n−1, such that the pairs of

each p′i partition S ′ for each i ∈ {1, 2, ..., m− 1}.

Corollary 3.6. Let

• S ′′ = {0, 1, ..., m− 1}, where 2 | m,

• T ′′ = {(a, b) | a < b; a, b ∈ S ′′}.

Then, T ′′ can be partitioned into m
2
-subsets: p′1, p

′
2, ..., p

′
m−1, such that the

pairs of each p′i partition S ′′ for each i ∈ {1, 2, ..., m− 1}.

Proof. This is a proof by mathematical induction.

Let
2s · q = m,

for q odd and s ≥ 1.
Base Case. For s = 1, let

• m1 = 2q,

• S1 = {0, 1, ..., m1 − 1},

• T1 = {(a, b) | a < b; a, b ∈ S1}.

By Lemma 3.4, we know that T1 can be partitioned into m1

2
-subsets:

p1,1, p1,2, ..., p1,m1−1,

such that the pairs of each p1,i partition S1 for each i ∈ {1, 2, ..., m1 − 1}.

Inductive Case. For s ≥ 1, assume



Kirkman Systems that Attain the Upper Bound ... 443

• ms = 2s · q,

• Ss = {0, 1, ..., ms − 1},

• Ts = {(a, b) | a < b; a, b ∈ Ss}, and

• Ts can be partitioned into ms

2
-subsets: ps,1, ps,2, ..., ps,ms−1, such that

the pairs of each ps,i partition Ss for each i ∈ {1, 2, ..., ms − 1}.

Then, based on Corollary 3.5, for

• ms+1 = 2s+1 · q,

• Ss+1 = {0, 1, ..., ms+1 − 1},

• Ts+1 = {(a, b) | a < b; a, b ∈ Ss+1},

Ts+1 can be partitioned into ms+1

2
-subsets: ps+1,1, ps+1,2, ..., ps+1,ms+1−1, such

that the pairs of each ps+1,i partition Ss+1 for each i ∈ {1, 2, ..., ms+1 − 1}.

Therefore, by mathematical induction, T ′′ can be partitioned into m
2
-

subsets: p′1, p
′
2, ..., p

′
m−1, such that the pairs of each p′i partition S ′′ for each

i ∈ {1, 2, ..., m− 1}.

The following proves that there is an infinite number of Kirkman Quadru-
ple Systems that reach the upper bound for the min-sum. First, we identify
some of the elements that will be used in the proof.

Let (S,B) be KQS(n), where

• S = {0, 1, ..., n− 1)},

• B = {Bi | i = 1, 2, ..., n(n−1)(n−2)
24

} ,

• πt = {(at,i, bt,i, ct,i, dt,i) | 1 ≤ i ≤ n
4
}, for t = 1, 2, ... (n−1)(n−2)

6
,

• with minΣ(B) = n+ 2.

Let S ′ = {0, 1, ..., 2n− 1}. We will show that the following form the parallel
classes (P1 ∪P2) for (S

′,B′), a KQS(2n) with minΣ = 2n+2. Let P1 be the
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union of the following:

ρt,1 = {(at,i + n, bt,i , ct,i , dt,i ),

(at,i , bt,i + n, ct,i + n, dt,i + n) | 1 ≤ i ≤ n
4
},

ρt,2 = {(at,i , bt,i + n, ct,i , dt,i ),

(at,i + n, bt,i , ct,i + n, dt,i + n) | 1 ≤ i ≤ n
4
},

ρt,3 = {(at,i , bt,i , ct,i + n, dt,i ),

(at,i + n, bt,i + n, ct,i , dt,i + n) | 1 ≤ i ≤ n
4
},

ρt,4 = {(at,i , bt,i , ct,i , dt,i + n),

(at,i + n, bt,i + n, ct,i + n, dt,i ) | 1 ≤ i ≤ n
4
},

for t = 1, 2, ..., (n−1)(n−2)
6

.

Let T = {(s, t) | s < t; s, t ∈ S}. Using Corollary 3.6, partition T into
n
2
-subsets: p1, p2, ..., pn−1 such that the pairs of each pi partition S for each

i ∈ {1, 2, ..., n− 1}.

Let P2 be the union of

ρi = {(s, t, s+ n, t+ n) | (s, t) ∈ pi}, for i ∈ {1, 2, ..., n− 1}.

Theorem 3.7. For any KQS(n) with minΣ = n + 2, a KQS(2n) with
minΣ = 2n+ 2 can be constructed.

Proof. Let (S,B) be the KQS(n) described above with minΣ(B) = n + 2.
The following will show that P1 ∪ P2 form the parallel classes for (S ′,B′), a
KQS(2n) with minΣ(B

′) = 2n+ 2. We need to prove the following:

1. Each triple is not included more than once in B′.

• For P1, since each triple of S is included only once in B, then the
blocks of P1 do not contain any duplicate triples.

• For P2, since each pair is included only once in T , there will be no
duplicate triples in P2.

• P2 includes values s and s + n, but P1 does not include any such
pairs. Therefore, there are no triples in P1 that are also in P2.

Therefore, each triple is not included more than once in B′.
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2. |B′| = 2n(2n−1)(2n−2)
24

= n(2n−1)(2n−2)
12

.

|B′| = Number of blocks in P1 ∪ P2

= 2×
n

4
× 4×

(n− 1)(n− 2)

6
+

n

2
× (n− 1)

=
2n(n− 1)(n− 2)

6
+

n(n− 1)

2

=
n(2n− 2)(2n− 4)

12
+

n(2n− 2) · 3

12

=
n(2n− 2)(2n− 1)

12
.

3. Each parallel class includes all elements of S ′.

• Since parallel class ρt,i of P1 contains

at,i, at,i + n,

bt,i, bt,i + n,

ct,i, ct,i + n,

dt,i, dt,i + n,

for some parallel class πt of (S,B), we have ρt,i must contain all
the elements of S ′.

• For P2, since

S = {s, t | (s, t) ∈ pi},

we have

ρi = {(s, t, s+ n, t + n) | (s, t) ∈ pi}

must contain all the elements of S ′.

4. |P1 ∪ P2| =
(2n−1)(2n−2)

6
.

|P1 ∪ P2| = 4×
(n− 1)(n− 2)

6
+ (n− 1)

=
(2n− 2)(2n− 4)

6
+

3(2n− 2)

6

=
(2n− 2)(2n− 1)

6
.
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5. minΣ(B
′) = 2n + 2.

• Since
minΣ(B) = n+ 2,

and each block of P1 is a block of B increased by at least n, then

minΣ(P1) ≥ 2n+ 2.

• For P2, since s or t is at least 1,

minΣ(P2) = s+ t+ s+ n + t+ n ≥ 2n+ 2.

Therefore, (S ′,B′) is KQS(2n) with minΣ(B
′) = 2n+ 2.

Corollary 3.8. For every k ≥ 0, there exists a KQS(n = 4 ·2k) that reaches
the upper bound of the min-sum.

Proof. This is a proof by mathematical induction.
Base case. For k = 0, let n = 4 · 2k. Then

S0 = {0, 1, 2, 3}

B0 = {(0, 1, 2, 3)}

π1 = {(0, 1, 2, 3)}

minΣ(B0) = 6 = n+ 2.

Therefore, there exists a KQS(n) with minΣ = n+ 2 for k = 0.
Inductive Case. Assume that there exists k ≥ 0, such that for n = 4 · 2k,

there exists (Sk,Bk), a KQS(n) where Sk = {0, 1, ..., n−1} with minΣ(Bk) =
n + 2. Then, based on Theorem 3.7, there exists (Sk+1,Bk+1), a KQS(2n)
where Sk+1 = {0, 1, ..., 2n− 1} with minΣ(Bk+1) = 2n+ 2.

Therefore, there exists KQS(n = 4 · 2k) for all k ≥ 0, that reaches the
upper bound of min-sum.
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4 Conclusion

Theorem 3.1 and its corollary prove that, for every k ≥ 1, there exists a
KTS(n = 3k) with a minimum block sum of n which is the upper bound for
this value.

Theorem 3.7 and its corollary prove that for every k ≥ 0, there exists a
KQS(n = 4 · 2k) with a minimum block sum of n + 2, which is the upper
bound for this value.

These conclusions can then be used to distribute servers by location, as
described in Section 1, so that each location has all the data, while the chunks
of data have been distributed across servers by popularity.
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