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Abstract

In this article, we consider the fuzzy stochastic integrals. Then we

propose some conditions and definitions of backward stochastic fuzzy

differential equations with coefficients delay and discuss the numerical

convergence.

1 Introduction

Backward stochastic differential equations ”BSDEs” have been first inter-
ested in Pardoux and Peng [1] in order to prove existence and uniqueness
of the adapted solutions. A backward stochastic differential equation is an
equation of the following form

Υt = ξ +

∫ T

t

f(s,Υs)ds−
∫ T

t

ΨsdWs (1)

where ξ is a terminal condition such that E|ξ|2 < ∞, with Brownian mo-
tion {Wt}0≤t≤T defined on the complete probability space (Ω,Γ, P ) with the
natural filtration {Γt}0≤t≤T .
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Numerous mathematicians were interested in approximating the solution
of BSDEs [2, 3, 4, 5, 6]. Buckwar [7] presented the new numerical method
for stochastic delay differential equations with Itô form and gave a numerical
convergence for explicit single-step methods. He discussed numerical conver-
gence for SDEs with time delayed coefficients and studied the problems of
numerical solution of SDDEs. Delong and Imkeller [8, 9] discussed the ex-
istence and uniqueness of solution of BSDEs with time delayed coefficients.
Delong [10, 11] was interested in applications of BSDEs with time delayed
coefficients. Moreover, he investigated the solutions of BSDDEs. Malrnowski
and Michta [12] established the continuous dependence on initial condition
and stability properties in addition to existence and uniqueness of solutions
for SFDDEs. Furthermore, Malrnowski [13] studied the strong uniqueness
for strong solutions. Michta [14] discussed approaches of SFDE with a semi-
martingale integrator and existence of fuzzy solution.

In this work, we propose some definitions and basic concepts to study
the fuzzy stochastic differential delay equation. Moreover, we discuss the
numerical convergence of BFSDDEs with

Υt = ξ +

∫ T

t

f(s,Υs,Ψs,Υ(s),Ψ(s))ds−
∫ T

t

ΨsdWs (2)

where Wt, 0 ≤ t ≤ T, is a Brownian motion defined on the complete proba-
bility space (Ω,Γ, P ). The coefficient f at time s and the terminal condition
ξ depend on the past values of a solution (Υ(s),Ψ(s)) = (Υs+v,Ψs+v)−T≤v≤0.

2 Preliminaries and basic assumptions

In this section, we present some assumptions and spaces used in the sequel.
We consider the standard d-dimensional {Wt, 0 ≤ t ≤ 1} defined on the
complete probability space (Ω,Γ, P ) with {Γt}0≤t≤1 denoting the natural
filtration of σ-algebra P with Γt-progressively measurable subsets of Ω×[0, 1].
We consider a backward stochastic differential equation as follows

Υt = ξ +

∫ 1

t

f(s,Υs,Ψs,Υ(s),Ψ(s))ds−
∫ 1

t

ΨsdWs (3)

where Wt, 0 ≤ t ≤ 1 is a Brownian motion defined on the complete prob-
ability space (Ω,Γ, P ), ξ is a given Γ1-measurable random variable, where
E|ξ|2 < ∞. The coefficient f is a mapping from Ω× [0, 1]× R

p × R
p×d into
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R
p. If Υ ∈ ρ2([0, 1],Rn), we define the following norm

||Υ||2 =
n∑

i=1

E[ sup
0≤t≤1

|Υi
t|2].

If Ψ ∈ ρ2([0, 1]× Ω,Rn×d), then we also define the following norm

||Ψ||2 =
n∑

i=1

d∑
j=1

E[|
∫ 1

0

Ψi
tdW

j
t |2].

We consider the following spaces

i) Let L2
−T (R

p×d) be the space of measurable function Ψ : [−T, 0] → R
p×d

such that
∫ 0

−T
|Ψt|2dt < ∞.

ii) Let L∞
−T (R

p) be the space of measurable function Υ : [−T, 0] → R
p

such that sup−T≤t≤0 |Υt|2
< ∞.

iii) Let H2
T (R

n) be the space of Γ-predictable processes Υ : Ω× [0, T ] → R
n

such that E
∫ T

0
|Υt|2dt < ∞.

iv) Let Q2
T (R

p) is the space of Γ-adapted, product measurable processes
Υ : Ω× [0, T ] → R

p such that E[sup0≤t≤T |Υt|2] < ∞.

We consider the norms ||Υ||2
Q2

T

= E[sup0≤t≤T |Υt|2] and ||Ψ||2
H2

T

= E
∫ T

0
|Ψt|2dt

with the spaces Q2
T (R

p) and H2
T (R

p×d), respectively. We present the past val-
ues of the solution Υ(s) = Υs+α and Ψ(s) = Ψs+α for −T ≤ α ≤ 0 with the
terminal condition ξ and the set Υt = Υ0 and Ψt = 0 for t < 0. Suppose
that B(Rp) is the family of all nonempty compact and convex subsets of Rp

and Θ(Rp) is the fuzzy set space of Rp. The set of functions λ : Rp → [0, 1]
such that [λ]v ∈ B(Rp) for every v ∈ [0, 1], where [λ]v = {b ∈ R

p : λb ≥ v}
for v ∈ [0, 1] and [λ]0 = {b ∈ R

p : λb > 0}. A mapping Υ : Ω → Θ(Rp) is
said to be a fuzzy random variable if [Υ]v : Ω → B(Rp) is a Γ-measurable
multifunction for all v ∈ [0, 1].

Definition 2.1. Let (Ω,Γ, P ) be a complete probability space. A mapping
Υ : Ω → Γ(Rp) is a function random variable if for all v ∈ [0, 1], [Υ]v : Ω →
B(Rp) is Γ-measurable.
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Definition 2.2. A mapping Υ : [0, 1] × Ω → Γ(Rp) is said to be a fuzzy
stochastic process if the mapping Υ(t, ·) = Υt : Ω → Γ(Rp) is a fuzzy random
variable.

Definition 2.3. A fuzzy stochastic process is d∞-continuous if the mappings
Υ(·,W ) : [0, 1] → Γ(Rp) are d∞-continuous functions.

In this work, we consider the BFSDE with time delayed coefficients as
follows

dΥt = f(t,Υt,Ψt,Υ(t),Ψ(t))dt−ΨtdWt, 0 ≤ t ≤ T

ΥT = ξ(ΥT ,ΨT ),−T ≤ t ≤ 0,

where f : Ω × [0, T ] × R
p × R

p×d × Θ(Rp) → Θ(Rp) is Borel-measurable
function at time set depend on the past values of the solution Υ(s) = Υs+v

and Ψ(s) = Ψs+v for −T ≤ v ≤ 0, and Ψt = 0, Υt = Υ(0) for t < 0. We
present the following conditions

(H1): f(·, 0, 0) ∈ ρ2([0, 1] : Rp).

(H2): ∀t ∈ [0, 1], λ ∈ [−ε, 0] and (Υ1,Ψ1), (Υ2,Ψ2) ∈ R
p × R

p×d then

|f(t,Υ1,Ψ1,Υ1(t),Ψ1(t))−f(t,Υ2,Ψ2,Υ2(t),Ψ2(t))|2 ≤ µ(t, |Υ1−Υ2|2)+q|Ψ1−Ψ2|2

+ k(

∫ 0

−T

|Υ1
t+v −Υ2

t+v|2λ(dv) +
∫ 0

−T

|Ψ1
t+v −Ψ2

t+v|2λ(dv)) (4)

where q, k > 0 and µ(t, c) is continuous function in both t and c, which is
concave and nondecreasing as a function of t, such that for all t ∈ [0, 1],
µ(t, 0) = 0. The ordinary differential equation ć = −µ(t, c), c(1) = 0 has a
unique solution c(t) = 0 for all t ∈ [0, 1].

(H3): There exist θ(t) ≥ 0 and β(t) ≥ 0 such that µ(t, c) ≤ θ(t) + β(t)c,

and
∫ 1

0
θ(t)dt < ∞,

∫ 1

0
β(t)dt < ∞.

3 Numerical Scheme for BFSDDEs

In this section, we introduce a numerical scheme of BFSDDE. For all integers
l, r > 1 and t ∈ [0, T ], let −ε = t−r < t−r+1 < ··· < 0 = t0 < t1 < ··· < tl = T
be a partition of interval [−ε, T ], and denote δ = ∆i+1 − ti =

T
l
, 1 ≤ i ≤ l,

∆Wi+1 = Wi+1−Wi, where i = 0, 1, · · ·, l− 1 and ∆t = max−ε≤i≤l−1∆ti . Let
ρl denote the approximating binomial random walk with natural filtration
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Γl. If Γ is a functional defined on Ω, then we shall identify Γ(ρl0, · · ·, ρl1) and
Γ(ρl) as the same. The discrete version of the BFSDDE is

Υ̌l
ti
= Γ(ρl) +

l−1∑
j=i

f(tj, Υ̌
l
tj
, Ψ̌l

tj
, Υ̌l(tj), Ψ̌

l(tj))∆tj −
l−1∑
j=i

Ψ̌l
tj
∆Wtj . (5)

From Euler scheme, we deduce that

Υ̌l
ti
= Υ̌l

ti+1
+

1

l
f(ti, Υ̌

l
ti
, Ψ̌l

ti
, Υ̌l(ti), Ψ̌

l(ti))− Ψ̌l
ti
∆Wti . (6)

Without loss of generality, generator f is bounded by G. By taking expecta-
tion and analyzing the error between the approximate solution and the exact
solution, the error is bounded by

|Υ̌l
ti
−Υ̂l

ti
| ≤ |E[Υ̌l

ti+1
−Υ̂l

ti+1
/Γl

ti
]|+1

l
|f(ti, Υ̌l

ti
, Ψ̌l

ti
, Υ̌l(ti), Ψ̌

l(ti))−f(ti, Υ̂
l
ti
, Ψ̂l

ti
, Υ̂l(ti), Ψ̂

l(ti))|

and

|Ψ̌l
ti
− Ψ̂l

ti
| ≤ l|E[Υ̌l

ti+1
− Υ̂l

ti+1
∆ρlti/Γ

l
ti
]|.

Ma et al. [4] presented the following assumptions

sup
ω

|Υ̌l
ti
− Υ̂l

ti
| ≤ G(e2L − 1)

l

and

sup
ω

|Ψ̌l
ti
− Ψ̂l

ti
| ≤ G(e2L − 1)(2 + L

l
)√

l
a.s.,

where L is Lipschitz constant.

4 Main Results

This section is devoted to the discussion of numerical convergence of BFS-
DDE.

Theorem 4.1. For all t ∈ [0, 1], the approximate solution {Υ̂l, Ψ̂l} of equa-
tion (3) converges to {Υ̌l, Ψ̌l}.

lim
l→∞

E|Υ̌l
t − Υ̂l

t|2 = 0 and lim
l→∞

E

∫ 1

t

|Ψ̌l
s − Ψ̂l

s|2ds = 0.
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Proof. We need to prove

lim
l→∞

E|Υ̌l
t − Υ̂l

t|2 = 0.

From the inequality

|Υ̌l
ti
− Υ̂l

ti
|

≤ |E[Υ̌l
ti+1

−Υ̂l
ti+1

/Γl
ti
]|+1

l
|f(ti, Υ̌l

ti
, Ψ̌l

ti
, Υ̌l(ti), Ψ̌

l(ti))−f(ti, Υ̂
l
ti
, Ψ̂l

ti
, Υ̂l(ti), Ψ̂

l(ti))|

we get

|Υ̌l
ti
− Υ̂l

ti
|2

≤ (|E[Υ̌l
ti+1

−Υ̂l
ti+1

/Γl
ti
]|+1

l
|f(ti, Υ̌l

ti
, Ψ̌l

ti
, Υ̌l(ti), Ψ̌

l(ti))−f(ti, Υ̂
l
ti
, Ψ̂l

ti
, Υ̂l(ti), Ψ̂

l(ti))|)2.

By using the inequality |α+ β|2 ≤ 2(|α|2 + |β|2), we deduce that

|Υ̌l
ti
− Υ̂l

ti
|2 ≤ 2|E[Υ̌l

ti+1
− Υ̂l

ti+1
/Γl

ti
]|2 + 2

l2
|f(ti, Υ̌l

ti
, Ψ̌l

ti
, Υ̌l(ti), Ψ̌

l(ti))

−f(ti, Υ̂
l
ti
, Ψ̂l

ti
, Υ̂l(ti), Ψ̂

l(ti))|2.
Taking the expectation, we have

E|Υ̌l
ti
− Υ̂l

ti
|2 ≤ 2E[|E[Υ̌l

ti+1
− Υ̂l

ti+1
/Γl

ti
]|2 + 2

l2
|f(ti, Υ̌l

ti
, Ψ̌l

ti
, Υ̌l(ti), Ψ̌

l(ti))

−f(ti, Υ̂
l
ti
, Ψ̂l

ti
, Υ̂l(ti), Ψ̂

l(ti))|2] ≤ 2E[|E[Υ̌l
ti+1

− Υ̂l
ti+1

/Γl
ti
]|2]

+
2

l2
E[|f(ti, Υ̌l

ti
, Ψ̌l

ti
, Υ̌l(ti), Ψ̌

l(ti))− f(ti, Υ̂
l
ti
, Ψ̂l

ti
, Υ̂l(ti), Ψ̂

l(ti))|2].

Applying condition (H2), we obtain

E|Υ̌l
ti
−Υ̂l

ti
|2 ≤ 2E[|E[Υ̌l

ti+1
−Υ̂l

ti+1
/Γl

ti
]|2]+ 2

l2
E[µ(t, |Υ̌l

ti
−Υ̂l

ti
|2)+cE|Ψ̌l

ti
−Ψ̂l

ti
|2]

+
2

l2
E[

∫ T

0

k

∫ 0

−T

|Υ̌(i)l
s+v − Υ̂

(i)l
s+v|lλ(dv)ds+

∫ T

0

∫ 0

−T

|Ψ̌(i)l
s+v − Ψ̂

(i)l
s+v|2λ(dv)ds].

Similarly from theorem (4.1) in [15], we have

E|Υ̌l
ti
−Υ̂l

ti
|2 ≤ 2E[|E[Υ̌l

ti+1
−Υ̂l

ti+1
/Γl

ti
]|2]+ 2

l2
E[µ(t, |Υ̌l

ti
−Υ̂l

ti
|2)+cE|Ψ̌l

ti
−Ψ̂l

ti
|2]
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+
2

l2
[k1E

∫ T

0

|Υ̌(i)l
s − Υ̂(i)l

s |2ds+ k2E

∫ T

0

|Ψ̌(i)l
s − Ψ̂(i)l

s |2ds]

where k1, k2 are positive constants. By taking the term

2

l2
[k1E

∫ T

0

|Υ̌(i)l
s − Υ̂(i)l

s |2ds+ k2E

∫ T

0

|Ψ̌(i)l
s − Ψ̂(i)l

s |2ds]

≤ 2

l2
[
k1G(e2L − 1)

l
+

k2G(e2L − 1)(2 + L
l
)√

l
].

From the inequality

E|Ψ̌l
ti
− Ψ̂l

ti
| ≤ l|E[Υ̌l

ti+1
− Υ̂l

ti+1
∆ρlti/Γ

l
ti
]|,

we have

E|Ψ̌l
ti
− Ψ̂l

ti
|2 ≤ 2l2E|E[(Υ̌l

ti+1
− Υ̂l

ti+1
)∆ρlti/Γ

l
ti
]|2.

Now,

E|Υ̌l
ti
− Υ̂l

ti
|2 ≤ 2E[|E[Υ̌l

ti+1
− Υ̂l

ti+1
/Γl

ti
]|2] + 2

l2
E[µ(t, |Υ̌l

ti
− Υ̂l

ti
|2)

+2l2E|E[(Υ̌l
ti+1

− Υ̂l
ti+1

)∆ρlti/Γ
l
ti
]|2+ 2

l2
[
k1G(e2L − 1)

l
+
k2G(e2L − 1)(2 + L

l
)√

l
]

≤ 2E|Υ̌l
ti+1

− Υ̂l
ti+1

|2 + 2

l2
Eµ(t, |Υ̌l

ti
− Υ̂l

ti
|2) + 4cE|Υ̌l

ti+1
− Υ̂l

ti+1
|2E|∆ρlti |

2

+
2

l2
[
k1G(e2L − 1)

l
+
k2G(e2L − 1)(2 + L

l
)√

l
] ≤ 2[

G(e2L − 1)

l
]2+

2

l2
Eµ(t, |Υ̌l

ti
−Υ̂l

ti
|2)

+
4c

l
[
G(e2L − 1)

l
]2 +

2

l2
[
k1G(e2L − 1)

l
+

k2G(e2L − 1)(2 + L
l
)√

l
].

Using condition (H3), we get

E|Υ̌l
ti
−Υ̂l

ti
|2 ≤ 2[

G(e2L − 1)

l
]2+

2

l2
[Ea(t)+Eb(t)|Υ̌l

ti
−Υ̂l

ti
|2]+4c

l
[
R(e2L − 1)

l
]2

≤ 2[
G(e2L − 1)

l
]2 +

2

l2
Ea(t) +

2

l2
Eb(t)[

G(e2L − 1)

l
]2 +

4c

l
[
G(e2L − 1)

l
]2

=
2l2(G(e2L − 1))2 + 2l2Ea(t) + 2Eb(t)(G(e2L − 1))2 + 4cl(G(e2L − 1))2

l4
.
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Now,

E|Υ̌l
ti
− Υ̂l

ti
|2 ≤ 2l2(G(e2L − 1))2 + 2l2Ea(t) + 2Eb(t)(G(e2L − 1))2

l4

+
4cl(G(e2L − 1))2 + l2k1G(e2L − 1) + 2k2G(e2L − 1)(2l + L)

l4
.

Therefore,

E|Υ̌l
ti
− Υ̂l

ti
|2 ≤ C1

.
l,

Letting l → ∞, it follows that, for all t ∈ [0, 1], liml→∞E|Υ̌l
ti
− Υ̂l

ti
|2 = 0.

Consequently,

lim
l→∞

E

∫ 1

t

|Ψ̌l
s − Ψ̂l

s|2ds = 0

for all t ∈ [0, 1].
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