On functional equations related to generalized Jordan derivations in rings

Sitthikorn Nakkao, Utsanee Leerawat
Department of Mathematics
Faculty of Science
Kasetsart University
Bangkok 10900, Thailand
email: sitthikorn.n@ku.th, fsciutl@ku.ac.th

(Received April 16, 2020, Accepted June 1, 2020)

Abstract

In this paper, we generalize the notions of Jordan derivation and generalized Jordan derivation to Jordan (f, g)-derivation and generalized Jordan (f, g)-derivation, respectively. Moreover, we investigate additive mappings satisfying some functional equations becomes Jordan (f, g)-derivation and generalized Jordan (f, g)-derivation.

1 Introduction

A derivation on a ring R is an additive mapping D, which maps a ring R into itself satisfying the product rule $D(x y)=D(x) y+x D(y)$ for all x and y in R. In 1957, Posner [2] proved two theorems, namely: (1) In a prime ring of characteristics not 2, if the iterate of two derivations is a derivation, then one of them is zero; (2) If D is a derivation of a prime ring such that, for all elements a of the ring, $a D(a)-D(a) a$ is central, then either the ring is commutative or D is zero. An additive mapping D which maps a ring R into itself is called a Jordan derivation if $D\left(x^{2}\right)=D(x) x+x D(x)$ holds for all x in R. It is straight forward to see that every derivation on a ring is a Jordan derivation but the converse need not be true in general. Herstein

Key words and phrases: Ring, derivation, Jordan derivation, generalized Jordan derivation.
AMS (MOS) Subject Classifications: 16W25, 13N15, 47 B 47.
ISSN 1814-0432, 2021, http://ijmcs.future-in-tech.net
Corresponding author: Utsanee Leerawat
[3] proved that any Jordan derivation on a prime ring of characteristic not 2 is a derivation. Bresar [8] extended this result to semiprime rings. In 1991, Bresar [9] introduced the notion of generalized derivations in rings as follows: an additive mapping $F: R \longrightarrow R$ is said to be a generalized derivation if there exists a derivation $D: R \longrightarrow R$ such that $F(x y)=F(x) y+x D(y)$ holds for all x, y in R. An additive mapping $F: R \longrightarrow R$ is said to be a generalized Jordan derivation if there exists a Jordan derivation $D: R \longrightarrow R$ such that $F\left(x^{2}\right)=F(x) x+x D(x)$ holds for all x, y in R. Obviously, every generalized derivation is a generalized Jordan derivation but there exists generalized Jordan derivation which is not generalized derivation. Ashraf and Rehman [6] showed that in a 2 -torsion free ring, which has a commutator nonzero divisor, every generalized Jordan derivation on R is a generalized derivation. In 2007, Vukman [4] proved that every generalized Jordan derivation on a 2torsion free semiprime ring is a generalized derivation. An additive mapping $x \longmapsto x^{*}$ on a ring R is called an involution if $\left(x^{*}\right)^{*}=x$ and $(x y)^{*}=y^{*} x^{*}$ hold for all x, y in R. A ring equipped with an involution is called a ring with involution or $*$-ring. An additive mapping $D: R \longrightarrow R$ is called a $*$ derivation (resp. Jordan $*$ - derivation) if $D(x y)=D(x) y^{*}+x D(y)$ (resp. $\left.D\left(x^{2}\right)=D(x) x^{*}+x D(x)\right)$ for all x, y in R. An additive mapping $F: R \longrightarrow$ R is said to be a generalized $*$ - derivation (resp. generalized Jordan $*-$ derivation) if there exists a *-derivation (Jordan $*$ - derivation) $D: R \longrightarrow R$ such that $F(x y)=F(x) y^{*}+x D(y)\left(\right.$ resp. $\left.F\left(x^{2}\right)=F(x) x^{*}+x D(x)\right)$ for all x, y in R.

In 2014, Rehman, et al. [11] proved that additive mappings F and D, which map an $(n+1)$! - torsion free $*-\operatorname{ring} R$ into itself, satisfying the relation
$F\left(x^{n+1}\right)=F(x)\left(x^{*}\right)^{n}+x D(x)\left(x^{*}\right)^{n-1}+\ldots+x^{n} D(x)$,
for all x, y in R, implies $D\left(x^{2}\right)=D(x) x^{*}+x D(x)$ and $F\left(x^{2}\right)=F(x) x^{*}+$ $x D(x)$ for all x in R.

This paper is inspired by the result of Rehman, et al. [11]. We generalize the notions of Jordan derivation and generalized Jordan derivation to Jordan (f, g) - derivation and generalized Jordan (f, g) - derivation respectively. Moreover, we investigate conditions for additive mappings to be Jordan (f, g) - derivation and generalized Jordan (f, g) - derivation.

On functional equations related to generalized Jordan derivations in rings25

2 Preliminaries

Throughout this paper, R will be a ring. Recall that a ring R is prime if for any $a, b \in R, a R b=0$ implies $a=0$ or $b=0$, and is semiprime if for any $a \in R, a R a=0$ implies $a=0$. For an integer $n>1$, an element $x \in R$ is called n-torsion free if $n x=0$ implies $x=0$. A ring R is called an n-torsion free ring if every element in R is n-torsion free. Moreover, a ring R is called an $n!$--torsion free if it is d-torsion free for any divisor d of $n!$.

Next, we define generalizations of Jordan derivation and generalized Jordan derivation as follows:

Definition 2.1. Let R be a ring and f, g be endomorphisms of R. An additive mapping $D: R \longrightarrow R$ is called a Jordan $(f, g)-$ derivation if

$$
D\left(x^{2}\right)=D(x) f(x)+g(x) D(x)
$$

for all $x \in R$.
An additive mapping $F: R \longrightarrow R$ is called a generalized $\operatorname{Jordan}(f, g)-$ derivation if there exists a Jordan $(f, g)-$ derivation D such that

$$
F\left(x^{2}\right)=F(x) f(x)+g(x) D(x),
$$

for all $x \in R$ and D is said to be an associated $\operatorname{Jordan}(f, g)-$ derivation of F.

Obviously, every (generalized) Jordan derivation is a (generalized) Jordan (f, g)-derivation.

3 Main results

Theorem 3.1. Let $n>1$ be a fixed positive integer and let R be an $2(n-1)!-t o r s i o n$ free ring with identity 1. If $D: R \longrightarrow R$ is an additive mapping and f, g are endomorphisms of R satisfying

$$
\begin{equation*}
2 D\left(x^{n}\right)=D\left(x^{n-1}\right) f(x)+g\left(x^{n-1}\right) D(x)+D(x) f\left(x^{n-1}\right)+g(x) D\left(x^{n-1}\right) \tag{3.1}
\end{equation*}
$$

for all $x \in R$, then D is a $\operatorname{Jordan}(f, g)-$ derivation.

Proof. For $x=1$ in (3.1) we have $D(1)=0$.
Setting $x+k 1$ for x in (3.1), where k is any positive integer, we obtain

$$
\begin{align*}
2 D\left((x+k 1)^{n}\right)= & D\left((x+k 1)^{n-1}\right) f(x+k 1) \\
& +g\left((x+k 1)^{n-1}\right) D(x+k 1) \\
& +D(x+k 1) f\left((x+k 1)^{n-1}\right) \\
& +g(x+k 1) D\left((x+k 1)^{n-1}\right) \tag{3.2}
\end{align*}
$$

for all $x \in R$.
By expanding (3.2) and using (3.1), we obtain

$$
\begin{aligned}
2 D\left(\sum_{i=1}^{n-1}\binom{n}{i} k^{i} x^{n-i}\right)= & D\left(\sum_{i=1}^{n-2}\binom{n-1}{i} k^{i} x^{n-1-i}\right) f(x) \\
& +D\left(\sum_{i=0}^{n-2}\binom{n-1}{i} k^{i} x^{n-1-i}\right) k f(1) \\
& +g\left(\sum_{i=1}^{n-2}\binom{n-1}{i} k^{i} x^{n-1-i}+k^{n-1} 1\right) D(x) \\
& +D(x) f\left(\sum_{i=1}^{n-2}\binom{n-1}{i} k^{i} x^{n-1-i}+k^{n-1} 1\right) \\
& +g(x) D\left(\sum_{i=1}^{n-2}\binom{n-1}{i} k^{i} x^{n-1-i}\right) \\
& +k g(1) D\left(\sum_{i=0}^{n-2}\binom{n-1}{i} k^{i} x^{n-1-i}\right)
\end{aligned}
$$

This can be written as

$$
k h_{1}(x, 1)+k^{2} h_{2}(x, 1)+\cdots+k^{n-1} h_{n-1}(x, 1)=0
$$

for all $x \in R$, where $h_{i}(x, 1)$ are the coefficients of k^{i} for all $i=1,2, \ldots, n-1$. Replacing k by $1,2, \ldots, n-1$, and expressing the resulting system of $n-1$ homogeneous equations, we get

$$
A H=[0],
$$

where $A=\left[\begin{array}{cccc}1 & 1^{2} & \cdots & 1^{n-1} \\ 2 & 2^{2} & \cdots & 2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ n-1 & (n-1)^{2} & \cdots & (n-1)^{n-1}\end{array}\right]$,

On functional equations related to generalized Jordan derivations in rings27
$H=\left[\begin{array}{c}h_{1}(x, 1) \\ h_{2}(x, 1) \\ \vdots \\ h_{n-1}(x, 1)\end{array}\right]$ and $[0]$ is $(n-1) \times 1$ zero matrix.
Since $\operatorname{det}(A)=\prod_{i=0}^{n-2}(n-i)$! and R is $2(n-1)$!-torsion free, it follows that the system has only a trivial solution. In particular, $h_{n-2}(x, 1)=0$ implies that

$$
2(n-1) D\left(x^{2}\right)=2(n-1) D(x) f(x)+2(n-1) g(x) D(x),
$$

for all $x \in R$. Since R is $2(n-1)$!-torsion free, it follows that

$$
D\left(x^{2}\right)=D(x) f(x)+g(x) D(x)
$$

for all $x \in R$.
Therefore, D is a Jordan (f, g)-derivation.
Theorem 3.2. Let R be a 2 -torsion free semiprime ring. Let $f: R \longrightarrow R$ be a homomorphism and $g: R \longrightarrow R$ be an epimorphism. If $D: R \longrightarrow R$ is an additive mapping satisfying

$$
\begin{equation*}
D(x y x)=D(x y) f(x)+g(x y) D(x) \tag{3.3}
\end{equation*}
$$

for all $x, y \in R$, then D is a $\operatorname{Jordan}(f, g)-$ derivation.
Proof. Linearization of the equation (3.3) gives

$$
D(x y z+z y x)=D(x y) f(z)+D(z y) f(x)+g(x y) D(z)+g(z y) D(x)
$$

for all $x, y, z \in R$. In particular, for $z=x^{2}$, the above equation gives

$$
\begin{align*}
D\left(x y x^{2}+x^{2} y x\right)= & D(x y) f\left(x^{2}\right)+D\left(x^{2} y\right) f(x) \\
& +g(x y) D\left(x^{2}\right)+g\left(x^{2} y\right) D(x), \tag{3.4}
\end{align*}
$$

for all $x, y \in R$.
Replacing y by $x y+y x$ in (3.3) and using (3.3), we get

$$
\begin{align*}
D\left(x^{2} y x+x y x^{2}\right)= & D\left(x^{2} y\right) f(x)+D(x y) f\left(x^{2}\right)+g(x y) D(x) f(x) \\
& +g\left(x^{2} y\right) D(x)+g(x y x) D(x), \tag{3.5}
\end{align*}
$$

for all $x, y \in R$. By comparing (3.4) and (3.5), we have

$$
\begin{equation*}
g(x) g(y) A(x)=0 \text { for all } x, y \in R \tag{3.6}
\end{equation*}
$$

where $A(x)=D\left(x^{2}\right)-D(x) f(x)-g(x) D(x)$.
Since g is onto, the equation (3.6) can be written

$$
\begin{equation*}
g(x) y A(x)=0 \text { for all } x, y \in R \tag{3.7}
\end{equation*}
$$

Right multiplication of (3.7) by $g(x)$ and left multiplication by $A(x)$ yield

$$
A(x) g(x) y A(x) g(x)=0 \text { for all } x, y \in R .
$$

By the semiprimeness of R, it follows that

$$
\begin{equation*}
A(x) g(x)=0 \text { for all } x \in R \tag{3.8}
\end{equation*}
$$

Replacing y by $A(x) y g(x)$ in (3.7), we have

$$
g(x) A(x) y g(x) A(x)=0 \text { for all } x, y \in R .
$$

Again, by the semiprimeness of R, we have

$$
\begin{equation*}
g(x) A(x)=0 \text { for all } x \in R . \tag{3.9}
\end{equation*}
$$

The linearizating of (3.8) gives

$$
\begin{equation*}
B(x, y) g(x)+A(x) g(x)+B(x, y) g(y)+A(x) g(x)=0 \tag{3.10}
\end{equation*}
$$

for all $x, y \in R$, where $B(x, y)=D(x y+y x)-D(x) f(y)-D(y) f(x)-g(x) D(y)-g(y) D(x)$. The substitution $-x$ for x in (3.10) leads to

$$
\begin{equation*}
B(x, y) g(x)+A(x) g(y)-B(x, y) g(y)-A(y) g(x)=0 \tag{3.11}
\end{equation*}
$$

for all $x, y \in R$. The equations (3.10) and (3.11) reduce to

$$
2(B(x, y) g(x)+A(x) g(y))=0, \text { for all } x, y \in R
$$

Since R is 2 -torsion free, it follows that

$$
B(x, y) g(x)+A(x) g(y)=0 \text { for all } x, y \in R
$$

In view of the equation (3.9), right multiplication by $A(x)$ yields $A(x) g(y) A(x)=$ 0 , for all $x, y \in R$. Since g is onto and R is semiprime, it follows that

$$
A(x)=0, \text { for all } x \in R
$$

Hence $D\left(x^{2}\right)=D(x) f(x)+g(x) D(x)$, for all $x \in R$.
In other words, D is a $\operatorname{Jordan}(f, g)$-derivation.

On functional equations related to generalized Jordan derivations in rings29

For the sake of brevity, we omit the proof of the following theorem.
Theorem 3.3. Let R be a 2 -torsion free semiprime rimg. Let $f: R \longrightarrow R$ be an epimorphism and $g: R \longrightarrow R$ be a homomorphism. If $D: R \longrightarrow R$ is an additive mapping satisfying

$$
D(x y x)=D(x) f(y x)+g(x) D(y x)
$$

for all $x, y \in R$, then D is a $\operatorname{Jordan}(f, g)-$ derivation.
Let f and g be endomorphisms of a ring R. If $F: R \longrightarrow R$ and $D: R \longrightarrow R$ are additive mappings satisfying

$$
\begin{equation*}
F\left(x^{n+1}\right)=F(x) f\left(x^{n}\right)+\sum_{i=1}^{n} g\left(x^{i}\right) D(x) f\left(x^{n-i}\right), \tag{3.12}
\end{equation*}
$$

for all $x \in R$. It is natural to ask the additive mappings satisfying (3.12) implies that

$$
F\left(x^{2}\right)=F(x) f(x)+g(x) D(x) \text { and } D\left(x^{2}\right)=D(x) f(x)+g(x) D(x)
$$

for all $x \in R$.
Theorem 3.4. Let n be a fixed positive integer and let R be an ($n+1$)!-torsion free ring with identity 1 . If $F: R \longrightarrow R, D: R \longrightarrow R$ are two additive mappings and f, g are endomorphisms of R satisfying

$$
\begin{equation*}
F\left(x^{n+1}\right)=F(x) f\left(x^{n}\right)+\sum_{i=1}^{n} g\left(x^{i}\right) D(x) f\left(x^{n-i}\right) \tag{3.13}
\end{equation*}
$$

for all $x \in R$, then D is a Jordan (f, g)-derivation on R and F is a generalized Jordan (f, g)-derivation.

Proof. Taking $x=1$ in (3.13), we obtain $F(1)=F(1)+n D(1)$.
This implies that $n D(1)=0$ and since R is $(n+1)$!-torsion free, we get $D(1)=0$. Replacing x by $x+k 1$ in (3.13), where k is any positive integer, we obtain
$F\left((x+k 1)^{n+1}\right)=(F(x)+k F(1))(f(x)+k 1)^{n}+\sum_{i=1}^{n}(g(x)+k 1)^{i} D(x)(f(x)+k 1)^{n-i}$,
for all $x \in R$.
By expanding (3.14) and using (3.13), we obtain

$$
\begin{aligned}
F\left(\sum_{i=1}^{n}\binom{n+1}{i} k^{i} x^{n+1-i}\right)= & F(x)\left(\sum_{i=1}^{n-1}\binom{n}{i} k^{i} f\left(x^{n-i}\right)+k^{n} 1\right) \\
& +k F(1)\left(\sum_{i=1}^{n-1}\binom{n}{i} k^{i} f\left(x^{n-i}\right)\right) \\
& +g(x) D(x)\left(\sum_{i=1}^{n-2}\binom{n-1}{i} k^{i} f\left(x^{n-i}\right)+k^{n-1} 1\right) \\
& +k D(x)\left(\sum_{i=0}^{n-2}\binom{n-i}{i} k^{i} f\left(x^{n-1-i}\right)+k^{n-1} 1\right) \\
& +g\left(x^{2}\right) D(x)\left(\sum_{i=1}^{n-3}\binom{n-2}{i} k^{i} f\left(x^{n-2-i}\right)+k^{n-2} 1\right) \\
& +2 k g(x) D(x)\left(\sum_{i=0}^{n-3}\binom{n-2}{i} k^{i} f\left(x^{n-2-i}\right)+k^{n-2} 1\right) \\
& \left.\left.+k^{2} D(x)\left(\begin{array}{c}
n-3 \\
i=0 \\
i
\end{array}\right) c^{n-2} \begin{array}{l}
i
\end{array}\right) k^{i} f\left(x^{n-2-i}\right)+k^{n-2} 1\right) \\
& \vdots \\
& +\left(\sum_{i=1}^{n-2}\binom{n-1}{i} k^{i} g\left(x^{n-1-i}\right)+k^{n-1} 1\right) D(x) f(x) \\
& +\left(\sum_{i=1}^{n-2}\binom{n-1}{i} k^{i} g\left(x^{n-1-i}\right)+k^{n-1} 1\right) k D(x) \\
& +\left(\sum_{i=1}^{n-1}\binom{n}{i} k^{i} g\left(x^{n-i}\right)+k^{n} 1\right) D(x) .
\end{aligned}
$$

Collecting terms, we obtain

$$
k h_{1}(x, 1)+k^{2} h_{2}(x, 1)+\cdots+k^{n} h_{n}(x, 1)=0
$$

for all $x \in R$, where $h_{i}(x, 1)$ are the coefficients of k^{i} for all $i=1,2, \ldots, n$. Replacing k by $1,2, \ldots, n$, and expressing the resulting system of n homogeneous equations, we get

$$
A H=[0],
$$

On functional equations related to generalized Jordan derivations in rings31
where $A=\left[\begin{array}{cccc}1 & 1^{2} & \cdots & 1^{n} \\ 2 & 2^{2} & \cdots & 2^{n} \\ \vdots & \vdots & \ddots & \vdots \\ n & n^{2} & \cdots & n^{n}\end{array}\right]$,
$H=\left[\begin{array}{c}h_{1}(x, 1) \\ h_{2}(x, 1) \\ \vdots \\ h_{n}(x, 1)\end{array}\right]$ and $[0]$ is $n \times 1$ zero matrix.
Since $\operatorname{det}(A)=\prod_{i=0}^{n-1}(n-i)$!, and R is $(n+1)$!-torsion free ring, it follows that the system has only a trivial solution. In particular, $h_{n}(x, 1)=0$ implies that $(n+1) F(x)=F(x)+n F(1) f(x)+n D(x)$ for all $x \in R$. Since R is $(n+1)$!-torsion free, we get

$$
F(x)=F(1) f(x)+D(x) \text { for all } x \in R .
$$

Next, $h_{n-1}(x, 1)=0$ implies that

$$
\begin{aligned}
n(n+1) F\left(x^{2}\right)= & 2 n F(x) f(x)+n(n-1) F(1) f\left(x^{2}\right)+n(n+1) g(x) D(x) \\
& +n(n-1) D(x) f(x) \text { for all } x \in R .
\end{aligned}
$$

Using $F(x)=F(1) f(x)+D(x)$ and R is $(n+1)!-$ torsion free. The above equation reduces to

$$
\begin{equation*}
F\left(x^{2}\right)=F(1) f\left(x^{2}\right)+D(x) f(x)+g(x) D(x) \tag{3.15}
\end{equation*}
$$

for all $x \in R$. Replacing x by x^{2} in $F(x)=F(1) f(x)+D(x)$, yields

$$
\begin{equation*}
F\left(x^{2}\right)=F(1) f\left(x^{2}\right)+D\left(x^{2}\right) \text { for all } x \in R \tag{3.16}
\end{equation*}
$$

Equating (3.15) and (3.16), we have

$$
D\left(x^{2}\right)=D(x) f(x)+g(x) D(x) \text { for all } x \in R
$$

Thus, D is a Jordan $(f, g)-$ derivation on R. Now, by (3.15) and using $F(x)=$ $F(1) f(x)+D(x)$, we get

$$
F\left(x^{2}\right)=F(x) f(x)+g(x) D(x) \text { for all } x \in R .
$$

Hence, F is a generalized $\operatorname{Jordan}(f, g)$-derivation.
The proof of the theorem is complete.

4 Acknowledgement

This research was supported by the Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok, Thailand.

References

[1] B. Dhara, R. K. Sharma, On additive mappings in rings with identity element, Int. Math. Forum, 4, no. 15, (2009), 727-732.
[2] E. C. Posner Derivations in prime rings, Proc. Amer. Math. Soc., 8, no. 6, (1957), 1093-1100.
[3] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8, (1957), 1104-1119.
[4] Joso Vukman, A note on generalized derivations of semiprime rings, Taiwanese J. Math., 11, no. 2, (2007), 367-370.
[5] Joso Vukman, Irena Ulbl-Kosi, A note on derivations in semiprime rings, Int. J. Math. Sci., 20, (2005), 3347-3350.
[6] M. Ashraf, N. Rehman, On Jordan generalized derivations in rings, Math. J. Okayama Univ., 42, (2000), 7-10.
[7] M. Ashraf, N. Rehman, On $(\sigma, \tau)-$ derivations in prime rings, Arch. Math., Brno, 38, (2002), 259-264.
[8] M. Bresar, Jordan derivations on semiprime ring, Proc. Amer. Math. Soc., 104, (1988), 1003-1006.
[9] M. Bresar, On the distance of the composition of two derivations to the generalized derivation, Glasgow Math. J., 33, (1991), 89-93.
[10] N. Aydin, K. Kaya Some generalizations in prime rings with (σ, τ)-derivation, Turk. J. Math., 16, (1992), 169-176.
[11] N. Rehman, A. Z. Ansari, T. Bano, On generalized Jordan * - derivation in rings, J. Egyptian Mathematical Society, 22, (2014), 11-13.

