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Hierarchy foundations of the moduli of smoothness began modern with the
work of Ditzian and Totik (1987), (see [6]), and Kopotun (2006-2019), (see
8,9, 10, 11, 12, 14, 15, 16, 18]). Ditzian and Totik established better contin-
uous moduli of the function in a normed space. Then Kopotun contributed
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to properties of various moduli of smoothness like univariate piecewise poly-
nomial functions (splines) [16]. He has a significant impact on the hierarchy
between moduli of smoothness for the past 14 years including his effect on
the kth symmetric difference (see, [9, proof of Lemma 4.1]). Let A¥(f,z) be
the kth symmetric difference of f [6] given by

{Zf:o(f)(—l)k‘”’f(x +(Ekypy s pake[-11],

0; otherwise.

Ay(f,2) =

The space L,(]—1,1]), 0 < p < oo, denotes the space of all measurable
functions f on [—1,1], [15] such that

(f1 1 f(2)Pdx)» <00 if0<p<oo,
pme[—l,l] T)| s up=00.

Let |||, = |I-[lz,(~1,10 < p < 00 and ¢(z) = v/1 — 2. The Ditzian-Totik
modulus of smoothness (DTMS) of a function f € L,[—1, 1], is defined [5] by

wlf,r(f’ t)p = OS<1}1L12t ||¢TA;€L¢(f’ x)”]b k’, T e No~

Also, the kth modulus of smoothness of f € L,[—1, 1] is defined [6] by

wi(f,0,[-1,1]), = sup. A (£, 2)],, 0>0,p < oo

Denote by ACj,.(—1,1) and AC[—1,1] the sets of functions which are lo-
cally absolutely continuous on (—1,1) and absolutely continuous on [—1,1]
respectively. We accept the following:

Definition 1.1. [18] Let w, g(z) = (1+x)*(1 — )" be the (classical) Jacobi
weight, and let

1 '
0feJ = ( /p,OO), if p < oo,
[0,00), ifp=o0.
Define
]Lg’ﬁ ={f:[-1L1] — R: ||lwapsfll, <oo, and 0 <p < oo},
I[‘g:rﬁ = {f : [_17 1] — R f(r_l) € AClOC(_1> 1)a 1< p < o0, ||w0475.f(r)||p < OO},

and for convenience use L;‘;OB = L3P
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Let f € L7, we write || - [|u, ,p- If 7 =0, then we use || - [|a,5,-

Definition 1.2. [20] Let X be a subset of R". A function f is called convex
on X if
f(I=Nx+Xy) < (1 =N f(z)+ Af(y), for all z,y € X and X € [0, 1].

Definition 1.3. [7] Let Y = {y:};_,, s € N be a partition of [—1, 1]; that is,
a collection of s fixed points y; such that

Yst1 = —1 <ys < <y <1=vyo.

Let A®(Y,) be the set of continuous functions on [—1,1] that are convex
downwards on the segment [y;11,ys] if © is even and convex upwards on the
same segment if i is odd. The functions from AP (Y;) are called coconver.

~

Definition 1.4. [21] The partition T, = {t;}]_, , where

_ Joy . ;
oy [Teostihs 0<i<n,
—1; if 7 <0,

and t;’s as the knots of a Chebyshev partition.

Definition 1.5. [17] A function f is said to be k-monotone, k > 1 on [a,b],
if and only if for all choices of k + 1 distinct points xo,- - -, x) in [a,b] the
inequality f[xo,- -+, xx] > 0, holds, where

k

k
flxo, -] = Z 6{((3;)) . O =[[(@ = =)

=0

denotes the kth divided difference of f at xo,- - -, xy.

Now, we present the most important Kopotun’s methods and some fur-
ther developments of his contribution to the kth symmetric difference. He
stated that [16] " A is equivalent to B, A ~ B, if c’*A < B < cA such that
c is a positive constant”. Let us recall:

First, for a piecewise polynomial s on a Chebyshev partition of [—1, 1],
we have [12]:

w,im(s,t)p < ct"w,‘fw(s",t)p , O0<p<1, t>0,
and

w,‘f_n’n(s",n_l)p ~ w,‘f(s("),n_l)p .
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Secondly, in 2007, Kopotun dedicated his attention on the computation
of several results on the equivalence of moduli of smoothness (see [16], for
example):

n"w,f_n(s("),n_l)p ~wr(s,nh),, 1<p<oo, 1<n<min{k,m+1}.

(1.1)

Thirdly, in 2009, Kopotun examined the equivalence [14]:

wk(.fa 5)]) S AC&(k,q,p)Hpr )

where f is satisfied (1.1), ¢ < p and

§a 7 ifh>2,

sk .p) = 537 % k= landp<2g.
(0+/|In(d)|)s, ifk=1andp=2q,
5 ifk=1andp>2q.

The first to deal with development moduli of smoothness were Kopotun, Levi-
atan and Shevshuk [8]. They were interested in discussing various properties
of the new modulus of smoothness

W (P05 = sup WG ()AR(F )l (12)
0<h<t
where
P(x o(x . b
Wi (2 = | (12— 85D+ -6 5 if1xo— 5% e [-1,1],
0 otherwise.

However, they contributed to the kth symmetric difference of modulus by
K-functional [9, proof of Lemma 4.1].

The following result was proven by a different method of modulus of
smoothness [11]:

Theorem 1.6. Letk,n €N, reN, , A>0,0<p<oo, a+tg B+5 €],
Let 0 < t < on™!, where o is some positive constant that depends only on
a, B,k and q. Then, for any p, € 7, ,

wkr(pg)at)aﬁp ~ \Dkr(pg)at)aﬁp NQir(pn >A t)oaﬁp Nt ||w0cﬁ¢r k+r||p>

where
vy () ,t)ag,,— Ssup. IIwaacb Ak, o),
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QL (0 A t)app = sup. [wWa,50" AF (D5, 25 Tug) |1y (Tan)

and the equivalence constants depend only on k,r,a, 3, A and q.

Definition 1.7. [10] For r € N, and 0 < p < oo, denote B)(wq ) = L3P
and

B (wa,5) = {f : fU € ACioe(—1,1),¢" f) € L%} r > 1.

In 2018, Kopotun et al. ([10, Lemmas 2.2, 2.3]) proposed a function
fe Bg)(waﬁ) and o+ 5 >0, 8+ 5 > 0. Then,

wlf,r(f(T)v t)mﬁ,;n < CHwa,ﬁ(be(r)Hp , >0,

and
lim w,f (f" )app = 0.

t—0t

2 Notations and Further Results

In this section, we will present the linear space for functions of Lebesgue
Stieltjes integrable-i. First, recall the definition of the Lebesgue Stieltjes
integrable—i [3]:

Definition 2.1. Let D be a measurable set, f : D — R be a bounded
function, and L; : D — R be nondecreasing function for i € A. For a
Lebesgue partition P of D, put LS(f, P, L) = > 7 [L,ea my Li(n(Dy))
and LS(f, P, L) = 37" Tliea M; Li(u(Dy)) where v is a measure func-
tion of D, m; = inf{f(x) : x € D;}, M; = sup{f(z) : = € Dy}, and
é = ﬁl, £2a Tt AZSO; ﬁz(zj) - ﬁi(xj—l) > 0; L_S(.fa P> é) S LS(f, Pa é);
[len J7F AL = sup{LS(f. L)} and [,y [, f AL = inf{IS(f, L)}, where
LS(f, £) ={LS(f, P, L) : P part of set D} and LS(f, L) = {LS(f, P, L) :
—D
P part of set D}. If [T;cs ff’ FAdL=Tlcn [, f AL, where AL = ALy x ALy x
-, then f is integral [; according to L; fori e A.

Lemma 2.2. [2] If f is a function of Lebesgue Stieltjes integral-i, then v f
is a function of Lebesque Stieltjes integral-i, where v > 0 is real number, and

H/ dec_vH/ fdc,

1EA €A

holds.
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Lemma 2.3. [2] If the functions fi1, fo are integrable on the set D according
to L;, fori € A, then f1+ f5 is the function of integrable according to L;, for
1 € A\, such that

D D D
(fi+ fo) dL = fidL + fodL.
[/ trmae=T1[ nac+I1] 7

Definition 2.4. [4] A domain D of convex polynomial p, of A® is a subset
of X C R, satisfying the following properties:

1. D e KY | where
KY = {D: D is a compact subset of X}
is the class of all domains of convex polynomials,

2. there is t € X/ID such that
|pn(t)| > sup{|pn(z)| : x € D}, and

3. there is the function f of A® | such that
1f = pull < 55 wia(f"3)-

Definition 2.5. [4]/ A domain D of coconvex polynomial p, of AP (Y,) is a
subset of X and X C R, satisfying the following properties:

1. D e KN(Y,) , where

KY(Y,) = {D : D is a compact subset of X, and p, changes convexity
at D }

is the class of all domains of coconvex polynomials,

2. y;’s are inflection points such that
|pn(yz)| S %7 1= ]-7 s S, and

3. there is the function f of A®(Y;) such that
1f = pall < 35 Wi (f7, ).

‘n

From Definitions 2.1, 2.4 and 2.5, if the function f is convex, then D is
the domain of (co)convex functions of f.

Remark 2.6. [2] Let I be the class of all functions of integrable f satisfying
Definition 2.1; i.e.,

Iy ={f: fis an integrable function according to L;, i € A}

={f:H/in@=H7ff@}-

1EN S (IS
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Remark 2.7. [15] Let z; € [@, A2 C Q. Let

o = Lji)+1, L = Tj(i)—2,

where Oy = Oy [-1,1] = {z N ={-1 =2, < - < ap_1 < zp = 1} and
|10x|| = maxo<i<a—1{Tis1 — x;} is the length of the largest interval in that
partition.

Definition 2.8. Forr € N,, the weighted DTMS in ij’ﬁ N1y, we define

e [0fAC:  iffels,

, (2.1)
0; otherwise.

-]
By virtue of (2.1) and Definition 1.1, we define

Wl (PO N0 =11 5 = sup {lwas " Aju(f7, @), 0 < h < [l0n]]},
where ||0x|| < 2(i7Y), N > 2.

Definition 2.9. Fora,B € J, ,r € N, and 0 < p < oo, we denote
O (wap) = {f - f €Ly NI and W, (f, (10n]], =1, D) pp < 00}
and PP (wy5) = PP (wa.p)-

We focus on the applications of results that were obtained in [2, Theorems
3.1, 3.3] and [1, Theorem 2.11]. A
A set of all piecewise polynomial approximation S(7,, 7+2) of order r+2,

with the knots of a Chebyshev partition T;,.

Theorem 2.10. /2] Forr € N, a, 8 € J,, there is a constant ¢ = ¢(r, o, B, p)
such that if f € APALYE, there is a number N' = N (f,w{, (f7,110x [, D, 5.p)

p?r;

forn >N and S € S(Tp),r +2) NA® NL&P such that

1FO =5 a5 < €t W0l (F NN L) sp > Wi (FO 0N L) 0

1,r

where

' D /D D D
AZ¢,a(f(r)> T) = /1 /2 / e f0) ALt ALot o dLi a0 = H/ £ ALy
¢ ieA” !
(2.2)
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hos(f7), / / / < ALy ALk - dLig g

Moreover, if r,a, 3 =0, then

1f = Sy < c(wd) (£, 16x]1, 1)y -

H/ f dLigs .

IS (23)

In particular,

150 = Sl < ey (PO 101 D

Theorem 2.11. [2] Let AF be the space of all k-monotone functions. If
f e ANk F‘lL&’f is such that ) (z) = pg)(:ﬂ), where p, € T, NA¥, N >k > 2
and s € S(T,, 7+ 2) N A* NP, then

pr

1 = 8l pp < (s 2y s v, By ) (100 D -

In particular, if f is a convex function and p, is a convex polynomial or a
piecewise convexr polynomial, then

1 = Slluwasp < cx @l NONN Do -
Definition 2.12. [1] For a,5 € J, and f € I , we set
Ei(f, wap)app = Ealfasp = 0| f~Pallagp, pu€mnly, f€AP(Y)NPP(wap)}
and
ED(f,wap, Ye)p = (| f=Pallasp s o € mNAP YNy, f € AP (YV)NDP (ways)}

respectively which denote the degree of best unconstrained and (co)convex
polynomial approximation of f.

Theorem 2.13. [1] Let o,m,n € N, 0 # 4, s € N, and o, € J,. If
f € AP(Y) N ®P(wyp), then

sup{n°EP (f,wap,Ys)p : n > m} < csup{n® E,(faps,:n € N} (24)
In particular, suppose that Yy € Y, and s > 1. Then

EX (frwap Yo)p <en™ wiy (f7 1081 Do s 12 100
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Remark 2.14. If f in Iy is a function of Lebesque Stieltjes integral —i and
f 1s a differentiable function, then

,dfd [T df(u)
F == d:)s( /0 T dbs,p.p.)

dl dl
d,’L’ / / d£1 NTRIS X d£2H]D)o X 1,p.D0 X 27#7Do)

d (" d'f(u)
= %(/ / / ...d€17u7DO . d€2’u7DO o« dfi’%Do v XCMLMJDO X dﬁg,u,mo N dfi,u,]l))ox“')

Iy
= H/ fOw) dlyp,), €l =1[02]CD,, weD,, and {,p, = (D))

1€EA
Iz
— H/ f (i+1) deuIDJo

€A
g =l p =t
dﬁ; Do dxdl Do
dz-i—lfw
d:c X dﬁ;HD

Lemma 2.15. We have
B 1) = D7 (1)

Proof. First, suppose 1 < p < oo, and w,g(z) = (1 + 2)*(1 — z)°. Let
f € ®P" 1w, 5) and assume f satisfies Definition 2.8. Next,

1
. ; 1
lwa 5™ A (fD, 2], = (/ [wa 50" AL (fU Y, ) Pdz)r 0 <h < [0

= ( / wa 50" ] / FORY ALy [Pdr)

ieA
Next, from [2, proof of Lemma 3.2], [18] and Remark 2.14, we have

o0t 855 = ([ fogsggo T [ 50 atran

1EA
= [wWar1 520" A (FO ), O << |lu] -

Remark 2.16. By virtue of Lemma 2.15, we immediately get

Wit (PO NON D e = 0P (F7, 1081w

at+d.6+4 P
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3 Main Results for Weighted DT Moduli

Theorem 3.1. Lets,r €N, ,0< p < oo and f € APD(Y,)NPP" (wyp). Let
D be defined in Definition 2.1 such that |D| < d,, for some 0, € R*. Then

e MO8 Do < €(@o)fr U 08 D ppr (3.1)

where the constant ¢ depends on d,.

Proof. Suppose that f € AP (Y,) N ®P" (w, 5),

Dkﬂ]D)j Dkﬂ]D)j
-1 rac

€A

DND; DD,
§ =10/ rac.

€A
In addition, assume that D; C D such that

and

D], if | D| <6, ,
flx)=<( fkaij) — ( LSEZ.DOD”') , if Dy, D; are Lebesgue measurable sets,
0, otherwise.
(3.2)
Then
s 355G, = s T / £ AL pdr)s
icA
(21 Twa 50 Thica [ 74 D] ALl d)s = I(a) if D] <4, , d, € R¥
= (f_ll |Wa, 30" limy o0 [ [;c4 f?f?mjf(” dL |pdz)% = I,(z),if D, D; are Lebesgue measurable
0, otherwise.

Therefore, (3.2) implies that

/ |Wa, 50" H/ ID| dLy|Pdz)7 < 6

1EA

for some ¢, € R, while

1 Dy, ND; .
= (f oo T f 1 abopa
ieA” ?
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1
= ([ lwape" lim LSO, £o(p(Di N Dy)))Pda)

-1

Sl

==

1
— ([l LS, £Jim (D" D))
1 —00

B =

— (] o LS, Loll(UEaD) 1)) P

L A

—( / i 5L/, LoD O DY) i)

1 DND; .
= ( / was0” | / F0 ALy Pdz)? .
-1 i+1

FISHN

By Remark 2.14, we have

) < e[ waso 1 |

ieA Yt

Dﬂ]D)j 1

fiasy d_[,¢|pdx)5 _

Taking supremum, we obtain (3.1). O
The following corollary is clear.

Corollary 3.2. Let s,7 € N, , 0 < p < 0o and f € AP (Y,) N OP"(wy.4).
Let D and 6, be defined in Theorem 3.1. Then

Wlere (PO 0N Do < (o)l (F7, 1081w

at3.6+5P

where the constant ¢ depends on 0,.

Figure 1: Graph of partitions of the coconvex function on the interval [—1, 2]
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Theorem 3.3. Let s,7r € N, , o, € J, and 0 < p < oo. Let P be a
Lebesgue partition of]D and T be a Chebyshev partition with P N Tn #(,
1<n<r. Iffe APDY)N @pr(wa 3), then there is a constant ¢ depending
onn and Jj, such that

ey (2 108 D s < ClONIT"0F 0y (SO, 10N s (3.3)

Proof. Recall that P is a Lebesgue partition of D and T, » is a Chebyshev
partition. Since P N Tn # 0, by virtue of [2, proof of Lemma 2.3], for € > 0,
there is a Lebesgue partition P. of D such that Tn such that P, U Tn =P.
We can construct Jj, = [t (1), Uj—(nri+1] for some y; € Ul_oJ;, and y;s
inflection points of Y, s € N,, (see Figure 1). Next, if f € A®(Y,) N
OP"(w,, ), then

Wiy (F 01, = sup{llwasd" A5 (fL )b, 0 <A< [0}

<csup{Z||wa5¢ N (f = O+ )y 0 <h<[0x]]} -

7=0

By virtue of [19] and Theorem 2.13 or (see [1, proof of Theorem 2.11], we
have

1Ox 7l (s 10x 105, < / st ([ / M) dL,)Pdz))

i€
Jjn
/mm I / (7 =0y deg + IT [ 59 dgypan)
ieA ieA
< conp Y s AL )5, s SO, ), 0< A < 051}

J=0

n
< c(sup{Y_(lwapd A (f = FP )5 ;0 0<h < [0u]}

J=0

n
sup{ > (lhwa s AP )2 L ) 0<h < [6x]})

=0

U
e, Jjn) X sup{Y_ Nwa,s8" A (FP ) )5 0 << (0w}

J=0
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< (0 Jin)wlyp (F7 10N, 0 -
Now (3.3) foloows from (3.1). O

The following is an immediate of consequence of Theorems 3.1 and 3.3.

Corollary 3.4. Let s,r € N, , a,8€ J, ,0<p < oo and f € AP (Y,)N
OP"(wa,g). Let P be a Lebesque partition of D, and T, be a Chebyshev par-
tition with PNT, #0, 1 <n <r. We have

¢ i .

[ wa,s" f P, > c(n, J;n) Wz+277 i+ (f(2+n s 108D wasp » zf|D| < c(n, i)
) - ’ 22+277 (f(”' n) HQNH)U}QJF%’B#L%J) s Zf|]D)| > c(n’ ij) )
(3.4)

Proof. Let s,r € No, 1 <n <r,é(x) =+v1—2a?and Jj, = [t (yti), Uj—(n+i)+1)-
Let P be a Lebesgue partition of I, and T be a Chebyshev partition. As-
sume the function f € A®(Y,) N &P (w,, 5) and the constant ¢ depends on
¢,r and . Then

¢ was¢" fO N > llwa,s0" F 77

2 [|lwa a¢"( )f(’7 B> e, ") |lwase” f™IL

Iin
(", ") Mlwass” ] FARRRCRRCNC Vo [

ieA,1<n<r VTN

> o6, ") wa 6" / £ dg, e
+n

1€A, 1<n<r

J”I

n gz,
c(n, Jjn) Z sup ||wa,p¢" H f (20 d£¢||Lp(J
=0

i€, 1<n<r V1N
n .
(1, Ji) UL s A FE20 )20 < b < [low]}
5=0
> c(n, Jj,n)wz(‘b+n,i+2n (f(H%)v ||9N’|)ia,,3,p .
Finally, by virtue of Theorems 3.1 and 3.3, we have

Peanitn (P NONNNE, 5 1 1D < (0, )

w7,+27] i+n
a5 PN = e, Jj) i -
8 P 31\ W (0420 ||9N||)wa+’27-,,8+’27-7p’ if D] > e(n, Jj,)

O
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4 Conclusions and Direct Estimates

Theorem 4.1. Assume that s,r € N, , a,8 € J, , 0 <p < o0 and f €
AP(Y NPT (waps). If P is a Lebesgue partition of D, and T, is a Chebyshev

partition with P N Tn # (0. Then, for any constant ¢ depending on n, J;,,
and |D| <6, , we have

Wit (FNON D wasp ~ €(60)wfy iy (FO 1108w s ~
e(0) X Wi, (F7 MO D, 5y~ l10,58" Fp ~

e, T aninn (P NON D,y = ID] < €, Tin)}

and

16517 % @iy (Fs 108 s ~ €, Ti)ofmy (FEP, 108 D ~
[wa g8 F |, ~ c(n, ijn){wfimn(f(”z"), ||9N||)2}a+g,6+g-,p S D] > e(n, Jjn)}-

Corollary 4.2. (s = 0) For r € N, and o, € J,, there is a constant
¢ depending on r,a, 3,p, w‘fm and r, o, B, p, wﬁr,n and Jj, such that f €
AP (YN PP (wag) 5 Jim = [Wj—+i)s Wj—(mtiy41] and 1 <n <r. Then

EP (e, Yo)p < cllOn "l y (F, 108w 5.0
and
57(L2)(f(n)7 Wa,B; }/O>P < 0(777 ']jm>wz('i,)277 (f(277)’ ||9N’|>wa+n,ﬁ+n7p :

Corollary 4.3. (s > 1) Suppose that Yy € Yy , 0,8,n € N and o # 4. If
feADY)NOP (w,p) , then

ED(f, a5, Ye)p < (80) x nwliy, (f7, [10x1])u

atd.6+3 P

and

5122)(f’ Wa,p, Ys)p < (1, Jjn) X n_aw?+2n,i+n (f(i+n)> ||9N||)wa,6,p :
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