International Journal of Mathematics and Computer Science, **16**(2021), no. 1, 149–157

Three combined sequences related to Jacobsthal sequences

Sinsup Nubpetchploy¹, Apisit Pakapongpun^{2,3}

¹Department of Science and Mathematics Faculty of Science and Technology Rajamangala University of Technology Tawan-ok Chonburi 20110, Thailand

> ²Department of Mathematics Faculty of Science Burapha University Chonburi 20131, Thailand

³Centre of Excellence in Mathematics CHE, Bangkok 10400, Thailand

email: sinsap_sa@rmutto.ac.th, apisit.buu@gmail.com *Corresponding author's email: apisit.buu@gmail.com

(Received June 2, 2020, Accepted July 7, 2020)

Abstract

In this paper, we define three combined sequences $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ relate to Jacobsthal sequences.

1 Introduction

The Jacobsthal sequence is an additive sequence similar to the Fibonacci sequence, defined by the recurrence relation $J_n = J_{n-1} + 2J_{n-2}$ with initial terms $J_0 = 0$ and $J_1 = 1$ [1].

Key words and phrases: Jacobsthal sequences, three combined sequences. AMS (MOS) Subject Classifications: 11B39. ISSN 1814-0432, 2021, http://ijmcs.future-in-tech.net In 2018, Atanassov [2] studied two new combined 3-Fibonacci sequences. Later that year, he [3] added two new combined 3-Fibonacci sequences.

In this paper, we generate three combined sequences related to Jacobsthal sequences.

2 Preliminaries

The Jacobsthal sequences is defined by the recurrence relation $J_n = J_{n-1} + 2J_{n-2}$ for $n \ge 2$ with $J_0 = 0$ and $J_1 = 1$. Its Binet's formula is defined by

$$J_n = \frac{2^n - (-1)^n}{3}$$

The first thirteen terms of the Jacobsthal sequence J_n are

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	• • •
J_n	0	1	1	3	5	11	21	43	85	171	341	683	1365	2731	• • •

The following properties [4] for the Jacobsthal sequences are

- (1) $J_n = 2J_{n-1} + (-1)^{n+1}$
- (2) $J_n^2 J_{n-1}^2 = 4(J_{n-1}J_{n-2} + J_{n-2}^2)$
- (3) $J_n^2 + 2J_{n-1}^2 = J_{2n-1}$
- (4) $J_{n+1}^2 + 2J_n^2 = J_{2n+1}$
- (5) $J_{n+1}^2 4J_{n-1}^2 = J_{2n}$
- (6) $J_n^2 4J_{n-1}^2 = (-1)^{n+1}J_{n+1}$.

3 Main Results

Let a, b, c and d be arbitrary real numbers. The first sequence has the form

$$\gamma_{n+2} = \gamma_{n+1} + 2\gamma_n$$
$$\alpha_{n+1} = \gamma_{n+1} + 2\beta_n$$
$$\beta_{n+1} = \gamma_{n+1} + 2\alpha_n$$

Three combined sequences related to Jacobsthal sequences

where $\alpha_0 = a, \beta_0 = b, \gamma_0 = c$ and $\gamma_1 = d$ for integers $n \ge 0$.

The first few members of the sequences $\{\alpha_n\}_{n=0}^{\infty}$, $\{\gamma_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ with respect to n are in table 1.

n	$lpha_n$	γ_n	eta n
0		С	
0	a		b
1		d	
1	d+2b		d+2a
2		d+2c	
2	2c + 3d + 4a		2c + 3d + 4b
3		3d+2c	
3	6c + 9d + 8b		6c + 9d + 8a
4		5d + 6c	
4	18c + 23d + 16a		18c + 23d + 16b
5		11d + 10c	
5	46c + 57d + 32b		46c + 57d + 32a
:			
	,	,	•

Table 1: The first few members of the sequences $\{\alpha_n\}_{n=0}^{\infty}$, $\{\gamma_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$

Theorem 3.1. For each natural number with the elements of the Jacobsthal sequences.

- (a) $\gamma_n = 2J_{n-1}c + J_nd$
- **(b)** $\alpha_n = 2\alpha_{n-1} + (J_n + (-1)^n)c + J_nd + (-2)^n(a-b)$
- (c) $\beta_n = 2\beta_{n-1} + (J_n + (-1)^n)c + J_n d (-2)^n (a-b).$

Proof. (a) We will prove (a) by mathematical induction. If n = 1, then $\gamma_1 = 2J_0c + J_1d = d$ thus n = 1 is true.

Assume the truth of the statement for some n-1 and n; that is,

$$\gamma_{n-1} = 2J_{n-2}c + J_{n-1}d$$

and

$$\gamma_n = 2J_{n-1}c + J_n d.$$

Now consider

$$\begin{split} \gamma_{n+1} &= \gamma_n + 2\gamma_{n-1} \\ &= 2J_{n-1}c + J_nd + 2(2J_{n-2}c + J_{n-1}d) \\ &= 2c(J_{n-1} + 2J_{n-2}) + d(J_n + 2J_{n-1}) \\ &= 2J_nc + J_{n+1}d, \end{split}$$

which is the statement for n + 1. So, the statement is true for n = 1 and its truth for n - 1 and n implies its truth for n + 1. Therefore, it is true for all $n \ge 1$.

(b) We will prove (b) by mathematical induction as well. If n = 1 then

$$\alpha_1 = 2\alpha_0 + (J_1 - 1)c + J_1d - 2(a - b)$$

= 2a - 2a + 2b + d
= d + 2b,

it is true.

Assume the truth of the statement for some n-1 and n; that is, $\alpha_{n-1} = 2\alpha_{n-2} + (J_{n-1} + (-1)^{n-1})c + J_{n-1}d + (-2)^{n-1}(a-b)$ and $\alpha_n = 2\alpha_{n-1} + (J_n + (-1)^n)c + J_nd + (-2)^n(a-b).$ Now consider

$$\begin{aligned} \alpha_{n+1} &= \gamma_{n+1} + 2\beta_n \\ &= (2J_nc + J_{n+1}d) + 2(\gamma_n + 2\alpha_{n-1}) \\ &= (2J_nc + J_{n+1}d) + (4J_{n-1}c + 2J_nd) \\ &+ 2\left[\alpha_n - ((J_n + (-1)^n)c - J_nd - (-2)^n(a-b))\right] \\ &= 2\alpha_n + (4J_{n-1} + 2(-1)^{n+1})c + J_{n+1}d + (-2)^{n+1}(a-b) \\ &= 2\alpha_n + (2(2J_{n-1}) + 2(-1)^{n+1})c + J_{n+1}d + (-2)^{n+1}(a-b) \\ &= 2\alpha_n + (2J_n - 2(-1)^{n+1} + 2(-1)^{n+1})c + J_{n+1}d + (-2)^{n+1}(a-b) \\ &= 2\alpha_n + (J_{n+1} + (-1)^{n+1})c + J_{n+1}d + (-2)^{n+1}(a-b), \end{aligned}$$

which is the statement for n + 1. So, the statement is true for n = 1 and its truth for n - 1 and n implies its truth for n + 1. Therefore, it is true for all $n \ge 1$.

(c) The proof of (c) is similar to the proof of (b).
$$\Box$$

The second sequence has the form

$$\gamma_{n+2} = \gamma_{n+1} + 2\gamma_n$$
$$\alpha_{n+1} = \gamma_n + 2\beta_n$$
$$\beta_{n+1} = \gamma_n + 2\alpha_n$$

where $\alpha_0 = a, \beta_0 = b, \gamma_0 = c$ and $\gamma_1 = d$ for natural number $n \ge 0$. The members of the sequences $\{\alpha_n\}_{n=0}^{\infty}, \{\gamma_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ are the following table 2.

Table 2: The members of the sequences	$\{\alpha_n$	$\}_{n=0}^{\infty}, \cdot$	$\{\gamma_n\}$	$\sum_{n=0}^{\infty}$	and	$\{\beta_n\}$	$\sum_{n=0}^{\infty}$
---------------------------------------	--------------	----------------------------	----------------	-----------------------	-----	---------------	-----------------------

n	$lpha_n$	γ_n	eta_n
0	a		b
0		c	
1	c+2b		c+2a
1		d	
2	2c+d+4a		2c+d+4b
2		d + 2c	
3	6c + 3d + 8b		6c + 3d + 8a
3		3d + 2c	
4	14c + 9d + 16a		14c + 9d + 16b
4		5d + 6c	
5	34c + 23d + 32b		34c + 23d + 32a
5		11d + 10c	
	:	•	

Theorem 3.2. For each natural number $n \ge 1$.

(a) $\gamma_n = 2J_{n-1}c + J_n d$ (b) $\alpha_n = 2\alpha_{n-1} + (J_{n-1} + (-1)^{n-1})c + J_{n-1}d + (-2)^n(a-b)$ (c) $\beta_n = 2\beta_{n-1} + (J_{n-1} + (-1)^{n-1})c + J_{n-1}d - (-2)^n(a-b).$

Proof. The proofs are similar to theorem 3.1.

The third sequence has the form

$$\gamma_{n+1} = \frac{\alpha_{n+1} + \beta_{n+1}}{2} + 2\gamma_n$$
$$\alpha_{n+1} = \gamma_n + 2\beta_n$$
$$\beta_{n+1} = \gamma_n + 2\alpha_n.$$

where $\alpha_0 = 2a, \beta_0 = 2b$ and $\gamma_0 = c$ for natural number $n \ge 0$.

The members of the sequences $\{\alpha_n\}_{n=0}^{\infty}$, $\{\gamma_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ are the following table 3.

n	$lpha_n$	γ_n	eta_n
0	2a		2b
0		С	
1	4b+c		4a+c
1		2a+2b+3c	
2	10a + 2b + 5c		2a + 10b + 5c
2		10a + 10b + 11c	
3	14a + 30b + 21c		30a + 14b + 21c
3		42a + 42b + 43c	
4	102a + 70b + 85c		70a + 102b + 85c
4		170a + 170b + 171c	
5	310a + 374b + 341c		374a + 310b + 341c
5		682a + 682b + 683c	
:			:

Table 3: The members of the sequences $\{\alpha_n\}_{n=0}^{\infty}$, $\{\gamma_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$

Theorem 3.3. For each natural number $n \ge 1$.

(a) $\gamma_{n-1} = (J_{2n-1} - 1)(a+b) + J_{2n-1}c$ (b) $\alpha_n = (J_{n+1}^2 - J_n^2 + 1)(a+b) + (-1)^n J_n a + (-1)^{n+1} (2J_{n+1} + J_n)b + J_{2n}c$ (c) $\beta_n = (J_{n+1}^2 - J_n^2 + 1)(a+b) + (-1)^n J_n b + (-1)^{n+1} (2J_{n+1} + J_n)a + J_{2n}c.$

Proof. (a) We prove (a) by mathematical induction. If n = 1 then $\gamma_0 = (J_1 - 1)(a + b) + J_1c = c$ thus n = 1 is true. Assume the truth of the statement for some n - 2 and n - 1; that is,

$$\gamma_{n-2} = (J_{2n-3} - 1)(a+b) + J_{2n-3}c$$

and

$$\gamma_{n-1} = (J_{2n-1} - 1)(a+b) + J_{2n-1}c.$$

$$\begin{split} \gamma_n &= \frac{\alpha_n + \beta_n}{2} + 2\gamma_{n-1} = (\beta_{n-1} + \alpha_{n-1} + \gamma_{n-1}) + 2\gamma_{n-1} \\ &= (2\gamma_{n-1} - 4\gamma_{n-2}) + \gamma_{n-1} + 2\gamma_{n-1} = 5\gamma_{n-1} - 4\gamma_{n-2} \\ &= 5\left[(J_{2n-1} - 1)(a+b) + J_{2n-1}c\right] - 4\left[(J_{2n-3} - 1)(a+b) + J_{2n-3}c\right] \\ &= (5J_{2n-1} - 4J_{2n-3} - 1)(a+b) + (5J_{2n-1} - 4J_{2n-3})c \\ &= (5J_{2n-1} - 2(2J_{2n-3}) - 1)(a+b) + (5J_{2n-1} - 2(2J_{2n-3}))c \\ &= (3J_{2n-1} + (J_{2n} - J_{2n-1}) - 1)(a+b) + (3J_{2n-1} + (J_{2n} - J_{2n-1}))c \\ &= (J_{2n} + 2J_{2n-1} - 1)(a+b) + (J_{2n} + 2J_{2n-1})c \\ &= (J_{2n+1} - 1)(a+b) + J_{2n+1}c. \end{split}$$

(b) We prove (b) by mathematical induction as well. If n = 1, then

$$\alpha_1 = (J_2^2 - J_1^2 + 1)(a+b) + (-1)J_1a + (-1)^2(2J_2 + J_1)b + J_2c$$

= $a+b-a+3b+c = 4b+c$,

is true. Assume the truth of the statement for some
$$n-1$$
 and n .

$$\begin{aligned} &\alpha_{n+1} = 2\beta_n + \gamma_n = 2(2\alpha_{n-1} + \gamma_{n-1}) + \gamma_n = 4\alpha_{n-1} + 2\gamma_{n-1} + \gamma_n \\ &= 4\left[(J_n^2 - J_{n-1}^2 + 1)(a+b) + J_{2n-1}c\right] + (J_{2n+1} - 1)(a+b) + J_{2n-1}c\right] \\ &+ 2\left[(J_{2n-1} - 1)(a+b) + J_{2n-1}c\right] + (J_{2n-1} - 1) + (J_{2n+1} - 1)\right]a \\ &+ \left[4(J_n^2 - J_{n-1}^2 + 1 + (-1)^n(2J_n + J_{n-1})) + 2(J_{2n-1} - 1) + (J_{2n+1} - 1)\right]b \\ &+ \left[4(J_n^2 - J_{n-1}^2 + 1 + (-1)^n(2J_n + J_{n-1})) + 2(J_{2n-1} - 1) + (J_{2n+1} - 1)\right]b \\ &+ \left[4J_{n-2}^2 + 2J_{n-1} + J_{n-1}\right]c \\ &= \left[4J_n^2 - 4J_{n-1}^2 + 4(-1)^{n-1}J_{n-1} + 2J_{2n-1} + J_{2n+1} + 1\right]a \\ &+ \left[4J_n^2 - 4J_{n-1}^2 + 4(-1)^{n-1}J_{n-1} + 2(J_n^2 + 2J_{n-1}^2) + (J_{n+1}^2 + 2J_n^2) + 1\right]a \\ &+ \left[4J_n^2 - 4J_{n-1}^2 + 4(-1)^{n-1}J_{n-1} + 2(J_n^2 + 2J_{n-1}^2) + (J_{n+1}^2 + 2J_n^2) + 1\right]a \\ &+ \left[4J_n^2 - 4J_{n-1}^2 + 4(-1)^{n-1}J_{n-1} + 2(J_n^2 + 2J_{n-1}^2) + (J_{n+1}^2 + 2J_n^2) + 1\right]a \\ &+ \left[4J_n^2 - 4J_{n-1}^2 + 8(-1)^nJ_n + 4(-1)^nJ_{n-1} + (2J_n^2 + 4J_{n-1}^2) + (J_{n+1}^2 + 2J_n^2) + 1\right]b \\ &+ \left[2J_{2n} - 2J_{2n-1} + 2J_{2n-1} + J_{2n+1}\right]c \\ &= \left[8J_n^2 + J_{n+1}^2 + 4(-1)^{n-1}J_{n-1} + 1\right]a \\ &+ \left[4J_n^2 - 4J_{n-1}^2 + 8(-1)^nJ_n + 4(-1)^nJ_{n-1} + (2J_n^2 + 4J_{n-1}^2) + (J_{n+1}^2 + 2J_n^2) + 1\right]b \\ &+ (J_{2n+1} + 2J_{2n})c \\ &= \left[8J_n^2 + J_{n+1}^2 + 4J_{n-1}(J_n - 2J_{n-1}) + 1\right]a \\ &+ \left[8J_n^2 + J_{n+1}^2 + 4J_{n-1}(J_n - 2J_{n-1}) + 1\right]a \\ &+ \left[8J_n^2 + J_{n+1}^2 + 8J_n(J_{n+1} - 2J_n) - 4J_{n-1}J_n - 8J_{n-1}^2 + 1\right]a \\ &+ \left[8J_n^2 + J_{n+1}^2 + 8J_n(J_{n+1} - 2J_n) - 4J_{n-1}J_n - 8J_{n-1}^2 + 1\right]a \\ &+ \left[8J_n^2 + J_{n+1}^2 + 8J_n(J_{n+1} - 2J_n) - 4J_{n-1}J_n + 8J_{n-1}^2 + 1\right]b + J_{2n+2}c \\ &= \left[4J_n^2 + 4J_{n-1} + 5J_n^2 - 4J_{n-1}^2 + 1\right]a \\ &+ \left[8J_n^2 + J_{n+1}^2 + 8J_n(J_{n+1} - 2J_n) - 4J_{n-1}J_n + 8J_{n-1}^2 + 1\right]b + J_{2n+2}c \\ &= \left[4J_n(J_n + 2J_{n-1}) + 5J_n^2 - 4J_{n-1}^2 + 1\right]a \\ &+ \left[2J_{n+2}^2 - J_{n+1}^2 + 3J_n^2 - 4J_{n-1}J_n + 4J_{n-1}^2 - 4J_n - 1J_n + 8J_n^2 - 1 + 1\right]b + J_{2n+2}c \\ &= \left[4J_n(J_n + 4J_n^2) + (J_n^2 - 4J_{n-1}^2 + 1]a \\ &$$

Three combined sequences related to Jacobsthal sequences

$$\begin{split} &= \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[2J_{n+2}^2 - J_{n+1}^2 - 8J_n^2 - 4J_n(J_{n+1} - J_n) + J_{n+1}^2 - 8J_n^2 - (-1)^{n+1}J_{n+1} + 1\right]b + J_{2n+2}c \\ &= \left[J_{n+2}^2 - J_{n+1}^2 - (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[2J_{n+2}^2 - J_{n+1}^2 - 8J_n^2 - 4J_nJ_{n+1} + 4J_n^2 + J_{n+1}^2 - 8J_n^2 - (-1)^{n+1}J_{n+1} + 1\right]b + J_{2n+2}c \\ &= \left[J_{n+2}^2 - J_{n+1}^2 - 4(J_n^2 + J_nJ_{n+1}) + J_{n+1}^2 - 8J_n^2 - (-1)^{n+1}J_{n+1} + 1\right]b + J_{2n+2}c \\ &= \left[J_{n+2}^2 - J_{n+1}^2 - 4(J_n^2 + J_nJ_{n+1}) + J_{n+1}^2 - 8J_n^2 - (-1)^{n+1}J_{n+1} + 1\right]b + J_{2n+2}c \\ &= \left[J_{n+2}^2 - J_{n+1}^2 - (J_{n+2}^2 - J_{n+1}^2) + J_{n+1}^2 - 8J_n^2 - (-1)^{n+1}J_{n+1} + 1\right]b + J_{2n+2}c \\ &= \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+1} + 1\right]a \\ &+ \left[J_{n+2}^2 - J_{n+1}^2 + (-1)^{n+1}J_{n+2} + (-1)^{n+2}J_{n+2} + (-1)^{n+2}J_{n+2} + 2c\right]a \\ &= \left[J_{n+2}^2 - J_{n+1}^2 + 1\right]a \\ &+ \left[J_{n+2}^2 -$$

Therefore, it is true for all $n \ge 1$.

(c) The proof of (c) is similar to the proof of (b). \Box

Acknowledgement. This work was supported by Faculty of Science and Technology, Rajamangala University of Technology Tawan-ok.

References

- A. F. Horadam, Jacobsthal and Pell curve, Fibonacci Quarterly, 26, (1988), 77-83.
- [2] K. T. Atanassov, On two new combined 3-Fibonacci sequences, Notes on Number Theory and Discrete Mathematics, 24, no. 2, (2018), 90-93.
- [3] K. T. Atanassov, On two new combined 3-Fibonacci sequences part 2, Notes on Number Theory and Discrete Mathematics, 24, no. 3, (2018), 111-114.
- [4] F. T. Aydin, On generalizations of the Jacobsthal sequence, Notes on Number Theory and Discrete Mathematics, 24, no. 1, (2018), 120-135.