Three combined sequences related to Jacobsthal sequences

Sinsup Nubpetchploy ${ }^{1}$, Apisit Pakapongpun ${ }^{2,3}$
${ }^{1}$ Department of Science and Mathematics
Faculty of Science and Technology
Rajamangala University of Technology Tawan-ok
Chonburi 20110, Thailand
${ }^{2}$ Department of Mathematics
Faculty of Science
Burapha University
Chonburi 20131, Thailand
${ }^{3}$ Centre of Excellence in Mathematics
CHE, Bangkok 10400, Thailand
email: sinsap_sa@rmutto.ac.th, apisit.buu@gmail.com
*Corresponding author's email: apisit.buu@gmail.com

(Received June 2, 2020, Accepted July 7, 2020)

Abstract

In this paper, we define three combined sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ relate to Jacobsthal sequences.

1 Introduction

The Jacobsthal sequence is an additive sequence similar to the Fibonacci sequence, defined by the recurrence relation $J_{n}=J_{n-1}+2 J_{n-2}$ with initial terms $J_{0}=0$ and $J_{1}=1[1]$.

Key words and phrases: Jacobsthal sequences, three combined sequences. AMS (MOS) Subject Classifications: 11B39.
ISSN 1814-0432, 2021, http://ijmcs.future-in-tech.net

In 2018, Atanassov [2] studied two new combined 3-Fibonacci sequences. Later that year, he [3] added two new combined 3-Fibonacci sequences.

In this paper, we generate three combined sequences related to Jacobsthal sequences.

2 Preliminaries

The Jacobsthal sequences is defined by the recurrence relation $J_{n}=J_{n-1}+$ $2 J_{n-2}$ for $n \geq 2$ with $J_{0}=0$ and $J_{1}=1$.
Its Binet's formula is defined by

$$
J_{n}=\frac{2^{n}-(-1)^{n}}{3}
$$

The first thirteen terms of the Jacobsthal sequence J_{n} are

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
J_{n}	0	1	1	3	5	11	21	43	85	171	341	683	1365	2731	\ldots

The following properties [4] for the Jacobsthal sequences are
(1) $J_{n}=2 J_{n-1}+(-1)^{n+1}$
(2) $J_{n}^{2}-J_{n-1}^{2}=4\left(J_{n-1} J_{n-2}+J_{n-2}^{2}\right)$
(3) $J_{n}^{2}+2 J_{n-1}^{2}=J_{2 n-1}$
(4) $J_{n+1}^{2}+2 J_{n}^{2}=J_{2 n+1}$
(5) $J_{n+1}^{2}-4 J_{n-1}^{2}=J_{2 n}$
(6) $J_{n}^{2}-4 J_{n-1}^{2}=(-1)^{n+1} J_{n+1}$.

3 Main Results

Let a, b, c and d be arbitrary real numbers. The first sequence has the form

$$
\begin{aligned}
& \gamma_{n+2}=\gamma_{n+1}+2 \gamma_{n} \\
& \alpha_{n+1}=\gamma_{n+1}+2 \beta_{n} \\
& \beta_{n+1}=\gamma_{n+1}+2 \alpha_{n}
\end{aligned}
$$

where $\alpha_{0}=a, \beta_{0}=b, \gamma_{0}=c$ and $\gamma_{1}=d$ for integers $n \geq 0$.
The first few members of the sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ with respect to n are in table 1 .

Table 1: The first few members of the sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$

n	α_{n}	γ_{n}	βn
0	a	c	
0			b
1		d	
1	$d+2 b$		$d+2 a$
2		$d+2 c$	
2	$2 c+3 d+4 a$		$2 c+3 d+4 b$
3		$3 d+2 c$	
3	$6 c+9 d+8 b$		$6 c+9 d+8 a$
4		$5 d+6 c$	
4	$18 c+23 d+16 a$		$18 c+23 d+16 b$
5		$11 d+10 c$	
5	$46 c+57 d+32 b$		$46 c+57 d+32 a$
\vdots	\vdots	\vdots	\vdots

Theorem 3.1. For each natural number with the elements of the Jacobsthal sequences.
(a) $\gamma_{n}=2 J_{n-1} c+J_{n} d$
(b) $\alpha_{n}=2 \alpha_{n-1}+\left(J_{n}+(-1)^{n}\right) c+J_{n} d+(-2)^{n}(a-b)$
(c) $\beta_{n}=2 \beta_{n-1}+\left(J_{n}+(-1)^{n}\right) c+J_{n} d-(-2)^{n}(a-b)$.

Proof. (a) We will prove (a) by mathematical induction.
If $n=1$, then $\gamma_{1}=2 J_{0} c+J_{1} d=d$ thus $n=1$ is true.

Assume the truth of the statement for some $n-1$ and n; that is,

$$
\gamma_{n-1}=2 J_{n-2} c+J_{n-1} d
$$

and

$$
\gamma_{n}=2 J_{n-1} c+J_{n} d
$$

Now consider

$$
\begin{aligned}
\gamma_{n+1} & =\gamma_{n}+2 \gamma_{n-1} \\
& =2 J_{n-1} c+J_{n} d+2\left(2 J_{n-2} c+J_{n-1} d\right) \\
& =2 c\left(J_{n-1}+2 J_{n-2}\right)+d\left(J_{n}+2 J_{n-1}\right) \\
& =2 J_{n} c+J_{n+1} d,
\end{aligned}
$$

which is the statement for $n+1$. So, the statement is true for $n=1$ and its truth for $n-1$ and n implies its truth for $n+1$.
Therefore, it is true for all $n \geq 1$.
(b) We will prove (b) by mathematical induction as well.

If $n=1$ then

$$
\begin{aligned}
\alpha_{1} & =2 \alpha_{0}+\left(J_{1}-1\right) c+J_{1} d-2(a-b) \\
& =2 a-2 a+2 b+d \\
& =d+2 b,
\end{aligned}
$$

it is true.
Assume the truth of the statement for some $n-1$ and n; that is,
$\alpha_{n-1}=2 \alpha_{n-2}+\left(J_{n-1}+(-1)^{n-1}\right) c+J_{n-1} d+(-2)^{n-1}(a-b)$
and
$\alpha_{n}=2 \alpha_{n-1}+\left(J_{n}+(-1)^{n}\right) c+J_{n} d+(-2)^{n}(a-b)$.
Now consider

$$
\begin{aligned}
\alpha_{n+1}= & \gamma_{n+1}+2 \beta_{n} \\
= & \left(2 J_{n} c+J_{n+1} d\right)+2\left(\gamma_{n}+2 \alpha_{n-1}\right) \\
= & \left(2 J_{n} c+J_{n+1} d\right)+\left(4 J_{n-1} c+2 J_{n} d\right) \\
& +2\left[\alpha_{n}-\left(\left(J_{n}+(-1)^{n}\right) c-J_{n} d-(-2)^{n}(a-b)\right)\right] \\
= & 2 \alpha_{n}+\left(4 J_{n-1}+2(-1)^{n+1}\right) c+J_{n+1} d+(-2)^{n+1}(a-b) \\
= & 2 \alpha_{n}+\left(2\left(2 J_{n-1}\right)+2(-1)^{n+1}\right) c+J_{n+1} d+(-2)^{n+1}(a-b) \\
= & 2 \alpha_{n}+\left(2 J_{n}-2(-1)^{n+1}+2(-1)^{n+1}\right) c+J_{n+1} d+(-2)^{n+1}(a-b) \\
= & 2 \alpha_{n}+\left(J_{n+1}+(-1)^{n+1}\right) c+J_{n+1} d+(-2)^{n+1}(a-b),
\end{aligned}
$$

which is the statement for $n+1$. So, the statement is true for $n=1$ and its truth for $n-1$ and n implies its truth for $n+1$. Therefore, it is true for all $n \geq 1$.
(c) The proof of (c) is similar to the proof of (b).

The second sequence has the form

$$
\begin{aligned}
& \gamma_{n+2}=\gamma_{n+1}+2 \gamma_{n} \\
& \alpha_{n+1}=\gamma_{n}+2 \beta_{n} \\
& \beta_{n+1}=\gamma_{n}+2 \alpha_{n}
\end{aligned}
$$

where $\alpha_{0}=a, \beta_{0}=b, \gamma_{0}=c$ and $\gamma_{1}=d$ for natural number $n \geq 0$.
The members of the sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ are the following table 2.

Table 2: The members of the sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$

n	α_{n}	γ_{n}	β_{n}
0	a		b
0		c	
1	$c+2 b$		$c+2 a$
1			
2	$2 c+d+4 a$	$2 c+d+4 b$	
2		$3 d+2 c$	
3	$6 c+3 d+8 b$		
3		$5 d+6 c$	
4	$14 c+9 d+16 a$		
4		$11 d+10 c$	
5	$34 c+23 d+32 b$		
5		\vdots	\vdots
\vdots	\vdots		

Theorem 3.2. For each natural number $n \geq 1$.
(a) $\gamma_{n}=2 J_{n-1} c+J_{n} d$
(b) $\alpha_{n}=2 \alpha_{n-1}+\left(J_{n-1}+(-1)^{n-1}\right) c+J_{n-1} d+(-2)^{n}(a-b)$
(c) $\beta_{n}=2 \beta_{n-1}+\left(J_{n-1}+(-1)^{n-1}\right) c+J_{n-1} d-(-2)^{n}(a-b)$.

Proof. The proofs are similar to theorem 3.1.

The third sequence has the form

$$
\begin{aligned}
& \gamma_{n+1}=\frac{\alpha_{n+1}+\beta_{n+1}}{2}+2 \gamma_{n} \\
& \alpha_{n+1}=\gamma_{n}+2 \beta_{n} \\
& \beta_{n+1}=\gamma_{n}+2 \alpha_{n}
\end{aligned}
$$

where $\alpha_{0}=2 a, \beta_{0}=2 b$ and $\gamma_{0}=c$ for natural number $n \geq 0$.
The members of the sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ are the following table 3.

Table 3: The members of the sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$

n	α_{n}	γ_{n}	β_{n}
0	$2 a$	c	$2 b$
0			
1	$4 b+c$		$4 a+c$
1		$10 a+10 b+11 c$	$2 a+10 b+5 c$
2	$10 a+2 b+5 c$		
2		$42 a+42 b+43 c$	
3	$14 a+30 b+21 c$		$70 a+102 b+85 c$
3		$170 a+170 b+171 c$	
4	$102 a+70 b+85 c$		$374 a+310 b+341 c$
4		$682 a+682 b+683 c$	
5	$310 a+374 b+341 c$	\vdots	\vdots
5			
\vdots	\vdots		

Theorem 3.3. For each natural number $n \geq 1$.
(a) $\gamma_{n-1}=\left(J_{2 n-1}-1\right)(a+b)+J_{2 n-1} c$
(b) $\alpha_{n}=\left(J_{n+1}^{2}-J_{n}^{2}+1\right)(a+b)+(-1)^{n} J_{n} a+(-1)^{n+1}\left(2 J_{n+1}+J_{n}\right) b+J_{2 n} c$
(c) $\beta_{n}=\left(J_{n+1}^{2}-J_{n}^{2}+1\right)(a+b)+(-1)^{n} J_{n} b+(-1)^{n+1}\left(2 J_{n+1}+J_{n}\right) a+J_{2 n} c$.

Proof. (a) We prove (a) by mathematical induction.
If $n=1$ then $\gamma_{0}=\left(J_{1}-1\right)(a+b)+J_{1} c=c$ thus $n=1$ is true. Assume the truth of the statement for some $n-2$ and $n-1$; that is,

$$
\gamma_{n-2}=\left(J_{2 n-3}-1\right)(a+b)+J_{2 n-3} c
$$

and

$$
\gamma_{n-1}=\left(J_{2 n-1}-1\right)(a+b)+J_{2 n-1} c .
$$

$$
\begin{aligned}
\gamma_{n} & =\frac{\alpha_{n}+\beta_{n}}{2}+2 \gamma_{n-1}=\left(\beta_{n-1}+\alpha_{n-1}+\gamma_{n-1}\right)+2 \gamma_{n-1} \\
& =\left(2 \gamma_{n-1}-4 \gamma_{n-2}\right)+\gamma_{n-1}+2 \gamma_{n-1}=5 \gamma_{n-1}-4 \gamma_{n-2} \\
& =5\left[\left(J_{2 n-1}-1\right)(a+b)+J_{2 n-1} c\right]-4\left[\left(J_{2 n-3}-1\right)(a+b)+J_{2 n-3} c\right] \\
& =\left(5 J_{2 n-1}-4 J_{2 n-3}-1\right)(a+b)+\left(5 J_{2 n-1}-4 J_{2 n-3}\right) c \\
& =\left(5 J_{2 n-1}-2\left(2 J_{2 n-3}\right)-1\right)(a+b)+\left(5 J_{2 n-1}-2\left(2 J_{2 n-3}\right)\right) c \\
& =\left(3 J_{2 n-1}+\left(J_{2 n}-J_{2 n-1}\right)-1\right)(a+b)+\left(3 J_{2 n-1}+\left(J_{2 n}-J_{2 n-1}\right)\right) c \\
& =\left(J_{2 n}+2 J_{2 n-1}-1\right)(a+b)+\left(J_{2 n}+2 J_{2 n-1}\right) c \\
& =\left(J_{2 n+1}-1\right)(a+b)+J_{2 n+1} c .
\end{aligned}
$$

(b) We prove (b) by mathematical induction as well. If $n=1$, then

$$
\begin{aligned}
\alpha_{1} & =\left(J_{2}^{2}-J_{1}^{2}+1\right)(a+b)+(-1) J_{1} a+(-1)^{2}\left(2 J_{2}+J_{1}\right) b+J_{2} c \\
& =a+b-a+3 b+c=4 b+c,
\end{aligned}
$$

is true. Assume the truth of the statement for some $n-1$ and n.

$$
\begin{aligned}
& \alpha_{n+1}= 2 \beta_{n}+\gamma_{n}=2\left(2 \alpha_{n-1}+\gamma_{n-1}\right)+\gamma_{n}=4 \alpha_{n-1}+2 \gamma_{n-1}+\gamma_{n} \\
&= 4\left[\left(J_{n}^{2}-J_{n-1}^{2}+1\right)(a+b)+(-1)^{n-1} J_{n-1} a+(-1)^{n}\left(2 J_{n}+J_{n-1}\right) b+J_{2 n-2} c\right] \\
&+2\left[\left(J_{2 n-1}-1\right)(a+b)+J_{2 n-1} c\right]+\left[\left(J_{2 n+1}-1\right)(a+b)+J_{2 n+1} c\right] \\
&= {\left[4\left(J_{n}^{2}-J_{n-1}^{2}+1+(-1)^{n-1} J_{n-1}\right)+2\left(J_{2 n-1}-1\right)+\left(J_{2 n+1}-1\right)\right] a } \\
&+\left[4\left(J_{n}^{2}-J_{n-1}^{2}+1+(-1)^{n}\left(2 J_{n}+J_{n-1}\right)\right)+2\left(J_{2 n-1}-1\right)+\left(J_{2 n+1}-1\right)\right] b \\
&+\left[4 J_{2 n-2}+2 J_{2 n-1}+J_{2 n+1}\right] c \\
&= {\left[4 J_{n}^{2}-4 J_{n-1}^{2}+4(-1)^{n-1} J_{n-1}+2 J_{2 n-1}+J_{2 n+1}+1\right] a } \\
&+\left[4 J_{n}^{2}-4 J_{n-1}^{2}+4(-1)^{n}\left(2 J_{n}+J_{n-1}\right)+2 J_{2 n-1}+J_{2 n+1}+1\right] b \\
&+\left[2\left(J_{2 n}-J_{2 n-1}\right)+2 J_{2 n-1}+J_{2 n+1}\right] c \\
&= {\left[4 J_{n}^{2}-4 J_{n-1}^{2}+4(-1)^{n-1} J_{n-1}+2\left(J_{n}^{2}+2 J_{n-1}^{2}\right)+\left(J_{n+1}^{2}+2 J_{n}^{2}\right)+1\right] a } \\
&+\left[4 J_{n}^{2}-4 J_{n-1}^{2}+8(-1)^{n} J_{n}+4(-1)^{n} J_{n-1}+2 J_{2 n-1}+J_{2 n+1}+1\right] b \\
&+\left[2 J_{2 n}-2 J_{2 n-1}+2 J_{2 n-1}+J_{2 n+1}\right] c \\
&= {\left[8 J_{n}^{2}+J_{n+1}^{2}+4(-1)^{n+1} J_{n-1}+1\right] a } \\
&+\left[4 J_{n}^{2}-4 J_{n-1}^{2}+8(-1)^{n} J_{n}+4(-1)^{n} J_{n-1}+\left(2 J_{n}^{2}+4 J_{n-1}^{2}\right)+\left(J_{n+1}^{2}+2 J_{n}^{2}\right)+1\right] b \\
&+\left(J_{2 n+1}+2 J_{2 n}\right) c \\
&= {\left[8 J_{n}^{2}+J_{n+1}^{2}+4 J_{n-1}\left(J_{n}-2 J_{n-1}\right)+1\right] a } \\
&+\left[8 J_{n}^{2}+J_{n+1}^{2}+8(-1)^{n} J_{n}+4(-1)^{n} J_{n-1}+1\right] b+J_{2 n+2} c \\
&= {\left[8 J_{n}^{2}+\left(4 J_{n} J_{n-1}+4 J_{n-1}^{2}+J_{n}^{2}\right)+4 J_{n-1} J_{n}-8 J_{n-1}^{2}+1\right] a } \\
&+\left[8 J_{n}^{2}+J_{n+1}^{2}+8(-1)^{n+2} J_{n}-4(-1)^{n+1} J_{n-1}+1\right] b+J_{2 n+2} c \\
&= {\left[9 J_{n}^{2}+8 J_{n} J_{n-1}-4 J_{n-1}^{2}+1\right] a } \\
&+\left[8 J_{n}^{2}+J_{n+1}^{2}+8 J_{n}\left(J_{n+1}-2 J_{n}\right)-4 J_{n-1}\left(J_{n}-2 J_{n-1}\right)+1\right] b+J_{2 n+2} c \\
&= {\left[4 J_{n}^{2}+8 J_{n} J_{n-1}+5 J_{n}^{2}-4 J_{n-1}^{2}+1\right] a } \\
&+\left[8 J_{n}^{2}+J_{n+1}^{2}+8 J_{n} J_{n+1}-16 J_{n}^{2}-4 J_{n-1} J_{n}+8 J_{n-1}^{2}+1\right] b+J_{2 n+2} c \\
&= {\left[4 J_{n}\left(J_{n}+2 J_{n-1}\right)+5 J_{n}^{2}-4 J_{n-1}^{2}+1\right] a } \\
&+\left[2\left(J_{n+2}^{2}-J_{n+1}^{2}\right)+J_{n+1}^{2}-16 J_{n}^{2}-4 J_{n-1} J_{n}+8 J_{n-1}^{2}+1\right] b+J_{2 n+2} c \\
&= {\left[4 J_{n+1} J_{n}+5 J_{n}^{2}-4 J_{n-1}^{2}+1\right] a } \\
&+\left[2 J_{n+2}^{2}-J_{n+1}^{2}-7 J_{n}^{2}-4 J_{n-1} J_{n}+4 J_{n-1}^{2}-8 J_{n}^{2}-\left(J_{n}^{2}-4 J_{n-1}^{2}\right)+1\right] b+J_{2 n+2} c \\
&= {\left[\left(4 J_{n+1} J_{n}+4 J_{n}^{2}\right)+\left(J_{n}^{2}-4 J_{n-1}^{2}\right)+1\right] a+} \\
& {[2}\left.J_{n+2}^{2}-J_{n+1}^{2}-7 J_{n}^{2}-4 J_{n-1} J_{n}+\left(J_{n+1}^{2}-J_{n}^{2}-4 J_{n} J_{n-1}\right)-8 J_{n}^{2}-(-1)^{n+1} J_{n+1}+1\right] b \\
&+J_{2 n+2} c \\
&= {\left[J_{n+2}^{2}-J_{n+1}^{2}+(-1)^{n+1} J_{n+1}+1\right] a+} \\
& {\left[2 J_{n+2}^{2}-J_{n+1}^{2}-8 J_{n}^{2}-4 J_{n}\left(2 J_{n-1}\right)+J_{n+1}^{2}-8 J_{n}^{2}-(-1)^{n+1} J_{n+1}+1\right] b+J_{2 n+2} c } \\
&
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[J_{n+2}^{2}-J_{n+1}^{2}+(-1)^{n+1} J_{n+1}+1\right] a } \\
& +\left[2 J_{n+2}^{2}-J_{n+1}^{2}-8 J_{n}^{2}-4 J_{n}\left(J_{n+1}-J_{n}\right)+J_{n+1}^{2}-8 J_{n}^{2}-(-1)^{n+1} J_{n+1}+1\right] b+J_{2 n+2} c \\
= & {\left[J_{n+2}^{2}-J_{n+1}^{2}+(-1)^{n+1} J_{n+1}+1\right] a } \\
& +\left[2 J_{n+2}^{2}-J_{n+1}^{2}-8 J_{n}^{2}-4 J_{n} J_{n+1}+4 J_{n}^{2}+J_{n+1}^{2}-8 J_{n}^{2}-(-1)^{n+1} J_{n+1}+1\right] b+J_{2 n+2} c \\
= & {\left[J_{n+2}^{2}-J_{n+1}^{2}+(-1)^{n+1} J_{n+1}+1\right] a } \\
& +\left[2 J_{n+2}^{2}-J_{n+1}^{2}-4\left(J_{n}^{2}+J_{n} J_{n+1}\right)+J_{n+1}^{2}-8 J_{n}^{2}-(-1)^{n+1} J_{n+1}+1\right] b+J_{2 n+2} c \\
= & {\left[J_{n+2}^{2}-J_{n+1}^{2}+(-1)^{n+1} J_{n+1}+1\right] a } \\
& +\left[2 J_{n+2}^{2}-J_{n+1}^{2}-\left(J_{n+2}^{2}-J_{n+1}^{2}\right)+J_{n+1}^{2}-8 J_{n}^{2}-(-1)^{n+1} J_{n+1}+1\right] b+J_{2 n+2} c \\
= & {\left[J_{n+2}^{2}-J_{n+1}^{2}+(-1)^{n+1} J_{n+1}+1\right] a } \\
& +\left[J_{n+2}^{2}-J_{n+1}^{2}+2\left(J_{n+1}^{2}-4 J_{n}^{2}\right)-(-1)^{n+1} J_{n+1}+1\right] b+J_{2 n+2} c \\
= & {\left[J_{n+2}^{2}-J_{n+1}^{2}+(-1)^{n+1} J_{n+1}+1\right] a } \\
& +\left[J_{n+2}^{2}-J_{n+1}^{2}+2(-1)^{n+2} J_{n+2}+(-1)^{n+2} J_{n+1}+1\right] b+J_{2 n+2} c \\
= & \left(J_{n+2}^{2}-J_{n+1}^{2}+1\right)(a+b)+(-1)^{n+1} J_{n+1} a+(-1)^{n+2}\left(2 J_{n+2}+J_{n+1}\right) b+J_{2 n+2} c .
\end{aligned}
$$

Therefore, it is true for all $n \geq 1$.
(c) The proof of (c) is similar to the proof of (b).

Acknowledgement. This work was supported by Faculty of Science and Technology, Rajamangala University of Technology Tawan-ok.

References

[1] A. F. Horadam, Jacobsthal and Pell curve, Fibonacci Quarterly, 26, (1988), 77-83.
[2] K. T. Atanassov, On two new combined 3-Fibonacci sequences, Notes on Number Theory and Discrete Mathematics, 24, no. 2, (2018), 90-93.
[3] K. T. Atanassov, On two new combined 3-Fibonacci sequences part 2, Notes on Number Theory and Discrete Mathematics, 24, no. 3, (2018), 111-114.
[4] F. T. Aydin, On generalizations of the Jacobsthal sequence, Notes on Number Theory and Discrete Mathematics, 24, no. 1, (2018), 120-135.

