
International Journal of Mathematics and
Computer Science, 16(2021), no. 1, 185–197

b b

M
CS

On Maximal Cycles or Triangular Planar
Polygonal Graphs and Their Coloring

Vicente Jara-Vera, Carmen Sánchez-Ávila
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Abstract

We analyze the cycles or planar polygonal graphs G which are
maximal in their inner edges and offer a series of coloring results, such
as χ(G) = 3 or P (G, 3) = 6, or construction algorithms, among others.
Some aspects of them with various applications in path modeling,
data flow design, computer networks or best resource allocation are
discussed.

1 Introduction

In this study, we will consider a type of planar graphs, of polygonal structure,
the so-called cycles. We will show some results referring to their vertices col-
oration when they are triangular or maximal in their inner edges [1][2][3][4].

We will begin by recalling the following theorem which is fundamental in
our study:

Theorem 1.1. In a maximal or triangular planar graph G, E = 3V − 6.

Key words and phrases: Cycle, Coloring, Maximal Graph, Network
Algorithm, Planar Graph.
AMS (MOS) Subject Classifications: 05C10, 05C15, 05C38, 68M10,
94C15
ISSN 1814-0432, 2021, http://ijmcs.future-in-tech.net



186 V. Jara-Vera, C. Sánchez-Ávila

Proof. From Euler’s formula, F + V = E + 2, V being the number of
vertices, E the number of edges, and F the number of faces. It is well known
that E ≤ 3V − 6 in a planar graph in which V ≥ 3. In the case of a maximal
or triangular planar graph, we have E = 3V − 6. �

For clarity, we have the following definitions:

Definition 1.2. Let n ≥ 3. A Cycle or polygonal graph is a graph G with
n vertices V1 to Vn and a perimeter denoted by V1V2, V2V3,..., Vn−1Vn, VnV1.
This perimeter defines a topological boundary between the exterior and the
interior of the polygonal shape.

Definition 1.3. A planar polygonal maximal or triangular graph is the polyg-
onal planar graph to which all interior and exterior edges are added.

Definition 1.4. As a result, we can talk about the exterior (VE), interior
(VI) and perimeter (VP ) so that V = VE + VI + VP . Similarly, we can
talk about the external (EE), interior (EI) and perimeter (EP ) so that E =
EE + EI + EP .

2 Some properties of polygonal planar graphs

We mention some theorems that will help characterize polygonal planar
graphs:

Theorem 2.1. In a maximal or triangular polygonal planar graph, without
exterior or interior vertices, EI = EE = VP − 3.

Proof. Since E = 3V − 6, EE + EI + EP = 3(VE + VI + VP )− 6.

We have VE = 0 and VI = 0. On the other hand, the perimeter of vertices
and edges leads to EP = VP .
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Moreover, considering the graph topologically, due to the geometric inver-
sion between the interior and the exterior,the perimeter, the various interior
edges between vertices can be drawn in the same way (inverted) on the out-
side of the perimeter border, having as many edges inside as outside. If they
do not cross in the interior, they will not do so in the exterior, and if they
cross in the interior they would also do so in the exterior, starting and ending
at the same vertex. So there will be as many edges on the outside as on the
inside in a maximal graph. Consequently, EE = EI .

As a result, 2EI + VP = 3(VP )− 6. Finally, EI = EE = VP − 3. �

Theorem 2.2. In a planar maximal polygonal graph or triangular graph
without outside vertices, EI = 3VI + VP − 3.

Proof. Since E = 3V − 6 and distinguishing edges and vertices as ex-
pressed in the preceding definitions, we have that EE + EI + EP = 3(VE +
VI + VP )− 6.

First VE = 0. Next, the perimeter forces EP = VP . As in the preceding
theorem 2.1, EE = VP − 3. Consequently, EI = 3VI + VP − 3. �

Theorem 2.3. In a planar graph polygonal maximal or triangular where
there are no outer edges, EE = 0. The ratio of interior vertices and interior
edges is given by VI = (VP −3)−λ and EI = 4(VP −3)−3λ, with λ ≤ VP −3,
λ ∈ Z.

Proof. From EI = VP + 3VI − 3, we have EI − 3VI = VP − 3 which is
a linear Diophantine equation of the type ax+ by = n which can be solved,
by defining d = gcd(a, b). If d|n, then there is a solution. In addition,
d = αa+ βb, being a particular solution x0 =

n

d
α, y0 =

n

d
β. AMoreover, the

remaining solutions are x = x0 +
b

d
λ, y = y0 −

a

d
λ.

In our case, d = gcd(1,−3) = 1. So there is always a solution. It turns
out that 1 = α − 3β. Consider the values α = 4 and β = 1. A particular
solution is (EI0

, VI0
) = (4(VP − 3), (VP − 3)). The possible solutions are

(EI , VI) = (4(VP − 3)− 3λ, (VP − 3)− λ), with λ ≤ VP − 3. �

Theorem 2.4. In a maximal or triangular planar polygonal graph, only 3
vertices are accessible from the outside of it.
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Proof. In the case of having more than 3 vertices, the outer perimeter
will force having two non-consecutive vertices and drawing an outer edge
between them. This leaves the vertices existing between them in the inner
part of the edge not being accessible from outside the polygon.

We could build a new figure with a smaller number of exterior vertices
until no more edges can be drawn; that is, when VP − 3 = EE = 0. So there
will be 3 vertices which are those that no longer allow drawing more edges
(all of them being interconnected with each other) being the only vertices
that are totally outside a polygonal planar maximal graph. �

Theorem 2.5. In a planar maximal or triangular polygonal graph, where
there are neither outer edges (EE = 0) nor inner vertices (VI = 0), the
maximum number of vertices that are not attached together but have edges
with all the vertices of the graph is

⌈

V−1
2

⌉

, and the minimum number is 1.

Proof. First, consider EI = 0. Since there are no more than these, the
various perimeter vertices VP , joined with its predecessor and its successor
in a modular way from 1 to n, the total number will be

⌈

V−1
2

⌉

.

However, we must place the inner edges, a total of EI = V − 3, which
at least in one of the possible placements we have one that joins one of the
vrtices, for example Vn, with the rest, from V2 to Vn−2.

Taking the set of odd vertices {V1, V3, ...} to Vn−1, we have a set of vertices
not attached to each other. The same will happen with the set of even vertices
{V2, V4, ...} to Vn−1. If n is odd, both sets (the one of even vertices and the
one of odd vertices), have cardinality equal to the maximum value

⌈

V−1
2

⌉

,
but if n is even, only the set of odd vertices will be maximum.

In any case, this maximum value
⌈

V−1
2

⌉

can always exist in any maximal
polygonal graph with this edge configuration.

In the case of the minimum, it is clear that if the vertex Vn is taken,
attached to all the others, only this vertex will form a set of vertices that
will be joined to the rest, so its cardinality is unity. �
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3 Some coloring theorems

We will begin this section with a procedure, which will be used to select a
set of vertices not connected to each other in a polygonal maximal graph
without outside edges.

Later we will see the importance of this particular selection.

Algorithm.
First,we arrange the graph G in the form of a linear sequence of vertices with
a single vertex Vk at the bottom, following a triangular shape, as it appears
in Fig. 1.

To construct the set of vertices γ, we start by taking as a first vertex the
lower vertex of our triangular arrangement, Vk.

This choice requires that the successive and preceding vertices of Vk can-
not belong to the set γ, since that set contains vertices not attached to each
other. Thus, Vk−1 and Vk+1 /∈ γ. Similarly, this happens with any other
vertices to which Vk is attached. Also each of them divides the horizon-
tal sequence of vertices into fragments, subgraphs, which must be analyzed
separately.

Suppose, for example, we have two vertices that delimit one of these
sections, say Vm and Vn. Due to the maximality of edges, Vm and Vn will be
joined by an edge which subtends from vertex Vk, forming a triangle using
these three vertices.

The algorithm will continue analyzing the rest of the vertices and edges,
the subgraph inside this edge VmVn.

Thus, if we removed the edge VmVn we would have a single vertex Vi

now in the horizontal line of vertices that would be accessible, due to the
formation of triangles, specifically that formed by Vi, the edge VmVn, and the
vertices Vm and Vn. Hence there is only one vertex Vi. This vertex Vi, being
under the edge VmVn has no connection to the vertex Vk ∈ γ, so it becomes
part of that set.

When taking the value Vi for the set of vertices γ, we will have to eliminate
its edges which will indicate another series of vertices to which it is attached
that cannot be part of γ. The vertices which are not included will have
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generated new subsections in the horizontal line of vertices that must be
analyzed taking two consecutive vertices that have been excluded from the
set γ and looking under the edge that joins them, to take a new vertex that
we will include in γ. The process continues as such .

The process comes to an end because at each step you look under an
edge and an additional vertex is taken for the γ set, getting to analyze all
the subgraphs or sections generated by the vertices not included in that set.

Example. Consider a graph G as in Fig. 1, with 18 vertices, planar
polygonal graph maximal in its interior edges. We have it in the form offered
in Fig. 1, with one of its vertices, V18, at the bottom, and the rest aligned at
the top.

Figure 1: Graph example where we will apply the vertex selection algorithm.

You start by taking the vertex V18 in the set γ. The edges that start from
V18 are connected with vertices that cannot belong to γ. They are V1, V3,
V6, V7, V10 and V17. They determine five zones or subgraphs to be analyzed
with the same procedure.

Starting with the area bounded by V1 and V3, the edge that joins them,
V1V3, shows inside an accessible vertex that is not attached to any point of
the set γ. With this, V2 ∈ γ. Its edges will indicate vertices that cannot
belong to γ. In this subgraph the process is over.

In the following subgraph, bounded by V3 and V6, looking at the edge V3V6

we find the vertex V4, which we can incorporate into γ. Its edges indicate
vertices that cannot be incorporated into our set. This also ends the analysis
in this subgraph.
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In the subgraph bounded by V6 and V7, there are no more vertices to
consider. So we move on to the subgraph bounded by V7 and V10. Looking
at the vertices inside the edge that joins these vrtices, V7V10, we find the
vertex V9, which cannot not be attached to any other vertex of the set γ.
So it is selected, V9 ∈ γ. Its edges will give us more vertices that we cannot
take for γ because they are attached to it. Not being able to continue after
having exhausted all the vertices, we are done with this subgraph.

Considering the section of the graph bounded by V10 and V17 we have
to look under its edge V10V17, where we find one vertex. So V11 ∈ γ. Its
edges connect with another sequence of vertices that cannot be assumed as
elements of γ. Another zone bounded by vertices V15 and V17 emerged in the
process. The analysis of this zone when looking under the edge V15V17 allows
us to take the vertex V16 for γ.

Thus, all the areas bounded by vertices that cannot belong to γ have been
analyzed. The process is over, and we have γ = {V2, V4, V9, V11, V16, V18}, see
Fig. 2.

Figure 2: Graph resolved after application of the vertex selection algorithm.

Theorem 3.1. Every maximal polygonal planar graph G without outside
edges can be divided into two subgraphs: one of them, G1 is a tree, and
the other, G2 is an absolutely non-connected subgraph, a set of vertices, with
their respective edges, not attached between them.

Proof. From the indicated algorithm it is clear that the set γ is a set
of vertices not attached to each other. Taking the first one, its edges are
observed so as not to take any vertex attached to it, and so on in the whole
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process. On the other hand, by the described process there are no more
vertices that we can include in the γ set once the algorithm is finished; that
is, the rest of the vertices of the initial graph G are attached to some vertices
of γ. Therefore, G2 is a subgraph of G formed by vertices not attached to
each other, absolutely non-connected, together with their respective edges.

On the other hand, if we look at subgraph G1, all its vertices are linked
together. Assuming an isolated vertex of G1 was given, not attached to any
other of G1. There would be at least one triangulation between the said vertex
and two others, it would be the case that those other two vertices will belong
to G2; that is, they were chosen for γ. The vertices of γ are not attached
between them. If they formed a triangulation at the beginning, they would
be united. But this cannot be. Therefore, there are no vertices of subgraph
G1 not attached to another vertex of G1.

In addition, between the vertices of G1 there are no closed circuits, since
if there were, we could continue with the described algorithm, calculating
under the said edge that encloses the vertex or interior vertices, and there
will always be some that can be considered members of γ, breaking under
the said vertices and their edges, the closed circuit. With this, any original
triangulation will be distributed between vertices of the graphs G1 and G2.

With all this, G1 is a tree. �

Corollary 3.2. Every maximal planar polygonal graph G without outside
edges is 3-colorable, χ(G) = 3.

By theorem 3.1, every maximal polygonal graph G without outside edges
can be divided into a subgraph G1 which is a tree, and another subgraph
G2 that is constituted by vertices not attached to each other. So we have to
give a color to the vertices of G2 and apply on G1, a tree, two different colors
from the color given to G2. �

Theorem 3.3. Every planar maximal polygonal graph G without outside
edges, which we know can be divided into two subgraphs, one of them a tree
and the other a set of vertices with their edges but not attached together, ab-
solutely non-connected graph, can be divided according in this manner, into
three different ways.
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Proof. By the described algorithm, one can start with any of the vertices.
We will assume that G had n vertices.

If the algorithm is started at a certain vertex Vi and a set γ is obtained,
which we will call γ1, by the constructive process of the procedure, it would
be the same to start with any of the vertices that make up the set γ1 since
the result would be the same, both for the tree subgraph obtained as for the
set of vertices of γ1. This is because that vertex with which the algorithm
starts from the edges attached to it will begin to consider vertices attached
to it that cannot be part of γ1 and to bound subzones, which will be given
by those vertices of the tree, being always those same ones for any vertices
of γ1 that we begin with.

The rest of the vertices with their edges form a tree subgraph, which can
be divided into two sets of vertices, which we will call γ2 and γ3, each of which
is formed by vertices not attached to each other, absolutely non-connected.

On the other hand, the graph G is made up of several minor triangles,
always attaching a set of three vertices. Since the vertices are linked together
for each of these triangles because the various γi are formed by vertices not
attached to each other, it is clear that because these vertices of these triangles
are joined, each of them must belong to a different set γi.

Hence, given a set of vertices γ2 and its subgraph, the rest of vertices and
edges are formed by vertices of γ1 together with the vertices of γ3, which are
joined together in two of the vertices of the smaller triangles. They form
a tree subgraph since there would not be a cycle either because that would
mean that γ2 would lack at least one element. Similarly for the set γ3.

As a result, it is clear that there are three and only three possible con-
figurations of the constitution of graph G in subdivisions of two subgraphs,
one of them a tree and the other a set of vertices not attached to each other,
with their various edges. �

Example. Returning to the example shown above, we would have:

γ1 = {V2,V4,V9,V11,V16,V18},
γ2 = {V1,V6,V8,V10,V13,V15},
γ3 = {V3,V5,V7,V12,V14,V17}.
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Corollary 3.4. If in a maximal polygonal graph G of n vertices without
outside edges, of the three possibilities of the sets γ1, γ2 and γ3, one of them
has minimal cardinality, the cardinality of the other sets will be maximum if
n is odd, or if n is even, the cardinality of one of them will be maximum and
the other maximum-1, and vice versa.

Proof. If for example #γ1 = 1, then in the construction algorithm we
have that there is a vertex, the only one of γ1. Suppose Vi is attached to
the rest of the vertices. Then, applying the algorithm by placing the vertex
Vi+1 at the bottom of the triangle, we would take the various vertices Vi+3,
Vi+5, Vi+7, ... = {Vi+(2k+1)}, for the set γ2, k ∈ N. Similarly, the set γ3 will
be the set of vertices Vi+2, Vi+4, Vi+6, ... = {Vi+2k}, with k ∈ N. Since the
maximum value is

⌈

V−1
2

⌉

, if n is odd #γ2 = #γ3 =
⌈

V−1
2

⌉

, and if n is even,
#γ2 =

⌈

V−1
2

⌉

and #γ3 =
⌈

V−1
2

⌉

− 1.

On the contrary, if #γ2 =
⌈

V−1
2

⌉

it is because, in the configuration, the
lower vertex is taken, which we will call Vi and the sequence of all successive
vertices with jump 2, Vi+2k, with k ∈ N. In this configuration we will have the
vertex Vi−1 attached to all the vertices. The latter means that this vertex
Vi−1 will be the only element of a set γ of cardinality one. If G has an
even set of vertices it is clear that the cardinality of the other set γ will be
the maximum minus 1,

⌈

V−1
2

⌉

− 1, and if it is odd it will be of maximum
cardinality, since #γ1 +#γ2 +#γ3 = n. �

Corollary 3.5. A maximal polygonal graph G without outside edges can be
colored in three colors and in six different ways, resulting in its chromatic
polynomial P (G, 0) = P (G, 1) = P (G, 2) = 0 and P (G, 3) = 6.

Proof. We have seen that at least three colors are needed, χ(G) = 3.
On the other hand, the value of six is the simple result of calculating the
permutations of the three colors. �

4 Coloring adding outer edges and vertices

once the outer edges have been introduced though, it would not be correct
to assume a 3-colourable polygonal graph.

We consider two different situations:
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• On the one hand, we will show the simplest case (with fewer vertices) of
the maximal planar polygonal graph with exterior edges where 4 colors
are required for coloring (Fig. 3).

Figure 3: Simpler polygonal planar graph with outer edges and not 3-
colorable.

• On the other hand, we will show the simplest planar polygonal graph
(with fewer vertices, four) inscribed or circumscribed by the minimum
number of vertices, two, where 4 colors are required for the coloring of
the polygonal cycle or subgraph (Fig. 4).

Figure 4: Simpler polygonal planar graphs with the least number of circum-
scribed or inscribed vertices, which prevent a 3-colouring of the polygonal
subgraph.
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5 Conclusions

In this study, we have considered the cycles or planar polygonal graphs,
maximal or triangular inside, and we have given a few properties. An algo-
rithm has been developed to decompose them into a tree-type subgraph and
an absolutely non-connected subgraph. We have calculated the number of
different separations in these two types of subgraphs that can be achieved,
always being a total of three, which leads to a value in the chromatic poly-
nomial P (G, 3) = 6.

In addition, the chromatic number has been calculated for this type of
graphs, proving to be 3-colorable, and we have given some results on the
cardinality in the number of vertices of the previous subgraphs.

As in the study of graphs, we believe that the results offered here can be
useful in a variety of fields and situations. We briefly indicate the modeling of
paths, optimal routes, construction of transport systems as well as the design
of data flows in the computing sector, the structure of computer networks
and social networks, or the design of any other perimeter structure (maximal
planar graph) of polygonal shapes, or the like, as occurs in geographic ter-
ritories, border perimeters of countries or regions, geographical boundaries
by water, such as lakes, or even satellite orbits, etc., where we cannot locate
central elements, and where there are point-to-point communications, among
other similar examples, in which the union of all the vertices is necessary and
certain properties are required, linked to the coloration, or to look for the
tree subgraph and the absolutely non-connected subgraph of a graph, which
allows to arrange and allocate in the best way a series of resources, data,
merchandise, etc.
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