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Abstract

In this paper, we introduce a procedure to approximate the Grünwald-
Leitnikov fractional derivative of order α ∈ (0, 1) for a product of two
functions. This procedure uses the Laplace transform for a product of
functions.

1 Introduction

In fractional calculus, one can take the derivative a non-integer number of
times. An introduction for fractional derivatives was given in [4]. Histori-
cally, the concept of the fractional calculus is more than 300 years old. Oliver
Heaviside introduced the practical use of fractional differential operators in
electrical transmission back in 1890. Recently, scientists and engineers have
come to realize the potential fractional calculus presents in applied science.
Research has been done successfully on applications using models and tools
from fractional calculus , see [7], [8], [9], and [10]. The Grünwald-Letnikov
derivative was introduced by Anton Karl Grünwald in 1867 and by Alek-
sey Vasilievich Letnikov in 1868. The Grünwald-Letnikov derivative [10] is
defined as:
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Definition 1.1. For f : R → R, the Grünwald-Letnikov fractional deriva-
tive of order α of the function f is given by the equation:

(Dαf)(t) = lim
h→0

1

hα

∞
∑

j=0

(−α)j
j!

f(t− jh).

The above derivative is also called Forward Grünwald-Letnikov fractional
derivative. More details were given by Ortigeira et al. in [11]. The Grünwald-
Letnikov derivative was one of the proposed derivatives to answer Leibniz’s
question related to the definition of the fractional derivative; many investi-
gations were done related to the effective use of this derivative.

Suppose that f is a real-valued function and s is a complex variable. The
Laplace transform of f(t) is defined as

Ls (f(t)) = (Lf)(s) = F (s) =

∫

∞

0

e−stf(t)dt. (1.1)

We note that the Laplace transform of the product of two functions is not
the product of their Laplace transforms. However, the Laplace transform of a
convolution of two functions equals the product of their Laplace transforms.

1.1 The Mittag-Leffler functions

Another important tool to deal with fractional calculus is the Mittag-Leffler
function Ea,b(t) and it is defined as

Ea,b(t) =
∞
∑

n=0

tn

Γ(an + b)
. (1.2)

Proposition 1.2. We have

1. E0,1(t) =
1

1−t
, |t| < 1,

2. E1,1(t) = et,

3. E2,1(−t
2) = cos(t) and E2,1(t

2) = cosh(t),

4. E2,2(−t
2) = sin(t)

t
and E2,2(t

2) = sinh(t)
t

.

Definition 1.3. Define ψa,b(t) to be the antiderivative of Ea,b(t). In this
case,

ψa,b(t) =
∞
∑

n=0

tn+1

(n+ 1)Γ(an + b)
=

∞
∑

n=1

tn

nΓ(an+ b− a)
.
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For example,

ψ1,1(t) =

∞
∑

n=1

tn

nΓ(n)
=

∞
∑

n=1

tn

Γ(n+ 1)

=

∞
∑

n=1

tn

n!
= et − 1,

which is an antiderivative for E1,1(t).

For further discussion on the Mittag-Leffler function properties, see [9].

2 Preliminaries

In this section, we will give the fractional derivative of order α for products
of two functions. Also, using these results, Lemma 2.1,Theorem 2.2 and
differential transform allows us to solve fractional differential equations.

Lemma 2.1. [10] For α ∈ (0, 1), the Laplace transform of Grünwald-Letnikov
derivative of (Dαf)(t) is sαF (s).

In [3], an explicit formula for the Laplace transform of a product of two
functions is given as follows:

Theorem 2.2. Assume that L(f(t)) = F (s) and L(g(t)) = G(s).
If
∫

∞

0

∫

∞

0
e−(s+ξ)tg(ξ)f(t)dtdξ converges absolutely for s > b, then Ls (f(t)G(t))

is given as

Ls

(

f(t)G(t)
)

= Ls

(

f(t)L (g(t))
)

=

∫

∞

0

g(ξ)F (ξ+s)dξ =

∫

∞

s

g(ξ−s)F (ξ)dξ for s > b.

(2.3)

This theorem can be stated as: if
∫

∞

0

∫

∞

0
e−(s+ξ)t(L−1h)(ξ)f(t)dtdξ con-

verges absolutely for s > b, then

Ls

(

f(t)h(t)
)

=

∫

∞

0

(L−1h)(ξ)(Lf)(ξ+s)dξ =

∫

∞

s

(L−1h)(ξ−s)(Lf)(ξ)dξ for s > b.

(2.4)
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Example 2.3. Using the fact that L (cos(at)) = s
s2+a2

, we get

Ls

(

tf(t)

t2 + a2

)

= L (f(t)L(cos(at)))

=

∫

∞

s

cos(ξ − s)F (ξ)dξ

= cos(s)

∫

∞

s

cos(ξ)F (ξ)dξ − sin(s)

∫

∞

s

sin(ξ)F (ξ)dξ.

3 Main result

Using Theorem 2.2 and Lemma 2.1, we have the following result:

Theorem 3.1. The Grünwald-Letnikov derivative of order α ∈ (0, 1) of fg
is given by:

(Dαfg)(t) = L−1{sα
∫

∞

0

(L−1g)(ξ)(Lf)(ξ+s)dξ} = L−1{sα
∫

∞

s

(L−1g)(ξ−s)(Lf)(ξ)dξ}.

Proof. According to Lemma 2.1, the Laplace transform of (Dαfg)(t) is sαL
(

f(t)g(t)
)

.

Therefore,

(Dαfg)(t) = L−1{sαL
(

f(t)g(t))}. (3.5)

Now, using Theorem 2.2, we get:

Ls

(

f(t)g(t)
)

=

∫

∞

0

(L−1g)(ξ)(Lf)(ξ + s)dξ =

∫

∞

s

(L−1g)(ξ − s)(Lf)(ξ)dξ.

(3.6)
Combining (3.5) and (3.6), the result follows.

As applications we have the following examples:

Example 3.2. For α ∈ (0, 1), we prove that

Dα
(

te−t
)

= t1−α
(

E1,1−α(t) + αE1,2−α(t)
)

.

Now,

Dα
(

te−t
)

= L−1
(

sα
∫

∞

s

u−2δ(u− s− 1)du
)

= L−1
(

sα(1 + s)−2
)

.
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Now, for |s| > 1,

1

s+ 1
=

1

s

( 1
1
s
+ 1

)

=
∞
∑

n=0

(−1)ns−n−1.

Differentiating both sides gives:

1

(s+ 1)2
=

1

s

( 1
1
s
+ 1

)

=
∞
∑

n=0

(−1)n(n+ 1)s−n−2.

Therefore,

sα

(s+ 1)2
=

∞
∑

n=0

(−1)n
n+ 1

sn+2−α

=

∞
∑

n=0

(−1)n
(n+ 1)Γ(n+ 2− α)

Γ(n+ 2− α)sn+2−α
.

Hence,

L−1
( sα

(s+ 1)2

)

=

∞
∑

n=0

(−1)n
(n + 1)tn+1−α

Γ(n+ 2− α)

=
∞
∑

n=0

(−1)n
(n+ 1)tn+1−α

(n + 1− α)Γ(n+ 1− α)

=
∞
∑

n=0

(−1)n
(n+ 1− α + α)tn+1−α

(n + 1− α)Γ(n+ 1− α)

=
∞
∑

n=0

(−1)n
tn+1−α

Γ(n + 1− α)
+ α

∞
∑

n=0

(−1)n
tn+1−α

(n + 1− α)Γ(n+ 1− α)

= t1−α

∞
∑

n=0

(−t)n

Γ(n + 1− α)
+ αt1−α

∞
∑

n=0

(−t)n

Γ(n+ 2− α)

= t1−α
(

E1,1−α(t) + αE1,2−α(t)
)

.

Therefore, Dα
(

te−t
)

= t1−α
(

E1,1−α(t) + αE1,2−α(t)
)

.

Interestingly, limα−→1D
α

(

te−t

)

= −te−t + e−t = D
(

te−t

)

.
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Example 3.3. For α ∈ (0, 1), we prove that

Dα
(e−t + t− 1

t2

)

= t−α−2
(

ψ1,−α(−t) +
t

Γ(−α)

)

− t−α−1ψ1,1−α(−t).

Now,

Dα
(e−t + t− 1

t2

)

= L−1
(

sα
∫

∞

s

(u− s)(−
1

u
+

1

u2
+

1

1 + u
)du

)

= L−1
(

sα
(

(s+ 1) ln(1 +
1

s
)− 1

))

.

Since

ln(1 + x) = −

∞
∑

k=1

(−1)kxk

k
for |x| < 1,

we have

(s+ 1) ln(1 +
1

s
)− 1 = −(s+ 1)

∞
∑

k=1

(−1)k

ksk
− 1

= −

∞
∑

k=2

(−1)k

ksk−1
−

∞
∑

k=1

(−1)k

ksk
.

Hence,

sα
(

(s+ 1) ln(1 +
1

s
)− 1

)

= −

∞
∑

k=2

(−1)k

ksk−1−α
−

∞
∑

k=1

(−1)k

ksk−α
.

Dα
(e−t + t− 1

t2

)

= L−1
(

−

∞
∑

k=2

(−1)k

ksk−1−α
−

∞
∑

k=1

(−1)k

ksk−α

)

=

∞
∑

k=2

(−1)ktk−α−2

kΓ(k − 1− α)
−

∞
∑

k=1

(−1)ktk−α−1

kΓ(k − α)

= t−α−2
∞
∑

k=2

(−t)k

kΓ(k − 1− α)
− t−α−1

∞
∑

k=1

(−t)k

kΓ(k − α)
.

Using Definition 1.3, we get

Dα
(e−t + t− 1

t2

)

= t−α−2
(

ψ1,−α(−t) +
t

Γ(−α)

)

− t−α−1ψ1,1−α(−t).
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