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Abstract

In this paper, we introduce monotonically ω − T2−space , mono-

tonically ω−normal space in generalized topological spaces. Moreover,

we define ω−stratifiable and ω− semistratifiable in generalized topo-

logical spaces. Furthermore, we give some characterizations of these

notions and related results.

1 Introduction

Buck [13] defined monotonically T2-space and gave relations between mono-
tonically T2−space and mk−spaces for k = 1, 2, 3. Later, Al-Bsoul [2] charac-
terized this definition and Abushaheen [1] investigated monotonically T2−space
in bi-topological spaces.

Heath [24] introduced a monotonically normal space as a generalization
of stratifiable space that defined Borges [5]. Afterwards, various papers were
written on monotonically normal spaces [19, 20, 21, 25, 26, 31, 32].

Császár [14] defined a generalized topological space (X, µ) as a collection

of nonempty subsets of X with φ ∈ µ and
⋃

U∈µ

U ∈ µ. Elements of µ are
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called µ− open. A set A ⊆ X is called µ− closed if X − A is µ−open. A
space (X, µ) is called a strong generalized topological space if X ∈ µ. Fur-
ther studies were done on generalized topological space ( for example see
[11,15,16,17,27,29,30]).

For a space (X, τ), a point x ∈ X is called a condensation point of a set
A ⊆ X(Cond(A)) if there exists an open set Ux containing x such that Ux∩A
is uncountable set.

Hdeib [22] gave a weak form of a closed set called ω− closed subset: a
subset of X is called ω− closed if it contains all its condensation points. The
complement of ω− closed is called ω− open. Note that a set A is an ω−
open set if and only if for every x ∈ A there exists an open set Ux containing
x with Ux − A being a countable set. Clearly, the family of ω− open sets
forms a topology, denoted by (X, τω), which is finer than (X, τ); i.e., every
open set is ω−open set. Many articles have been published on (X, τω) (for
example, see [3,7,8,9,10,23,28]).

In 2016, Al Ghour [4] extended ω−open into a generalized topological
space and gave many generalizations of the known topological spaces (for
example. Lindelöf, compact, countably compact spaces and continuous func-
tions).

Definition 1.1. [4] Let (X, µ) be a generalized topological space and let B
be a subset of X.

(a) A point x ∈ X is a condensation point of B if for all A ∈ µ such that
x ∈ A, A ∩ B is uncountable. (The set of all condensation points of B
is denoted by Cond(B)).

(b) B is µω−closed if Cond(B) ⊆ B.

(c) B is µω−open if X − B is µω−closed.

(d) The family of all uω−open sets of (X, µ) will be denoted by µω.

In [5,6], the authors studied this notion further. We will use the following
definitions and Theorem in our paper.

Definition 1.2. [5] A generalized topological space (X, µ) is called µωT1−
space if, for all x 6= y ∈ X, there exists U, V ∈ µω such that x ∈ U − V and
y ∈ V − U .
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Definition 1.3. [5] A generalized topological space (X, µ) is called µωT2−
space if, for all x 6= y ∈ X, there exists U, V ∈ µω such that x ∈ U and
y ∈ V and U ∩ V = φ.

Definition 1.4. [5] Let (X, µ) be a generalized topological space and let A
be a subset of X. Then we define µω−closure of A ; denoted by A

µω
as :

A
µω

=
⋂

{

B : B is µω − closed in X and A ⊆ B
}

.

Definition 1.5. [5] Let (X, µ) a generalized topological space and let A be a
subset of X. Define µω− interior of A, denoted by Intµω

(A), as

Intµω
(A) =

⋃

{

B : B is µω − open in X and B ⊆ A
}

.

Theorem 1.6. [5] Let f : (X, µ1) → (Y, µ2) be a function. Then the follow-
ing are equivalent

(a) f is ω − (µ1, µ2)−irresolute;

(b) For each µ2ω− closed subset C of Y , f−1(C) is a µ1ω− closed subset of
X;

(c) For each subset A of X, f(A)
(µ1ω)

⊆ f(A)
(µ2ω)

;

(d) For each subset B of Y , f−1(B)
(µ2ω)

⊆ f−1(B)
(µ2ω)

.

In section 2, we will introduce monotonically ω − T2−space in a general-
ized topological space and give some related results. In section 3, we define
monotonically ω−normal space in a generalized topological space and inves-
tigate some equivalent statements. In section 4, we introduce ω−stratifiable
and ω−semistratifiable in generalized topological spaces and study the re-
lations between these definitions and monotonically ω−normal space in a
generalized topological space. Finally, a product theorem is given. We will
adopt the terms and notations in [18].

2 Monotonically ω − T2−space in a General-

ized Topological Spaces

Definition 2.1. A generalized topological space (X, µ) is called monotoni-
cally ω − T2− space (µωMT2− space) if there is a function U : X ×X → µω

assigning to an ordered pair (x, y) of distinct points in X an µω− open
U(x, y) ⊂ X of x such that
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(a) U(x, y) ∩ U(y, x) = φ;

(b) For each M ⊆ X, if x ∈
⋃

{

U(y, x)|y ∈ M
}µω

, then x ∈ M
µω
. In addi-

tion, if

(c) For z ∈ U(x, y), then U(z, y) ⊆ U(x, y),

then (X, µ) is strongly monotonically ω − T2− space ( strongly-µωMT2−
space).

Clearly, strongly−µωM − T2− space implies µωMT2− space and hence
µωT2− space.

The following two theorems are about subspaces of µωMT2−space. The
proof of the first one is obvious. The proof of the second appears as Theorem
2.13 in [1].

Theorem 2.2. Let (X, µ) be µωMT2− space and let A ⊆ X. Then A is
µωMT2− space.

Theorem 2.3. If every proper subspace of (X, µ) is a µωMT2− space, then
(X, µ) is µωMT2− space.

Definition 2.4. A generalized topological space (X, µ) is called µωT3− space
if, for each point x ∈ X and each µω−closed set A such that x 6∈ A, there
are disjoint µω−open sets U, V with x ∈ U and A ⊂ V .

Theorem 2.5. Let (X, µ) be a generalized topological space. If (X, µ) is a
µωMT2− space, then (X, µ) is µωT3− space.

Proof. Let A be µω−closed and x /∈ A = A
µω

and let y ∈ A. Since (X, µ) is
µωMT2− space, there is a function U : X ×X → µω such that:

x /∈
⋃

{

U(y, x)|y ∈ A
}

µω

,

then

A ⊆
⋃

{

U(y, x)|y ∈ A
}

,

and

x ∈ U(x, y) with U(x, y) ∩
⋃

{

U(y, x)|y ∈ A
}

= φ.
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In general, the converse is not true. However, by adding the following
condition, we get an equivalent statement.

Definition 2.6. A generalized topological space (X, µ) is said to have C∗

property if, for all x ∈ X, there exists a countable nested µω−open local base.

Theorem 2.7. For a generalized topological space (X, µ) with the C∗ prop-
erty, (X, µ) is µωT3− space if and only if (X, µ) is µωMT2− space.

Proof. (⇐) From Theorem 2.5.

(⇒) Let x 6= y ∈ X. Since X has the C∗ property, there exists a count-
able nested µω−open local base for each x and y, say

{

Vn(x)
}

∞

n=1
of x and

{

Vn(y)
}

∞

n=1
of y. Let j(x) be the minimum index such that x /∈ Vj(x)(y)

µω

and let i(x, y) be the smallest number such that Vi(x,y)(x) ∩ Vj(x)(y) = φ.
Define

U(x, y) = Vi(x,y)(x).

We have
U(x, y) ∩ U(y, x) = φ.

Now, let M ⊂ M
µω

⊂ X − {x} and let i be the minimum element such that
Vi(x) ∩M = φ for y ∈ M. Then

Vi(x) ⊂ Vj(y)(x) ⊂ X − Vi(y,x)(y) = X − U(y, x).

Consequently,
x ∈ Vi(x) ⊂ X − ∪{U(y, x) : y ∈ M}.

3 Monotonically ω−normal in a Generalized

Topological Spaces

Definition 3.1. A µωT1− space is called monotonically ω− normal in a gen-
eralized topological space (X, µ) (µωM− normal) if for each disjoint µω−closed
sets E, F, there exists a µω− open set U(E, F ) such that

(a) E ⊆ U(E, F ) ⊆ U(E, F )
µω

⊆ X − F,

(b) If E ′, F ′ are disjoint µω−closed subsets of X with E ⊆ E ′ and F ′ ⊆ F ,
then U(E, F ) ⊆ U(E ′, F ′).
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The following Lemma is important for the rest of this paper.

Lemma 3.2. Let (X, µ) be a generalized topological space. If (X, µ) is a
µωM− normal space, then there exists µω−open sets U ′(E, F ) and U ′(F,E)
such that U ′(E, F ) ∩ U ′(F,E) = φ for each pair of disjoint µω− closed sets
E, F .

Proof. Let E, F be disjoint µω− closed sets. Let

U ′(E, F ) = U(E, F )− U(F,E)
µω

,

and
U ′(F,E) = U(F,E)− U(E, F )

µω

,

where U(E, F ) and U(F,E) are µω−open sets with

E ⊆ U(E, F ) ⊆ U(E, F )
µω

⊆ X − F,

and
F ⊆ U(F,E) ⊆ U(F,E)

µω

⊆ X − E.

Clearly, U ′(E, F ) ∩ U ′(F,E) = φ.

Definition 3.3. The ordered pair (S, T ) of subsets of (X, µ) is called µω−
separated if S

µω
∩ T = S ∩ T

µω
= φ.

Lemma 3.4. Let (X, µ) be a generalized topological space. Then (X, µ) is
µωT1− space if and only if, for each x ∈ X, {x} is µω− closed.

Theorem 3.5. Let (X, µ) be a generalized topological µωT1− space. For a
µωM− normal space (X, µ), the following are equivalent:

(i) For each ordered pair (S, T ) of µω− separated sets, there exists a µω−open
set U(S, T ) such that

(1) S ⊆ U(S, T ) ⊆ U(S, T )
µω

⊆ X − T,

(2) If (S ′, T ′) is a pair of µω− separated subsets of X with S ⊆ S ′ and
T ′ ⊆ T , then U(S, T ) ⊆ U(S ′, T ′) where U(S ′, T ′) is µω−open set

with S ′ ⊆ U(S ′, T ′) ⊆ U(S ′, T ′)
µω

⊆ X − T ′.

(ii) For each µ− closed set C and p ∈ X − C, there exists a µω− open set
U ′(p, C) such that

(a) p ∈ U ′(p, C) ⊆ X − C,
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(b) If D is a µ− closed subset with D ⊆ C and p /∈ C, then U ′(p, C) ⊆
U ′(p,D), where U ′(p,D) is a µω−open subset of X with p ∈ U ′(p,D) ⊆
X −D,

(c) If p 6= q ∈ X, then U(p, q) ∩U(q, p) = φ, where U(p, q) and U(q, p)
are µω−open sets with p ∈ U(p, q) ⊆ X − {q} and q ∈ U(q, p) ⊆
X − {p}.

Proof. (i) ⇒ (ii) Let C be a µ− closed set and let p ∈ X − C. Then {p} is
a µω− closed set. Hence the result follows from Lemma 3.2.

(ii) ⇒ (i) Let (S, T ) be a pair of µω− separated subsets. Let

U(S, T ) =
⋃

{U ′(p, T
µω
) : p ∈ S}.

Now, for each q ∈ T , the set U ′(q, S
µω
) is a µω− open set with

U ′(q, S
µω
)
⋂

(
⋃

U ′(p, T
µω
)) = φ,

then U(S, T )
µω

⊆ X − T and S ⊆ U(S, T ).
For (2), let (S ′, T ′) be a pair of µω− separated with S ⊆ S ′ and T ′ ⊆ T.
Then

U(S, T ) =
⋃

{

U ′(p, T
µω
) : p ∈ S

}

⊆
⋃

{

U ′(p, T
µω
) : p ∈ S ′

}

= U(S ′, T ′).

Definition 3.6. For a generalized topological spaces (X, µ1) and (Y, µ2), a
function f : (X, µ1) → (Y, µ2) is called µω−closed function if the image of
µω−closed subset of X is µω−closed subset of Y .

Theorem 3.7. Let f : (X, µ1) → (Y, µ2) be ω − (µ1, µ2)−irresolute and
µω−closed onto function. If X is a µωM− normal space, then so is Y .

Proof. Let E, F be two disjoint µω−closed subsets. Then there exists a
µω−open set U ′(f−1(E), f−1(F )) such that

f−1(E) ⊆ U ′(f−1(E), f−1(F )) ⊆ U ′(f−1(E), f−1(F ))
µω

⊆ X − f−1(F ).

Consider the set

U(E, F ) = Y − f(X − U ′(f−1(E), f−1(F )).

Then
E ⊆ U(E, F ) ⊆ U(E, F )

µω

⊆ X − F.

Consequently, Y is a µωM− normal space.



544 F. A. Abushaheen

Theorem 3.8. For a generalized topological µωT1−space (X, µ), the follow-
ing statements are equivalent

(i) (X, µ) is a µωM− normal space,

(ii) For each pair (A,U) of X , where A is µω−closed set and U is µω−open
set with A ⊆ U , there exists a µω− open set U(A) with A ⊆ Uω(A) such
that

(1) U ⊆ V (B) whenever A ⊆ B and U ⊆ V,

(2) U(A) ∩ U(X − U) = φ,

(iii) For each µω−open set U ⊆ X and x ∈ X, there exists a µω− open set
U(x) with U(x) ∩ V (y) 6= φ, then x ∈ V (y) or y ∈ U(x) where V (y) is
a µω−open set with y ∈ V (y),

(iv) For each pair (A,U) of X where A is µω−closed set and U is µω−open
set, then there exists a µω− open U(A) ⊆ U such that

(1) U(A) ⊆ V (B) whenever A ⊆ B and U ⊆ V,

(2) A ⊆ U(A) ⊆ U(A)
µω

⊆ U for A ⊆ U,

(v) For each pair (A,U) of X where A is µω−closed set and U is µω−open
set, there exists ω − (µ1, µ2)−irresolute function fU(A) : (X, µ1) → R

such that fU(A)(A) = 0 and fU(A)
(X − U) = 1 and fU(A) > fV (B) for

A ⊆ B and U ⊆ V .

Proof. (i) ⇒ (ii) Let (A,U) be a pair of µω−closed set A and µω−open
set U with A ⊆ U ⊆ X. By Lemma 3.2, there exists a µω− open set
U(A) = U(A,X − U). Clearly, U(A) satisfies (1) and (2) in (ii).

(ii) ⇒ (iii) Let U ⊆ X and let x ∈ U. Assume that U(x)∩V (y) 6= φ with
x /∈ V (y) and y /∈ U(x). Then U(x) ∩ U(X − x) = φ. However, in this case,
U(x)∩ V (y) = φ. This is a contradiction. As a result, x ∈ V (y) or y ∈ U(x).
(iii) ⇒ (iv) Let (A,U) be a pair of a µω−closed subset A and a µω−open
set U of X . Define

U(A) =
⋃

{

V (x) : x ∈ A, V ⊆ U
}

,
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then U(A) is a µω− open subset. For (2) , enough to show U(A)
µω

⊆ U . let

x /∈ A, therefore x /∈ U(A) and U(A) ∩ U(x) = φ, hence x /∈ U(A)
µω

. For
A ⊆ X , let

(X −A)(X−U) =
⋃

{

Wy : y ∈ X − U,W ⊆ X − A
}

,

assume U(A) ∩ (X − A)(X−U) 6= φ, then Vx ∩Wy 6= φ, so x ∈ W or y ∈ V ,
which is a contradiction.

(iv) ⇒ (v) Let A ⊆ U . Define

U0 = A and U1 = U,

and for ri ∈ (0, 1)∩Q, i = 2, 3, 4, · · · , (r0 = 0, r1 = 1).We need to construct
Uri such that (∗)

Uri

µω
⊆ Urj whenever ri < rj ∈ (0, 1) ∩Q (∗).

For Ur0 and Ur1 , Ur0

µω
⊆ Ur1 . We use induction on i. Assume the result

is true for i = 1, 2, ..., n− 1. Let α, β denote the nearest number to rn from
left and right taken from r0, r1, r2, · · · , rn. Clearly, Uα

µω
⊆ Uβ. Now let

Urn = U(A) = U(A,X − Urn).

Then

Uα
µω

⊆ Urn ⊆ Urn

µω
⊆ Uβ.

So (∗) is satisfied for r0, r1, · · · , rn. For r > 1, let Ur = X and for r < 0, Ur =
φ. That means Ur is defined for all r ∈ Q.

Now, consider the function f : (X, µ) → R as:

f(A,U)(x) = inf{r ∈ Q : x ∈ Ur(A)},

by the values of r. We have 0 ≤ f(A,U)(x) ≤ 1, f(A,U)(x) = 0 if x ∈ A and
f(A,U)(x) = 1 if x ∈ X −U. To show f is an ω− (µ1, µ2)−irresolute function,
we need to prove that

(a) For f(A,U)(x) > r, we have x /∈ Ur
µω
,

(b) For f(A,U)(x) < r, we have x ∈ Ur.
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To prove (a), let x ∈ Ur
µω
. Then x ∈ Ur1 for all r1 > r. So f(A,U)(x) ≤ r1

for all r1 > r. Hence, f(A,U)(x) ≤ r. For (b), since f(A,U)(x) < r, there
exists r1 with r1 < r such that x ∈ Ur1 but r1 < r. So x ∈ Ur. Now, let
x ∈ f−1

(A,U)(−∞, r1). Then f(A,U)(x) < r1. So there exists a rational number

r such that f(A,U)(x) ≤ r < r1, so x ∈ Ur, then x ∈ Ur ⊆ f−1
(A,U)(−∞, r1).

Hence, f−1
(A,U)(−∞, r1) is µω−open. For x ∈ f−1

(A,U)(r,∞). by our construction

of f, one can find a rational number t such that f(A,U)(x) > t > r. Then

x /∈ Ut
µω
. Now, let z ∈ X − Ut

µω
. Then z /∈ Ut with f(A,U)(z) ≥ t > r.

Therefore,

x ∈ X − Ut
µω

⊆ f−1
(A,U)(r,∞).

Consequently, f−1
(A,U)(r,∞) is a µω−open subset of X .

In addition, as in [31], f(A,U) ≥ f(B,V ) for A ⊆ B and U ⊆ V.

(v) ⇒ (i) Let E, F be two disjoint µω− closed subsets of X. By (v),
there exists an ω − (µ1, µ2)−irresolute function f(E,X−F ) : X → R such that
f(E,X−F )(E) = 0 and f(E,X−F )(F ) = 1. Now, let U(E, F ) = f−1

(E,X−F )(−∞, r)

for fixed 0 < r < 1. Then clearly U(E, F ) is µω−open and E ⊆ U(E, F ) ⊆

U(E, F )
µω

and

U(E, F )
µω

= f−1(−∞, r)
µω

⊆ f−1((−∞, r))
µω

= f−1(−∞, r] ⊆ X − F.

The second condition follows directly from the fact that fU(A) > fV (B).

Corollary 3.9. For a generalized topological µωT1−space (X, µ), the follow-
ing are equivalent

(i) (X, µ) is a µωM− normal space,

(ii) for each x ∈ X and for µω− open set U containing {x}
µω

, there exists
a µω− open set U(x, U) such that:

(1) {x}
µω

⊆ U(x, U) ⊆ U,

(2) (a) if V is µω−open and {x}
µω

⊆ U ⊆ V, then U(x, U) ⊆ U(x, V ),

(b) if x ∈ {y}
µω

⊆ U , then U(x, U) ⊆ U(y, U),



On Different Types of Monotonically µω− Spaces in GTSs 547

(3) if {x}
µω

∩{y}
µω

= φ, then U(x,X−{y}
µω

)∩U(y,X−{x}
µω

) = φ.

Definition 3.10. A generalized topological space (X, µ) is called collection-
wise µω−normal if, for each discrete collection H of µω−closed subsets of X,
there exists a disjoint collection U ′

ω = {Uω(H) : H ∈ H} of µω−open subsets
of X with H ⊆ Uω(H) for each H ∈ H.

Theorem 3.11. Let (X, µ) be a generalized topological µωT1−space. If (X, µ)
is a µωM− normal space, then (X, µ) is a collectionwise µω−normal space.

Proof. Let E, F be disjoint µω−closed subsets of X. Then , by Lemma
3.2, there exists µω−open sets U(E, F ) and U(F,E) such that U(E, F ) ∩
U(F,E) = φ. Let H be a discrete family of µω−closed subsets of (X, µ). For
each H ∈ H, define:

U ′(H) = U
(

H,
⋃

{H∗ ∈ H : H∗ 6= H}
)

.

Then U(H) in a µω−open set. Moreover, for H1 6= H2,

U ′(H1) ⊆ U(H1, H2) ⊆ X −H2,

U ′(H2) ⊆ U(H2, H1) ⊆ X −H1,

and

U ′(H1) ∩ U ′(H2) ⊆ U(H1, H2) ∩ U(H2, H1) = φ,

and hence U ′ = {U ′(H1) : H1 ∈ H} is the required collection. Consequently,
(X, µ) is a collectionwise µω−normal space.

4 µω−stratifiable and µω−semistratifiable in

Generalized Topological Spaces

Definition 4.1. A generalized topological µωT1− space (X, µ) is called µω−semistratifiable
if there exists µω−open sets

{

S(H, n)
}

∞

n=1
where H is a µω−closed set and

n ∈ N such that

(a) If H ⊆ K are µω−closed subsets of X, then S(H, n) ⊆ S(K, n) for all
n ∈ N,
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(b) H =
⋂
{

S(H, n) : n ∈ N
}

for each µω−closed set H ⊆ X,

in addition, if
{

S(H, n)
}

∞

n=1
satisfies:

(c) H =
⋂
{

S(H, n)
µω

: n ∈ N
}

, then X is called µω−stratifiable space.

Theorem 4.2. A generalized topological µωT1− space (X, µ) is µω−stratifiable
if and only if it is µωM− normal space and µω−semi-stratifiable space.

Proof. (⇐) Let K ⊆ X. Since (X, µ) is a µω−semi-stratifiable space, there
exists µω− open subsets

{

T (K, n)
}

∞

n=1
of (X, µ) satisfying Definition 4.1.

In addition, since (X, µ) is a µωM− normal space, there exists µω− open
subsets

{

U(K,X − T (K, n))
}

∞

n=1
of (X, µ) satisfying Definition 3.1. Now,

the set
S(K, n) = U(K,X − T (K, n))

is the required µω− open subset.
(⇒) Let E, F be disjoint µω−closed subsets of (X, µ.) Since (X, µ) is

a µω−stratifiable space, there exists a sequence
{

S(E, n)
}

∞

n=1
of µω−open

subsets of (X, µ). Let

U(E, F ) =

∞
⋃

n=1

(

S(E, n)− S(F, n)
µω)

.

Then U(E, F ) is an µω−open set and E ⊆ U(E, F ) since E ∩ F = φ. Let

x /∈ X − F. Then x ∈ S(F, n)
µω

for all n ∈ N and so

S(F, n) ∩ (X − E) 6= φ

and
(

S(F, n) ∩ (X − E)
)

⋂

U(E, F ) = φ.

Therefore, x /∈ U(E, F )
µω

, for a pair (E ′, F ′) of µω−closed subsets of (X, µ)
with E ⊆ E ′ and F ′ ⊆ F. We have U(E, F ) ⊆ U(E ′, F ′). Consequently,
(X, µ) is a µωM− normal space.

Before focusing on a product Theorem considering µωM− normal, we
need the following definition.

Definition 4.3. Let (X, µ) be a generalized topological space and let A ⊆ X.
Then a point x ∈ X is called µω− limit point of A if every µω−open set
containing x contains at least one point of A different from x.
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Lemma 4.4. Let (X, µ) be a generalized topological space and let A ⊆ X.
Then A is µω− closed if and only if A contains all µω− limit point of A.

Theorem 4.5. Let (X, µ) be a generalized topological space. If X × Y is a
µωM− normal space, then either no subset of X has a µω−limit point or Y
is µω−stratifiable space.

Proof. Suppose A = {Aα : α ∈ ∆, |∆| < ω0} is a subset of a generalized
topological space (X, µ) having a µω−limit point a. Assume a /∈ A. Let
A∗ = A ∪ {a}. Since X × Y is a µωM− normal, A∗ × Y is also a µωM−
normal. Let F ⊆ Y be a µω− closed set. Consider the sets

H(F ) = {(x, y) ∈ A∗ × Y : y ∈ F and x /∈ A},

M(F ) = {(x, y) ∈ A∗ × Y : y ∈ A∗}.

Clearly, H(F ) and M(F ) are µω− separated subsets of A∗×Y and hence, by
Lemma 3.2, there exists a µω− open set U(H(F ),M(F )). Finally, for n ∈ N,
let S(F, n) = {y ∈ Y : (Aα, y) ∈ U(H(F ),M(F ))}. Then

{

S(F, n)
}

∞

n=1
is a

µω−open set satisfying the conditions of µω−stratifiable space.
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