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Abstract

In this paper, we introduce monotonically w — To—space , mono-
tonically w—normal space in generalized topological spaces. Moreover,
we define w—stratifiable and w— semistratifiable in generalized topo-
logical spaces. Furthermore, we give some characterizations of these
notions and related results.

1 Introduction

Buck [13] defined monotonically Ty-space and gave relations between mono-
tonically Th—space and my—spaces for k = 1,2, 3. Later, Al-Bsoul [2] charac-
terized this definition and Abushaheen [1] investigated monotonically 75 —space
in bi-topological spaces.

Heath [24] introduced a monotonically normal space as a generalization
of stratifiable space that defined Borges [5]. Afterwards, various papers were
written on monotonically normal spaces [19, 20, 21, 25, 26, 31, 32].

Csészér [14] defined a generalized topological space (X, u) as a collection

of nonempty subsets of X with ¢ € p and U U € p. Elements of p are
Uep
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called — open. A set A C X is called pu— closed if X — A is uy—open. A
space (X, u) is called a strong generalized topological space if X € u. Fur-
ther studies were done on generalized topological space ( for example see
[11,15,16,17,27,29,30]).

For a space (X, 7), a point € X is called a condensation point of a set
A C X(Cond(A)) if there exists an open set U, containing = such that U,NA
is uncountable set.

Hdeib [22] gave a weak form of a closed set called w— closed subset: a
subset of X is called w— closed if it contains all its condensation points. The
complement of w— closed is called w— open. Note that a set A is an w—
open set if and only if for every x € A there exists an open set U, containing
x with U, — A being a countable set. Clearly, the family of w— open sets
forms a topology, denoted by (X, 7,), which is finer than (X, 7); i.e., every
open set is w—open set. Many articles have been published on (X, 7,) (for
example, see [3,7,8,9,10,23,28]).

In 2016, Al Ghour [4] extended w—open into a generalized topological
space and gave many generalizations of the known topological spaces (for
example. Lindelof, compact, countably compact spaces and continuous func-
tions).

Definition 1.1. [4] Let (X, u) be a generalized topological space and let B
be a subset of X.

(a) A point x € X is a condensation point of B if for all A € pu such that
x € A, AN B is uncountable. (The set of all condensation points of B
is denoted by Cond(B)).

(b) B is p,—closed if Cond(B) C B.
(¢c) B is p,—open if X — B is p,—closed.
(d) The family of all u,—open sets of (X, u) will be denoted by .

In [5,6], the authors studied this notion further. We will use the following
definitions and Theorem in our paper.

Definition 1.2. [5] A generalized topological space (X, u) is called p,T)—
space if, for all v # y € X, there exists U,V € u,, such that x € U —V and
yeV -U.
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Definition 1.3. [5] A generalized topological space (X, u) is called pi,To—
space if, for all x # y € X, there exists U,V € p,, such that x € U and
yeVandUNV = ¢.

Definition 1.4. [5] Let (X, ) be a generalized topological space and let A
be a subset of X. Then we define p,—closure of A ; denoted by A™ as

Z““:ﬂ{B:B is i, — closedin X and AC B}.

Definition 1.5. [5] Let (X, 1) a generalized topological space and let A be a
subset of X. Define p,— interior of A, denoted by Int, (A), as

A):U{B:B is pn,—openin X and BC A}.

Theorem 1.6. [5] Let f: (X, u1) = (Y, u2) be a function. Then the follow-
ing are equivalent

(a) [ isw — (u1, p2)—irresolute;

(b) For each pa,— closed subset C of Y, f~YC) is a py,— closed subset of
X;

(c) For each subset A of X, f(A)(mw C f(A )(MW :

(d) For each subset B of Y, f‘l(B)(mw C fYB )(WW)

In section 2, we will introduce monotonically w — T, —space in a general-
ized topological space and give some related results. In section 3, we define
monotonically w—normal space in a generalized topological space and inves-
tigate some equivalent statements. In section 4, we introduce w—stratifiable
and w—semistratifiable in generalized topological spaces and study the re-
lations between these definitions and monotonically w—normal space in a
generalized topological space. Finally, a product theorem is given. We will
adopt the terms and notations in [18].

2 Monotonically w — T)—space in a General-
ized Topological Spaces

Definition 2.1. A generalized topological space (X, ) is called monotoni-
cally w — To— space (u,MTo— space) if there is a function U : X x X — p,
assigning to an ordered pair (x,y) of distinct points in X an p,— open
U(z,y) C X of z such that
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(a) Uz,y) NU(y,z) = ¢;

(b) For each M C X, if v € J{U(y, )|y € M}“w, then © € M"™ . In addi-
tion, if

(¢) For z € U(z,y), then U(z,y) C U(x,y),

then (X, u) is strongly monotonically w — To— space ( strongly-pu,MTo—
space).

Clearly, strongly—pu,M — To— space implies pu,MTo— space and hence
o To— space.

The following two theorems are about subspaces of u,MT,—space. The
proof of the first one is obvious. The proof of the second appears as Theorem
2.13 in [1].

Theorem 2.2. Let (X, p) be pu,MTr— space and let A C X. Then A is
o MT5— space.

Theorem 2.3. If every proper subspace of (X, u) is a p,MTy— space, then
(X, 1) is p,MTo— space.

Definition 2.4. A generalized topological space (X, ) is called p,T3— space
if, for each point x € X and each p,—closed set A such that x & A, there
are disjoint p,—open sets U,V with x € U and A C V.

Theorem 2.5. Let (X, ) be a generalized topological space. If (X, ) is a
po,MTo— space, then (X, pn) is p,T3— space.

Proof. Let A be p,—closed and 2 ¢ A = A" and let y € A. Since (X, ) is
1o M'Ty— space, there is a function U : X x X — pu,, such that:

v¢J{U@olye A}
then
AC U {U(y,z)|ly € A},

and

r € U(x,y) with U(m,y)ﬂU{U(y,xﬂy €A} =¢.
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In general, the converse is not true. However, by adding the following
condition, we get an equivalent statement.

Definition 2.6. A generalized topological space (X, p) is said to have C*
property if, for all x € X, there exists a countable nested p,,—open local base.

Theorem 2.7. For a generalized topological space (X, ) with the C* prop-
erty, (X, p) is p,T3— space if and only if (X, p) is p,MTr— space.

Proof. (<) From Theorem 2.5.

(=) Let x # y € X. Since X has the C* property, there exists a count-
able nested p,—open local base for each z and y, say {Vn(x)}:il of z and
{V}L(y)}zoz1 of y. Let j(x) be the minimum index such that x ¢ Vj, W)™
and let i(x,y) be the smallest number such that Vi, (z) N Vi) (y) = ¢.

Define

U([L’, y) = ‘/;(m,y)(x)
We have
Ulz,y) NU(y, z) = ¢.

Now, let M c M"™ c X — {z} and let i be the minimum element such that

Vi(x) " M = ¢ for y € M. Then

Consequently,

reVi(r) c X —-U{U(y,x):y e M}.

U

3 Monotonically w—normal in a Generalized
Topological Spaces

Definition 3.1. A u,T)— space is called monotonically w— normal in a gen-
eralized topological space (X, i) (oM — normal) if for each disjoint u,,— closed
sets E, F, there exists a p,— open set U(E, F) such that

(o) ECU(E,F)CUE F)* CX-F,

(b) If E', F" are disjoint p,—closed subsets of X with E C E" and F' C F,
then U(E, F) C U(E', F').
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The following Lemma is important for the rest of this paper.

Lemma 3.2. Let (X, pu) be a generalized topological space. If (X, pn) is a
to M — normal space, then there exists p,—open sets U'(E, F) and U'(F, F)
such that U'(E, F)NU'(F,E) = ¢ for each pair of disjoint p,— closed sets
E,F.

Proof. Let E| F be disjoint u,— closed sets. Let
U'(E,F)=U(E,F)—U(F, E)",

and
U'(F,E)=U(F,E) —U(E, F)",

where U(E, F') and U(F, E) are pi,—open sets with
ECUEF)CUEF)" CX-F,

and
FCU(F,E)CU(F,E)” C X —E.
Clearly, U'(E, F)NU'(F, E) = ¢. O

Definition 3.3. The ordered pair (S,T) of subsets of (X,p) is called p,—
separated if S NT =SNT™ = ¢.

Lemma 3.4. Let (X, u) be a generalized topological space. Then (X, ) is
w11 — space if and only if, for each x € X, {x} is p,— closed.

Theorem 3.5. Let (X, u) be a generalized topological p,T\— space. For a
to M — normal space (X, ), the following are equivalent:

(i) For each ordered pair (S,T') of p,— separated sets, there exists a i, —open
set U(S,T) such that
(1) SCUS,T)CUS,T) CX T,

(2) If (S",T") is a pair of u,— separated subsets of X with S C S’ and
T CT, then U(S, T) CU((S,T") where U(S',T") is j,—open set
with &' CU(S, T CU(S, T C X —T'.

(ii) For each u— closed set C' and p € X — C, there exists a p,— open set
U'(p,C) such that

(a) pelU'(p,C) S X - C,
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(b) If D is a p— closed subset with D C C' and p ¢ C, then U'(p,C) C
U'(p, D), where U'(p, D) is a p,—open subset of X withp € U'(p, D) C
X - D,

(c) If p # q € X, then U(p,q) NU(q,p) = ¢, where U(p, q) and U(q, p)
are p,—open sets with p € U(p,q) € X — {q} and q € U(q,p) C

X —{p}

Proof. (i) = (ii) Let C be a u— closed set and let p € X — C. Then {p} is
a (i, — closed set. Hence the result follows from Lemma 3.2.
(17) = (i) Let (S,T) be a pair of u,— separated subsets. Let

Us,1) = J{U'(p.T") :p € 5}.
Now, for each ¢ € T, the set U’(¢q, S") is a j,— open set with
U, ") \UJU 0. T)) = o,

then U(S,T)"“ € X —T and S C U(S,T).
For (2), let (S',7") be a pair of u,— separated with S C S" and 7" C T.
Then

us,T)=J{ue ) :pe st | J{U'@T) :pe s} =U(s,T).
]

Definition 3.6. For a generalized topological spaces (X, p1) and (Y, u2), a
function f: (X, u1) — (Y, u2) is called p,—closed function if the image of
to—closed subset of X is p,,—closed subset of Y.

Theorem 3.7. Let f : (X, 1) — (Y, p2) be w — (u1, p2)—irresolute and
t,—closed onto function. If X is a pu,M— normal space, then so is 'Y .

Proof. Let E,F be two disjoint u,—closed subsets. Then there exists a
po—open set U'(f~1(E), f~Y(F)) such that

fHE) CU(fFHE), fHEF) CT(fHE), ) X = fH(F),
Consider the set
UE,F)=Y = f(X =U'(f7Y(E), 7'(F)).

Then
ECUE,F)CU(E,F)*CX-F

Consequently, Y is a p,M— normal space.
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Theorem 3.8. For a generalized topological j1, Ty —space (X, i), the follow-
ing statements are equivalent

(i)
(i)

(iii)

(iv)

(X, p) is a puM— normal space,

For each pair (A,U) of X , where A is j,—closed set and U is ji,,—open
set with A C U, there exists a p,— open set U(A) with A C U, (A) such
that

(1) U C V(B) whenever AC B and U C'V,
(2) UA)NUX =U) =9,
For each p,—open set U C X and x € X, there exists a p,— open set

U(x) with U(z) NV (y) # ¢, then x € V(y) ory € U(x) where V(y) is
a p,—open set with y € V(y),

For each pair (A,U) of X where A is u,—closed set and U is i, —open
set, then there exists a p,— open U(A) C U such that

(1) U(A) C V(B) whenever AC B and U C 'V,

(2) ACU(A) CUAY CU for ACU,

For each pair (A,U) of X where A is u,—closed set and U is i, —open
set, there exists w — (1, po)—irresolute function fyay @ (X, 1) = R
such that fuyay(A) = 0 and fU(A)(X —U) =1 and fuay > fvp) for
ACBandU CV.

Proof. (i) = (ii) Let (A,U) be a pair of pu,—closed set A and p,—open
set U with A C U C X. By Lemma 3.2, there exists a pu,— open set
U(A) =U(A, X —U). Clearly, U(A) satisfies (1) and (2) in (i7).

(17) = (iii) Let U C X and let z € U. Assume that U(z) NV (y) # ¢ with
x & V(y)and y ¢ U(x). Then U(x) NU(X — z) = ¢. However, in this case,
U(z)NV(y) = ¢. This is a contradiction. As a result, z € V(y) or y € U(x).
(17) = (iv) Let (A,U) be a pair of a u,—closed subset A and a p,—open
set U of X . Define

Ud) = J{V):ze AV U},
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then U(A) is a p,— open subset. For (2) , enough to show U(A)"™ C U. let
x & A, therefore z ¢ U(A) and U(A) NU(z) = ¢, hence z ¢ U(A)"”. For
ACX, let

(X - A= J{W,:yex-UWCX- A},

assume U(A) N (X — A)x—v) # ¢, then V, N W, # p,sox € Wory eV,
which is a contradiction.

(iv) = (v) Let A C U. Define
UQZA and U1:U,

and forr; € (0,1)NQ, i=2,3,4,---,(ro = 0,7 = 1). We need to construct
U,, such that (%)

U, C Uy, whenever r; <r;€(0,1)NQ ().

For U,, and U,,, U,," C U,,. We use induction on 4. Assume the result
is true for ¢ = 1,2,...,n — 1. Let «, 8 denote the nearest number to r, from
left and right taken from rq, 1,79, - , . Clearly, U, C Us. Now let

U, =U(A) =UA,X - U,,).

Then
U, CU,, CU," CUs.

So (x) is satisfied for ro,ry, -+ ,r,. For r > 1, let U, = X and for r < 0,U, =
¢. That means U, is defined for all r € Q.
Now, consider the function f: (X, u) — R as:

faan(z) =inf{re Q:z € U,(A)},

by the values of r. We have 0 < fap)(z) < 1, flam(z) =0if 2 € A and
faan(x) =1ifx € X —U. To show f is an w — (p1, po) —irresolute function,
we need to prove that

(a) For fapy(x) > r, we have = ¢ U,",

(b) For fau)(x) <r, we have z € U,.
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To prove (a), let z € U,". Then x € U, for all 7, > 7. So fap(z) < n
for all r; > r. Hence, fauy(xz) < r. For (b), since fiap)(x) < r, there
exists r1 with 7y < r such that € U,, but ry < r. So x € U,. Now, let
T € f(_Al’U)(—oo,rl). Then fiauy(x) < 1. So there exists a rational number
r such that fap)(z) < r <ry,soz € U, thenz € U, C f@l’U)(—oo,rl).
Hence, f(;‘l’U)(—oo, r1) is pw—open. For z € f(;&U) (r,00). by our construction
of f, one can find a rational number ¢ such that f4y)(z) > ¢t > r. Then
¢ U Now, let z € X —U”. Then z ¢ U, with fam(z) >t > .
Therefore,
reX -U"™ C f(;‘l’U)(r, 00).

Consequently, f(;‘lU) (r,00) is a u,—open subset of X.

In addition, as in [31], fauy > fBy) for AC Band U C V.

(v) = (i) Let E,F be two disjoint pu,— closed subsets of X. By (v),
there exists an w — (p1, p2) —irresolute function f(gp x—r) : X — R such that
fiex-r(E)=0and fgx_p(F) =1 Now,let UE, F) = f(jgl’X_F)(—oo,r)
for fixed 0 < r < 1. Then clearly U(E, F) is p,—open and £ C U(E, F) C
U(E,F)" and

U(Ev F)uw = f_l(_oo’,r)”‘*’ - f—l((_oo’,r))u“’ = f_l(—OO, T] - X - F.
The second condition follows directly from the fact that fya) > fys. O

Corollary 3.9. For a generalized topological p,Ti—space (X, u), the follow-
ing are equivalent

(i) (X, p) is a p,M— normal space,

(ii) for each x € X and for p,— open set U containing muw’ there exists
a p,— open set U(z,U) such that:

(1) {=z}* CU@,U) CU,
(2) (a) if Vis pu—open and {z} * C U CV, then U(z,U) C U(z,V),

) ifve{yt " CU, then U(z,U) C U(y,U),
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(3) if {e}n{y} " = ¢, then Uz, X —{y} “)NU(y, X — {2} ) = ¢.

Definition 3.10. A generalized topological space (X, p) is called collection-
wise p,—mnormal if, for each discrete collection H of u,—closed subsets of X,
there exists a disjoint collection U, = {U,(H) : H € H} of u,—open subsets
of X with H CU,(H) for each H € H.

Theorem 3.11. Let (X, u) be a generalized topological i, Ty —space. If (X, )
is a poM— normal space, then (X, u) is a collectionwise y,—normal space.

Proof. Let E,F be disjoint u,—closed subsets of X. Then , by Lemma
3.2, there exists p,—open sets U(E, F) and U(F, F) such that U(E, F) N
U(F,E) = ¢. Let H be a discrete family of y,,—closed subsets of (X, u). For
each H € H, define:

U'(H)=U(H,| {H" € H:H" +# H}).
Then U(H) in a p,—open set. Moreover, for Hy # Ho,
U'(Hy) CU(Hy, Hy) € X — Ho,

U'(Hy) CU(Hy, Hy) € X — Hjy,

and
U/(Hl) N U,(H2) g U(H17 H2) N U(H27H1) = ¢a

and hence U’ = {U'(H,) : H, € H} is the required collection. Consequently,
(X, 1) is a collectionwise 1, —normal space.
U

4 u,—stratifiable and u,—semistratifiable in
Generalized Topological Spaces

Definition 4.1. A generalized topological j1., 71— space (X, p) is called p,—semistratifiable
if there exists pu,,—open sets {S(H, n)}:c;l where H is a u,—closed set and
n € N such that

(a) If H C K are p,—closed subsets of X, then S(H,n) C S(K,n) for all
n €N,
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(b) H=N{S(H,n):neN} for each p,—closed set H C X,
in addition, if {S(H, n)}zozl satisfies:

(¢) H=N{S(H, n)“w :n € N}, then X is called p,,—stratifiable space.

Theorem 4.2. A generalized topological i, Ty — space (X, ) is p,— stratifiable
if and only if it is p,M— normal space and p,—semi-stratifiable space.

Proof. (<) Let K C X. Since (X, u) is a p,—semi-stratifiable space, there
exists p,— open subsets {T(K, n)}zozl of (X, p) satisfying Definition 4.1.
In addition, since (X, pu) is a p,M— normal space, there exists p,— open
subsets {U(K,X — T(K, n))} of (X, ) satisfying Definition 3.1. Now,
the set

S(K,n) = UK, X — T(K,n))

is the required p,— open subset.

(=) Let E,F be disjoint pu,—closed subsets of (X, p.) Since (X, p) is
a ,—stratifiable space, there exists a sequence {S N }ZO , of p,—open
subsets of (X, u). Let

Then U(E, F) is an p,—open set and £ C U(E, F) since EN F = ¢. Let
2 ¢ X —F. Then z € S(F,n)" for all n € N and so

S(En)N(X - E)# ¢

and
(S(F,n)n (X = E))(U(E, F) = ¢.

Therefore, z ¢ U(E, F)'“, for a pair (E', F') of p,—closed subsets of (X, 1)
with £ C E' and ' C F. We have U(E,F) C U(E', F'). Consequently,
(X, p) is a p,M— normal space.

U

Before focusing on a product Theorem considering p,M— normal, we
need the following definition.

Definition 4.3. Let (X, i) be a generalized topological space and let A C X.
Then a point v € X is called p,— limit point of A if every p,—open set
containing x contains at least one point of A different from x.
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Lemma 4.4. Let (X, u) be a generalized topological space and let A C X.
Then A is p,— closed if and only if A contains all p,— limit point of A.

Theorem 4.5. Let (X, u) be a generalized topological space. If X XY is a
oM — mnormal space, then either no subset of X has a p,—limit point or' Y
is i, —stratifiable space.

Proof. Suppose A = {A, : a € A,|A] < wp} is a subset of a generalized
topological space (X, u) having a pu,—limit point a. Assume a ¢ A. Let
A* = AU {a}. Since X x Y is a p,M— normal, A* x Y is also a p,M—
normal. Let FF CY be a u,— closed set. Consider the sets

H(F)={(x,y) e A*xY:ye F and z¢ A},

M(F)={(z,y) € A" xY :ye A"}

Clearly, H(F') and M(F') are pu,— separated subsets of A* x Y and hence, by
Lemma 3.2, there exists a p,— open set U(H (F'), M(F)). Finally, for n € N,
let S(F,n) ={y €Y : (Aa,y) € UH(F),M(F))}. Then {S(F, n)}::):1 is a
[,—open set satisfying the conditions of u,—stratifiable space. O
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