International Journal of Mathematics and Computer Science, **16**(2021), no. 2, 537–551

$$\binom{M}{CS}$$

On Different Types of Monotonically μ_{ω} -Spaces in Generalized Topological Spaces

Fuad A. Abushaheen

Department of Basic Science Faculty of Arts and Sciences Middle East University Amman, Jordan

email: Fshaheen@meu.edu.jo

(Received September 22, 2020, Accepted October 25, 2020)

Abstract

In this paper, we introduce monotonically $\omega - T_2$ -space, monotonically ω -normal space in generalized topological spaces. Moreover, we define ω -stratifiable and ω - semistratifiable in generalized topological spaces. Furthermore, we give some characterizations of these notions and related results.

1 Introduction

Buck [13] defined monotonically T_2 -space and gave relations between monotonically T_2 -space and m_k -spaces for k = 1, 2, 3. Later, Al-Bsoul [2] characterized this definition and Abushaheen [1] investigated monotonically T_2 -space in bi-topological spaces.

Heath [24] introduced a monotonically normal space as a generalization of stratifiable space that defined Borges [5]. Afterwards, various papers were written on monotonically normal spaces [19, 20, 21, 25, 26, 31, 32].

Császár [14] defined a generalized topological space (X, μ) as a collection of nonempty subsets of X with $\phi \in \mu$ and $\bigcup_{U \in \mu} U \in \mu$. Elements of μ are

Key words and phrases: Monotonically $\omega - T_2$ -in generalized topological space, monotonically ω -normal space in generalized topological space, μ_{ω} -stratifiable in generalized topological space, μ_{ω} -semistratifiable in generalized topological space .

AMS (MOS) Subject Classifications: 54A05, 54C08, 54D15. ISSN 1814-0432, 2021, http://ijmcs.future-in-tech.net called μ - open. A set $A \subseteq X$ is called μ - closed if X - A is μ -open. A space (X, μ) is called a strong generalized topological space if $X \in \mu$. Further studies were done on generalized topological space (for example see [11,15,16,17,27,29,30]).

For a space (X, τ) , a point $x \in X$ is called a condensation point of a set $A \subseteq X(Cond(A))$ if there exists an open set U_x containing x such that $U_x \cap A$ is uncountable set.

Hdeib [22] gave a weak form of a closed set called ω - closed subset: a subset of X is called ω - closed if it contains all its condensation points. The complement of ω - closed is called ω - open. Note that a set A is an ω open set if and only if for every $x \in A$ there exists an open set U_x containing x with $U_x - A$ being a countable set. Clearly, the family of ω - open sets forms a topology, denoted by (X, τ_{ω}) , which is finer than (X, τ) ; i.e., every open set is ω -open set. Many articles have been published on (X, τ_{ω}) (for example, see [3,7,8,9,10,23,28]).

In 2016, Al Ghour [4] extended ω -open into a generalized topological space and gave many generalizations of the known topological spaces (for example. Lindelöf, compact, countably compact spaces and continuous functions).

Definition 1.1. [4] Let (X, μ) be a generalized topological space and let B be a subset of X.

- (a) A point $x \in X$ is a condensation point of B if for all $A \in \mu$ such that $x \in A, A \cap B$ is uncountable. (The set of all condensation points of B is denoted by Cond(B)).
- (b) B is μ_{ω} -closed if $Cond(B) \subseteq B$.
- (c) B is μ_{ω} -open if X B is μ_{ω} -closed.
- (d) The family of all u_{ω} -open sets of (X, μ) will be denoted by μ_{ω} .

In [5,6], the authors studied this notion further. We will use the following definitions and Theorem in our paper.

Definition 1.2. [5] A generalized topological space (X, μ) is called $\mu_{\omega}T_1$ space if, for all $x \neq y \in X$, there exists $U, V \in \mu_{\omega}$ such that $x \in U - V$ and $y \in V - U$.

On Different Types of Monotonically μ_{ω} – Spaces in GTSs

Definition 1.3. [5] A generalized topological space (X, μ) is called $\mu_{\omega}T_2$ -space if, for all $x \neq y \in X$, there exists $U, V \in \mu_{\omega}$ such that $x \in U$ and $y \in V$ and $U \cap V = \phi$.

Definition 1.4. [5] Let (X, μ) be a generalized topological space and let A be a subset of X. Then we define μ_{ω} -closure of A; denoted by $\overline{A}^{\mu_{\omega}}$ as :

 $\overline{A}^{\mu_{\omega}} = \bigcap \{ B : B \quad is \quad \mu_{\omega} - closed \ in \quad X \quad and \quad A \subseteq B \}.$

Definition 1.5. [5] Let (X, μ) a generalized topological space and let A be a subset of X. Define μ_{ω} – interior of A, denoted by $Int_{\mu_{\omega}}(A)$, as

$$Int_{\mu_{\omega}}(A) = \bigcup \{ B : B \text{ is } \mu_{\omega} - open \text{ in } X \text{ and } B \subseteq A \}.$$

Theorem 1.6. [5] Let $f: (X, \mu_1) \to (Y, \mu_2)$ be a function. Then the following are equivalent

- (a) f is $\omega (\mu_1, \mu_2)$ -irresolute;
- (b) For each $\mu_{2\omega}$ closed subset C of Y, $f^{-1}(C)$ is a $\mu_{1\omega}$ closed subset of X;
- (c) For each subset A of X, $f(\overline{A})^{(\mu_{1\omega})} \subseteq \overline{f(A)}^{(\mu_{2\omega})}$;
- (d) For each subset B of Y, $\overline{f^{-1}(B)}^{(\mu_{2\omega})} \subseteq f^{-1}\overline{(B)}^{(\mu_{2\omega})}$.

In section 2, we will introduce monotonically $\omega - T_2$ -space in a generalized topological space and give some related results. In section 3, we define monotonically ω -normal space in a generalized topological space and investigate some equivalent statements. In section 4, we introduce ω -stratifiable and ω -semistratifiable in generalized topological spaces and study the relations between these definitions and monotonically ω -normal space in a generalized topological space. Finally, a product theorem is given. We will adopt the terms and notations in [18].

2 Monotonically $\omega - T_2$ -space in a Generalized Topological Spaces

Definition 2.1. A generalized topological space (X, μ) is called monotonically $\omega - T_2$ - space $(\mu_{\omega}MT_2 - space)$ if there is a function $U: X \times X \to \mu_{\omega}$ assigning to an ordered pair (x, y) of distinct points in X an μ_{ω} - open $U(x, y) \subset X$ of x such that

- (a) $U(x,y) \cap U(y,x) = \phi;$
- (b) For each $M \subseteq X$, if $x \in \overline{\bigcup \{U(y,x) | y \in M\}}^{\mu_{\omega}}$, then $x \in \overline{M}^{\mu_{\omega}}$. In addition, if
- (c) For $z \in U(x, y)$, then $U(z, y) \subseteq U(x, y)$,

then (X, μ) is strongly monotonically $\omega - T_2 - space$ (strongly- $\mu_{\omega}MT_2 - space$).

Clearly, strongly $-\mu_{\omega}M - T_2 -$ space implies $\mu_{\omega}MT_2 -$ space and hence $\mu_{\omega}T_2 -$ space.

The following two theorems are about subspaces of $\mu_{\omega}MT_2$ -space. The proof of the first one is obvious. The proof of the second appears as Theorem 2.13 in [1].

Theorem 2.2. Let (X, μ) be $\mu_{\omega}MT_2$ - space and let $A \subseteq X$. Then A is $\mu_{\omega}MT_2$ - space.

Theorem 2.3. If every proper subspace of (X, μ) is a $\mu_{\omega}MT_2$ - space, then (X, μ) is $\mu_{\omega}MT_2$ - space.

Definition 2.4. A generalized topological space (X, μ) is called $\mu_{\omega}T_3$ - space if, for each point $x \in X$ and each μ_{ω} -closed set A such that $x \notin A$, there are disjoint μ_{ω} -open sets U, V with $x \in U$ and $A \subset V$.

Theorem 2.5. Let (X, μ) be a generalized topological space. If (X, μ) is a $\mu_{\omega}MT_2$ - space, then (X, μ) is $\mu_{\omega}T_3$ - space.

Proof. Let A be μ_{ω} -closed and $x \notin A = \overline{A}^{\mu_{\omega}}$ and let $y \in A$. Since (X, μ) is $\mu_{\omega}MT_2$ - space, there is a function $U: X \times X \to \mu_{\omega}$ such that:

$$x \notin \overline{\bigcup \left\{ U(y,x) | y \in A \right\}}^{\mu_{\omega}},$$

then

$$A \subseteq \bigcup \big\{ U(y,x) | y \in A \big\},\$$

and

$$x \in U(x,y)$$
 with $U(x,y) \cap \bigcup \{U(y,x) | y \in A\} = \phi$

540

In general, the converse is not true. However, by adding the following condition, we get an equivalent statement.

Definition 2.6. A generalized topological space (X, μ) is said to have C^* property if, for all $x \in X$, there exists a countable nested μ_{ω} -open local base.

Theorem 2.7. For a generalized topological space (X, μ) with the C^* property, (X, μ) is $\mu_{\omega}T_3$ - space if and only if (X, μ) is $\mu_{\omega}MT_2$ - space.

Proof. (\Leftarrow) From Theorem 2.5.

(⇒) Let $x \neq y \in X$. Since X has the C^* property, there exists a countable nested μ_{ω} -open local base for each x and y, say $\{V_n(x)\}_{n=1}^{\infty}$ of x and $\{V_n(y)\}_{n=1}^{\infty}$ of y. Let j(x) be the minimum index such that $x \notin V_{j(x)}(y)^{\mu_{\omega}}$ and let i(x, y) be the smallest number such that $V_{i(x,y)}(x) \cap V_{j(x)}(y) = \phi$. Define

$$U(x,y) = V_{i(x,y)}(x).$$

We have

$$U(x,y) \cap U(y,x) = \phi.$$

Now, let $M \subset \overline{M}^{\mu_{\omega}} \subset X - \{x\}$ and let *i* be the minimum element such that $V_i(x) \cap M = \phi$ for $y \in M$. Then

$$V_i(x) \subset V_{j(y)}(x) \subset X - V_{i(y,x)}(y) = X - U(y,x).$$

Consequently,

$$x \in V_i(x) \subset X - \cup \{U(y, x) : y \in M\}$$

3 Monotonically ω -normal in a Generalized Topological Spaces

Definition 3.1. A $\mu_{\omega}T_1$ – space is called monotonically ω – normal in a generalized topological space (X, μ) ($\mu_{\omega}M$ – normal) if for each disjoint μ_{ω} – closed sets E, F, there exists a μ_{ω} – open set U(E, F) such that

- (a) $E \subseteq U(E, F) \subseteq \overline{U(E, F)}^{\mu_{\omega}} \subseteq X F$,
- (b) If E', F' are disjoint μ_{ω} -closed subsets of X with $E \subseteq E'$ and $F' \subseteq F$, then $U(E, F) \subseteq U(E', F')$.

The following Lemma is important for the rest of this paper.

Lemma 3.2. Let (X, μ) be a generalized topological space. If (X, μ) is a $\mu_{\omega}M$ - normal space, then there exists μ_{ω} -open sets U'(E, F) and U'(F, E) such that $U'(E, F) \cap U'(F, E) = \phi$ for each pair of disjoint μ_{ω} - closed sets E, F.

Proof. Let E, F be disjoint μ_{ω} - closed sets. Let

$$U'(E,F) = U(E,F) - \overline{U(F,E)}^{\mu_{\omega}},$$

and

$$U'(F,E) = U(F,E) - \overline{U(E,F)}^{\mu_{\omega}},$$

where U(E, F) and U(F, E) are μ_{ω} -open sets with

$$E \subseteq U(E,F) \subseteq \overline{U(E,F)}^{\mu_{\omega}} \subseteq X - F,$$

and

$$F \subseteq U(F, E) \subseteq U(F, E)^{\mu\omega} \subseteq X - E$$

Clearly, $U'(E, F) \cap U'(F, E) = \phi$.

Definition 3.3. The ordered pair (S,T) of subsets of (X,μ) is called μ_{ω} -separated if $\overline{S}^{\mu_{\omega}} \cap T = S \cap \overline{T}^{\mu_{\omega}} = \phi$.

Lemma 3.4. Let (X, μ) be a generalized topological space. Then (X, μ) is $\mu_{\omega}T_1$ - space if and only if, for each $x \in X$, $\{x\}$ is μ_{ω} - closed.

Theorem 3.5. Let (X, μ) be a generalized topological $\mu_{\omega}T_1$ - space. For a $\mu_{\omega}M$ - normal space (X, μ) , the following are equivalent:

- (i) For each ordered pair (S, T) of μ_{ω} separated sets, there exists a μ_{ω} open set U(S, T) such that
 - (1) $S \subseteq U(S,T) \subseteq \overline{U(S,T)}^{\mu_{\omega}} \subseteq X T$,
 - (2) If (S', T') is a pair of μ_{ω} separated subsets of X with $S \subseteq S'$ and $T' \subseteq T$, then $U(S,T) \subseteq U(S',T')$ where U(S',T') is μ_{ω} -open set with $S' \subseteq U(S',T') \subseteq \overline{U(S',T')}^{\mu_{\omega}} \subseteq X T'$.
- (ii) For each μ closed set C and $p \in X C$, there exists a μ_{ω} open set U'(p, C) such that

(a)
$$p \in U'(p, C) \subseteq X - C$$
,

- (b) If D is a μ closed subset with $D \subseteq C$ and $p \notin C$, then $U'(p,C) \subseteq U'(p,D)$, where U'(p,D) is a μ_{ω} -open subset of X with $p \in U'(p,D) \subseteq X D$,
- (c) If $p \neq q \in X$, then $U(p,q) \cap U(q,p) = \phi$, where U(p,q) and U(q,p)are μ_{ω} -open sets with $p \in U(p,q) \subseteq X - \{q\}$ and $q \in U(q,p) \subseteq X - \{p\}$.

Proof. $(i) \Rightarrow (ii)$ Let C be a μ - closed set and let $p \in X - C$. Then $\{p\}$ is a μ_{ω} - closed set. Hence the result follows from Lemma 3.2.

 $(ii) \Rightarrow (i)$ Let (S,T) be a pair of μ_{ω} - separated subsets. Let

$$U(S,T) = \bigcup \{ U'(p,\overline{T}^{\mu_{\omega}}) : p \in S \}.$$

Now, for each $q \in T$, the set $U'(q, \overline{S}^{\mu_{\omega}})$ is a μ_{ω} - open set with

$$U'(q, \overline{S}^{\mu\omega}) \bigcap (\bigcup U'(p, \overline{T}^{\mu\omega})) = \phi,$$

then $\overline{U(S,T)}^{\mu_{\omega}} \subseteq X - T$ and $S \subseteq U(S,T)$.

For (2), let (S', T') be a pair of μ_{ω} – separated with $S \subseteq S'$ and $T' \subseteq T$. Then

$$U(S,T) = \bigcup \left\{ U'(p,\overline{T}^{\mu_{\omega}}) : p \in S \right\} \subseteq \bigcup \left\{ U'(p,\overline{T}^{\mu_{\omega}}) : p \in S' \right\} = U(S',T').$$

Definition 3.6. For a generalized topological spaces (X, μ_1) and (Y, μ_2) , a function $f : (X, \mu_1) \to (Y, \mu_2)$ is called μ_{ω} -closed function if the image of μ_{ω} -closed subset of X is μ_{ω} -closed subset of Y.

Theorem 3.7. Let $f : (X, \mu_1) \to (Y, \mu_2)$ be $\omega - (\mu_1, \mu_2)$ -irresolute and μ_{ω} -closed onto function. If X is a $\mu_{\omega}M$ - normal space, then so is Y.

Proof. Let E, F be two disjoint μ_{ω} -closed subsets. Then there exists a μ_{ω} -open set $U'(f^{-1}(E), f^{-1}(F))$ such that

$$f^{-1}(E) \subseteq U'(f^{-1}(E), f^{-1}(F)) \subseteq \overline{U'(f^{-1}(E), f^{-1}(F))}^{\mu_{\omega}} \subseteq X - f^{-1}(F).$$

Consider the set

$$U(E,F) = Y - f(X - U'(f^{-1}(E), f^{-1}(F))).$$

Then

$$E \subseteq U(E,F) \subseteq \overline{U(E,F)}^{\mu_{\omega}} \subseteq X - F.$$

Consequently, Y is a $\mu_{\omega}M$ - normal space.

Theorem 3.8. For a generalized topological $\mu_{\omega}T_1$ -space (X, μ) , the following statements are equivalent

- (i) (X,μ) is a $\mu_{\omega}M$ normal space,
- (ii) For each pair (A, U) of X, where A is μ_{ω} -closed set and U is μ_{ω} -open set with $A \subseteq U$, there exists a μ_{ω} open set U(A) with $A \subseteq U_{\omega}(A)$ such that
 - (1) $U \subseteq V(B)$ whenever $A \subseteq B$ and $U \subseteq V$,
 - (2) $U(A) \cap U(X U) = \phi$,
- (iii) For each μ_{ω} -open set $U \subseteq X$ and $x \in X$, there exists a μ_{ω} open set U(x) with $U(x) \cap V(y) \neq \phi$, then $x \in V(y)$ or $y \in U(x)$ where V(y) is a μ_{ω} -open set with $y \in V(y)$,
- (iv) For each pair (A, U) of X where A is μ_{ω} -closed set and U is μ_{ω} -open set, then there exists a μ_{ω} - open $U(A) \subseteq U$ such that
 - (1) $U(A) \subseteq V(B)$ whenever $A \subseteq B$ and $U \subseteq V$,
 - (2) $A \subseteq U(A) \subseteq \overline{U(A)}^{\mu_{\omega}} \subseteq U$ for $A \subseteq U$,
- (v) For each pair (A, U) of X where A is μ_{ω} -closed set and U is μ_{ω} -open set, there exists $\omega - (\mu_1, \mu_2)$ -irresolute function $f_{U(A)} : (X, \mu_1) \to \mathbb{R}$ such that $f_{U(A)}(A) = 0$ and $f_{U(A)}(X - U) = 1$ and $f_{U(A)} > f_{V(B)}$ for $A \subseteq B$ and $U \subseteq V$.

Proof. (i) \Rightarrow (ii) Let (A, U) be a pair of μ_{ω} -closed set A and μ_{ω} -open set U with $A \subseteq U \subseteq X$. By Lemma 3.2, there exists a μ_{ω} - open set U(A) = U(A, X - U). Clearly, U(A) satisfies (1) and (2) in (ii).

 $(ii) \Rightarrow (iii)$ Let $U \subseteq X$ and let $x \in U$. Assume that $U(x) \cap V(y) \neq \phi$ with $x \notin V(y)$ and $y \notin U(x)$. Then $U(x) \cap U(X - x) = \phi$. However, in this case, $U(x) \cap V(y) = \phi$. This is a contradiction. As a result, $x \in V(y)$ or $y \in U(x)$. $(iii) \Rightarrow (iv)$ Let (A, U) be a pair of a μ_{ω} -closed subset A and a μ_{ω} -open set U of X. Define

$$U(A) = \bigcup \left\{ V(x) : x \in A, V \subseteq U \right\},\$$

then U(A) is a μ_{ω} - open subset. For (2), enough to show $\overline{U(A)}^{\mu_{\omega}} \subseteq U$. let $x \notin A$, therefore $x \notin U(A)$ and $U(A) \cap U(x) = \phi$, hence $x \notin \overline{U(A)}^{\mu_{\omega}}$. For $A \subseteq X$, let

$$(X-A)_{(X-U)} = \bigcup \{ W_y : y \in X - U, W \subseteq X - A \},\$$

assume $U(A) \cap (X - A)_{(X-U)} \neq \phi$, then $V_x \cap W_y \neq \phi$, so $x \in W$ or $y \in V$, which is a contradiction.

$$(iv) \Rightarrow (v)$$
 Let $A \subseteq U$. Define

$$U_0 = A$$
 and $U_1 = U$,

and for $r_i \in (0,1) \cap \mathbb{Q}$, $i = 2, 3, 4, \cdots, (r_0 = 0, r_1 = 1)$. We need to construct U_{r_i} such that (*)

$$\overline{U_{r_i}}^{\mu_{\omega}} \subseteq U_{r_j}$$
 whenever $r_i < r_j \in (0,1) \cap \mathbb{Q}$ (*).

For U_{r_0} and U_{r_1} , $\overline{U_{r_0}}^{\mu_{\omega}} \subseteq U_{r_1}$. We use induction on *i*. Assume the result is true for i = 1, 2, ..., n - 1. Let α, β denote the nearest number to r_n from left and right taken from $r_0, r_1, r_2, \cdots, r_n$. Clearly, $\overline{U_{\alpha}}^{\mu_{\omega}} \subseteq U_{\beta}$. Now let

$$U_{r_n} = U(A) = U(A, X - U_{r_n}).$$

Then

$$\overline{U_{\alpha}}^{\mu_{\omega}} \subseteq U_{r_n} \subseteq \overline{U_{r_n}}^{\mu_{\omega}} \subseteq U_{\beta}.$$

So (*) is satisfied for r_0, r_1, \dots, r_n . For r > 1, let $U_r = X$ and for $r < 0, U_r = \phi$. That means U_r is defined for all $r \in \mathbb{Q}$.

Now, consider the function $f: (X, \mu) \to \mathbb{R}$ as:

$$f_{(A,U)}(x) = \inf\{r \in \mathbb{Q} : x \in U_r(A)\},\$$

by the values of r. We have $0 \leq f_{(A,U)}(x) \leq 1$, $f_{(A,U)}(x) = 0$ if $x \in A$ and $f_{(A,U)}(x) = 1$ if $x \in X - U$. To show f is an $\omega - (\mu_1, \mu_2)$ -irresolute function, we need to prove that

- (a) For $f_{(A,U)}(x) > r$, we have $x \notin \overline{U_r}^{\mu_\omega}$,
- (b) For $f_{(A,U)}(x) < r$, we have $x \in U_r$.

To prove (a), let $x \in \overline{U_r}^{\mu_\omega}$. Then $x \in U_{r_1}$ for all $r_1 > r$. So $f_{(A,U)}(x) \leq r_1$ for all $r_1 > r$. Hence, $f_{(A,U)}(x) \leq r$. For (b), since $f_{(A,U)}(x) < r$, there exists r_1 with $r_1 < r$ such that $x \in U_{r_1}$ but $r_1 < r$. So $x \in U_r$. Now, let $x \in f_{(A,U)}^{-1}(-\infty, r_1)$. Then $f_{(A,U)}(x) < r_1$. So there exists a rational number r such that $f_{(A,U)}(x) \leq r < r_1$, so $x \in U_r$, then $x \in U_r \subseteq f_{(A,U)}^{-1}(-\infty, r_1)$. Hence, $f_{(A,U)}^{-1}(-\infty, r_1)$ is μ_ω -open. For $x \in f_{(A,U)}^{-1}(r,\infty)$. by our construction of f, one can find a rational number t such that $f_{(A,U)}(x) > t > r$. Then $x \notin \overline{U_t}^{\mu_\omega}$. Now, let $z \in X - \overline{U_t}^{\mu_\omega}$. Then $z \notin U_t$ with $f_{(A,U)}(z) \geq t > r$. Therefore,

$$x \in X - \overline{U_t}^{\mu_\omega} \subseteq f_{(A,U)}^{-1}(r,\infty).$$

Consequently, $f_{(A,U)}^{-1}(r,\infty)$ is a μ_{ω} -open subset of X.

In addition, as in [31], $f_{(A,U)} \ge f_{(B,V)}$ for $A \subseteq B$ and $U \subseteq V$.

 $(v) \Rightarrow (i)$ Let E, F be two disjoint μ_{ω} - closed subsets of X. By (v), there exists an $\omega - (\mu_1, \mu_2)$ -irresolute function $f_{(E,X-F)}: X \to \mathbb{R}$ such that $f_{(E,X-F)}(E) = 0$ and $f_{(E,X-F)}(F) = 1$. Now, let $U(E,F) = f_{(E,X-F)}^{-1}(-\infty,r)$ for fixed 0 < r < 1. Then clearly U(E,F) is μ_{ω} -open and $E \subseteq U(E,F) \subseteq \overline{U(E,F)}^{\mu_{\omega}}$ and

$$\overline{U(E,F)}^{\mu_{\omega}} = \overline{f^{-1}(-\infty,r)}^{\mu_{\omega}} \subseteq f^{-1}\overline{((-\infty,r))}^{\mu_{\omega}} = f^{-1}(-\infty,r] \subseteq X - F.$$

The second condition follows directly from the fact that $f_{U(A)} > f_{V(B)}$.

Corollary 3.9. For a generalized topological $\mu_{\omega}T_1$ -space (X, μ) , the following are equivalent

- (i) (X,μ) is a $\mu_{\omega}M-$ normal space,
- (ii) for each $x \in X$ and for μ_{ω} open set U containing $\overline{\{x\}}^{\mu_{\omega}}$, there exists a μ_{ω} open set U(x, U) such that:

(1)
$$\{x\}^{\mu\omega} \subseteq U(x,U) \subseteq U,$$

(2) (a) if V is μ_{ω} -open and $\overline{\{x\}}^{\mu_{\omega}} \subseteq U \subseteq V$, then $U(x, U) \subseteq U(x, V)$,

(b) if
$$x \in \overline{\{y\}}^{\mu_{\omega}} \subseteq U$$
, then $U(x, U) \subseteq U(y, U)$,

On Different Types of Monotonically μ_{ω} – Spaces in GTSs

(3) if
$$\overline{\{x\}}^{\mu_{\omega}} \cap \overline{\{y\}}^{\mu_{\omega}} = \phi$$
, then $U(x, X - \overline{\{y\}}^{\mu_{\omega}}) \cap U(y, X - \overline{\{x\}}^{\mu_{\omega}}) = \phi$.

Definition 3.10. A generalized topological space (X, μ) is called collectionwise μ_{ω} -normal if, for each discrete collection \mathcal{H} of μ_{ω} -closed subsets of X, there exists a disjoint collection $\mathcal{U}'_{\omega} = \{U_{\omega}(H) : H \in \mathcal{H}\}$ of μ_{ω} -open subsets of X with $H \subseteq U_{\omega}(H)$ for each $H \in \mathcal{H}$.

Theorem 3.11. Let (X, μ) be a generalized topological $\mu_{\omega}T_1$ -space. If (X, μ) is a $\mu_{\omega}M$ - normal space, then (X, μ) is a collectionwise μ_{ω} -normal space.

Proof. Let E, F be disjoint μ_{ω} -closed subsets of X. Then , by Lemma 3.2, there exists μ_{ω} -open sets U(E, F) and U(F, E) such that $U(E, F) \cap U(F, E) = \phi$. Let \mathcal{H} be a discrete family of μ_{ω} -closed subsets of (X, μ) . For each $H \in \mathcal{H}$, define:

$$U'(H) = U(H, \bigcup \{H^* \in \mathcal{H} : H^* \neq H\}).$$

Then U(H) in a μ_{ω} -open set. Moreover, for $H_1 \neq H_2$,

$$U'(H_1) \subseteq U(H_1, H_2) \subseteq X - H_2,$$
$$U'(H_2) \subseteq U(H_2, H_1) \subseteq X - H_1,$$

and

$$U'(H_1) \cap U'(H_2) \subseteq U(H_1, H_2) \cap U(H_2, H_1) = \phi,$$

and hence $\mathcal{U}' = \{U'(H_1) : H_1 \in \mathcal{H}\}$ is the required collection. Consequently, (X, μ) is a collectionwise μ_{ω} -normal space.

4 μ_{ω} -stratifiable and μ_{ω} -semistratifiable in Generalized Topological Spaces

Definition 4.1. A generalized topological $\mu_{\omega}T_1$ - space (X, μ) is called μ_{ω} - semistratifiable if there exists μ_{ω} - open sets $\{S(H, n)\}_{n=1}^{\infty}$ where H is a μ_{ω} - closed set and $n \in \mathbb{N}$ such that

(a) If $H \subseteq K$ are μ_{ω} -closed subsets of X, then $S(H,n) \subseteq S(K,n)$ for all $n \in \mathbb{N}$,

- $\begin{array}{l} (b) \ H = \bigcap \left\{ S(H,n) : n \in \mathbb{N} \right\} \text{for each } \mu_{\omega} closed \ set \ H \subseteq X, \\ in \ addition, \ if \ \left\{ S(H,n) \right\}_{n=1}^{\infty} \ satisfies: \end{array}$
- (c) $H = \bigcap \{\overline{S(H,n)}^{\mu_{\omega}} : n \in \mathbb{N}\}, \text{ then } X \text{ is called } \mu_{\omega} \text{stratifiable space.}$

Theorem 4.2. A generalized topological $\mu_{\omega}T_1$ – space (X, μ) is μ_{ω} – stratifiable if and only if it is $\mu_{\omega}M$ – normal space and μ_{ω} – semi-stratifiable space.

Proof. (\Leftarrow) Let $K \subseteq X$. Since (X, μ) is a μ_{ω} -semi-stratifiable space, there exists μ_{ω} - open subsets $\{T(K, n)\}_{n=1}^{\infty}$ of (X, μ) satisfying Definition 4.1. In addition, since (X, μ) is a $\mu_{\omega}M$ - normal space, there exists μ_{ω} - open subsets $\{U(K, X - T(K, n))\}_{n=1}^{\infty}$ of (X, μ) satisfying Definition 3.1. Now, the set

$$S(K,n) = U(K, X - T(K,n))$$

is the required μ_{ω} – open subset.

(⇒) Let *E*, *F* be disjoint μ_{ω} -closed subsets of (X, μ) . Since (X, μ) is a μ_{ω} -stratifiable space, there exists a sequence $\{S(E, n)\}_{n=1}^{\infty}$ of μ_{ω} -open subsets of (X, μ) . Let

$$U(E,F) = \bigcup_{n=1}^{\infty} \left(S(E,n) - \overline{S(F,n)}^{\mu_{\omega}} \right).$$

Then U(E, F) is an μ_{ω} -open set and $E \subseteq U(E, F)$ since $E \cap F = \phi$. Let $x \notin X - F$. Then $x \in \overline{S(F, n)}^{\mu_{\omega}}$ for all $n \in \mathbb{N}$ and so

$$S(F,n) \cap (X-E) \neq \phi$$

and

$$(S(F,n) \cap (X-E)) \bigcap U(E,F) = \phi.$$

Therefore, $x \notin \overline{U(E,F)}^{\mu_{\omega}}$, for a pair (E',F') of μ_{ω} -closed subsets of (X,μ) with $E \subseteq E'$ and $F' \subseteq F$. We have $U(E,F) \subseteq U(E',F')$. Consequently, (X,μ) is a $\mu_{\omega}M$ - normal space.

Before focusing on a product Theorem considering $\mu_{\omega}M$ – normal, we need the following definition.

Definition 4.3. Let (X, μ) be a generalized topological space and let $A \subseteq X$. Then a point $x \in X$ is called μ_{ω} – limit point of A if every μ_{ω} – open set containing x contains at least one point of A different from x.

Lemma 4.4. Let (X, μ) be a generalized topological space and let $A \subseteq X$. Then A is μ_{ω} - closed if and only if A contains all μ_{ω} - limit point of A.

Theorem 4.5. Let (X, μ) be a generalized topological space. If $X \times Y$ is a $\mu_{\omega}M$ - normal space, then either no subset of X has a μ_{ω} -limit point or Y is μ_{ω} -stratifiable space.

Proof. Suppose $\mathcal{A} = \{A_{\alpha} : \alpha \in \Delta, |\Delta| < \omega_0\}$ is a subset of a generalized topological space (X, μ) having a μ_{ω} -limit point a. Assume $a \notin \mathcal{A}$. Let $A^* = A \cup \{a\}$. Since $X \times Y$ is a $\mu_{\omega}M$ - normal, $A^* \times Y$ is also a $\mu_{\omega}M$ - normal. Let $F \subseteq Y$ be a μ_{ω} - closed set. Consider the sets

$$H(F) = \{(x,y) \in A^* \times Y : y \in F \quad \text{and} \quad x \notin A\},\$$

$$M(F) = \{ (x, y) \in A^* \times Y : y \in A^* \}.$$

Clearly, H(F) and M(F) are μ_{ω} - separated subsets of $A^* \times Y$ and hence, by Lemma 3.2, there exists a μ_{ω} - open set U(H(F), M(F)). Finally, for $n \in \mathbb{N}$, let $S(F, n) = \{y \in Y : (A_{\alpha}, y) \in U(H(F), M(F))\}$. Then $\{S(F, n)\}_{n=1}^{\infty}$ is a μ_{ω} -open set satisfying the conditions of μ_{ω} -stratifiable space.

Acknowledgment. The author is grateful to the Middle East University, Amman, Jordan for the financial support granted to cover the publication fee of this research article.

References

- F. Abushaheen, H. Kawariq, F. Alrimawi, On p- monotone T₂ spaces, International Journal of Mathematics and Computer Science, 15, no. 2, (2020), 559–575.
- [2] A. Al-Bsoul, Characterization of monotonically T_2 spaces, Int. J. Contemp. Sci., 14, (2007), 693–700.
- S. Al Ghour, Some generalizations of para-compactness, Missouri J. Math. Sci., 18, (2006), 64–77.
- [4] S.Al Ghour, W. Zareer, Omega open sets in generalized topological spaces, Journal of Nonlinear Science and Applications, 9, (2016), 3010– 3017.

- S. Al Ghour, W. Zareer, Some mappings and separtions axioms via Omega open sets in generalized topological spaces, Non Linear Studies, 26, (2019), 1–8.
- [6] S. Al Ghour, A. Al Nimer, On slight continuity and irresoluteness between generalized topological spaces, *Symmetry*, **12**, (2020), 780.
- [7] A. Al Omari, M. Noorani, Contra ω-continuous and almost contra ω-continuous, International Journal of Mathematical and Mathematical Sciences, 2009, 13 pages.
- [8] A. Al Omari, M. Noorani, Regular generalized ω closed sets, International Journal of Mathematical and Mathematical Sciences, 2007, 11 pages.
- [9] K. Al Zoubi, B. Al Nashef, The topology of ω-open subsets, Al -Manarah J., 9, (2003), 169–179.
- [10] K. Al Zoubi, On generalized ω -closed sets, International Journal of Mathematical and Mathematical Sciences, **13**,(2005), 2011–2021.
- [11] M. Arar, A note on spaces with a countable μ -base, Acta. Math. Hangar., **149**, (2016), 50–57.
- [12] C. J. R. Borges, On stratifiable spaces, Pacific J. Math., 17, (1966), 1–16.
- [13] R. Buck, Some weaker monotone separation and basis properties, Topology and its applications, 69,(1996), 1–12.
- [14] A. Császár, Generalized topology, generalized continuity, Acta. Math. Hangar., 96, (2002), 351–357.
- [15] A. Császár, Extremally disconnected generalized topologies, Ann. Univ. Sci. Budapest. Eötvös, Sect. Math., 47, (2004), 91–96.
- [16] A. Császár, Generalized open sets in generalized topologies, Acta. Math. Hangar., 106, (2005), 53–66.
- [17] A. Császár, Normal generalized topologies, Acta. Math. Hangar., 115, (2007), 309–313.
- [18] R. Engelking, General Topology, 2nd edition, Non Heidermann, Berlin, Germany, 1989.

- [19] Y. Gao, H. Qu, S. Wany, A note on monotonically normal spaces, Acta Math. Hungar., 117, (2007), 175–178.
- [20] J. Garcia, L. Perez, M. Vicente, Monotone normality free of T_1 axiom, Acta. Math. Hangar., **122**, (2009), 71–80.
- [21] J. Garcia, S. Romaguera, J. Alvarez, Quasi-metrics and monotone normality, *Topology and its applications*, 158, (2011), 2049–2055.
- [22] H. Hdeib, ω-closed mappings, Revista Colombiana de Matematicas, 16, (1982), 65–78.
- [23] H. Hdeib, ω -continuous mappings, *Dirasat J.*, **16**, (1989), 136–153.
- [24] R. W. Heath, D. J. Lutzer, P. L. Zenor, Monotonically normal spaces, *Trans. Amer. Math. Soc.*, **178**, (1973), 481–493.
- [25] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, (1963), 36–41.
- [26] J. Marin, S. Romaguera, Pairwise monotonically normal spaces, Comment. Math. Univ. Carolina, 178, (1991), 567–579.
- [27] T. Noiri, Semi-normal spaces and some functions, Acta. Math. Hangar., 65, (1994), 305–311.
- [28] M. Sarsak, ω-almost Lindelöf spaces, Questions and Answers in General Topology, 21, (2003), 27–35.
- [29] M. Sarsak, Weak separation axioms in generalized topological spaces, Acta. Math. Hangar., 131, (2011), 110–121.
- [30] M. Sarsak, New separation axioms in generalized topological spaces, Acta. Math. Hangar., 132, no. 3, (2011), 244–252.
- [31] W. Sun, J. Wu, X. Zhang, Monotone normality in generalized topological spaces, Acta Math. Hungar., 153, no. 2, (2017), 408–416.
- [32] H. Zhang, W. Shi, Monotone normality and neighborhood assignments, Topology and its Applications, 159, (2012), 603–607.