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Abstract

Recently, many nonlinear systems have been proposed to intro-
duce the population dynamics of COVID-19. In this paper, we extend
different physical conditions of the growth by employing fractional
calculus. We propose a new fractional-order version for one of re-
cently forms of the SEIR model. This version, which is established
in view of the Caputo fractional-order differential operator, is numer-
ically solved based on the Generalized Euler Method (GEM). Several
numerical results reveal the impact of the fractional-order values on
the established disease model. To help make a decline in the total of
individuals infected by such pandemic, a new compartment is added
to the proposed model; namely, the disease prevention compartment
that includes the use of face masks, gloves and sterilizers. In view of
such modification, it turned out that the performed addition to the
fractional-order COVID-19 model yields a significant improvement in
reducing the risk of COVID-19 spread.

1 Introduction

Like all other scientific fields, mathematical modeling plays a major role in
facing a considerable number of tough epidemics like the COVID-19 epidemic.
This field of research could principally contribute to realize the prevalence
of the disease and understand its risk and assess its activity period and its
influence on communities [1]. Such beneficial influences would undoubtedly
support the policymakers who are responsible for recommending essential
decisions and accountable for presenting suitable viewpoints, in assessing
the social and economic strategies related to the epidemic evolution. It is
common knowledge, in biomathematical modeling field, that any epidemio-
logical mathematical model divides the whole community into multiple split
compartments, for which each of them constitutes a certain health state.
In particular, the Susceptible-Exposed-Infected-Recovered models (or sim-
ply SEIR models), which are the most fundamental common ones, played
and still playing a leading role in describing several important biological
phenomena, including the spread of different diseases.

In this paper, a new fractional-order version of a recent form of the SEIR
model is established in light of the Caputo fractional-order differential op-
erator. This fractional-order COVID-19 model is analyzed and solved using
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the so-called Generalized Euler Method (GEM) numerically. In the final
phases of this work, the proposed model is further modified through adding
a new compartment, named the disease prevention compartment, to its orig-
inal structure. It is confirmed that this compartment, which includes some
of prevention manners, will yield a significant improvement in reducing the
risk of COVID-19 spread.

2 Preliminaries and model formulation

In this section, some key definitions related to fractional calculus are briefly
introduced together with some notions about the SEIR model that was pro-
posed for dealing with the spread of COVID-19 pandemic.

Definition 2.1. [2, 3] The Riemann Liouville fractional-order integral op-
erator Jα of a function f ∈ L1[a, b] is defined by:

Jα
t f(t) =

1

Γ(α)

∫ t

a

(t− u)α−1f(u)du, (2.1)

where α ∈ R+ is the order of the operator, and a ≤ t ≤ b.

Definition 2.2. [4, 5] The Caputo fractional-order differential operator CDα

of a function f is defined by:

CDα
t f(t) =

1

Γ(m− α)

∫ t

a

fm(u)

(t− u)α+m−1
du, (2.2)

whenever the standard differential operator Dmf ∈ L1[a, b], where α ≥ 0
and m = ⌈α⌉.

Lemma 2.3. [6] (Generalized Mean Value Theorem). Suppose that Z(t) ∈
C[a1, a2] and

CDα
Z(t) ∈ C(a1, a2], where 0 < α ≤ 1, then

Z(t) = Z(a1) +
1

Γ(α)
CDα

Z(ζ)(t− a1)
α, (2.3)

where 0 ≤ ζ ≤ t, ∀t ∈ (a1, a2].

Remark 2.4. [6] Suppose that Z(t) ∈ C[0, a2] and
CDα

Z(t) ∈ C(0, a2],
where 0 < α ≤ 1. In view of the above Lemma, one can conclude that if
CDα

Z(t) ≥ 0, ∀t ∈ (0, a2], then Z(t) will be a non-decreasing vector-valued
function, while if CDα

Z(t) ≤ 0, ∀t ∈ (0, a2], then such function will be
non-increasing one.
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Table 1: Initial values of the SEIR model.
Variable compartment Value

E(0) 20000
I(0) 1
N(0) 10× 106

R(0) 1
S(0) N(0)−E(0)− 1

In [7], Carcione et al. implemented an SEIR model to compute the in-
fected population and the number of casualties of the COVID-19 epidemic.
In particular, they deduced some analysis results of the model by varying the
parameters and initial conditions. However, Figure 1, illustrates the block
diagram of all compartments of such model including all their conversion
relationships.

Figure 1: A compartment diagram for a modification of SEIR model.

The initial values along with all parameters of the dynamic model have
been fitted according to the raw epidemic data given in [7], and by considering
N as the total number of live humans in the system at time t. In particular,
Tables 1 and 2 show all initial conditions and parameters embedded in the
model at hand, respectively.

In general, the mathematical model, which has been established in [7, 8]
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Table 2: Description of parameters of the SEIR model.
Parameter Meaning Value

Λ Per-capita birth rate −
d Per-capita natural death rate −
ε Virus induced average fatality rate 0.006
β Probability of disease transmission per contact 0.85
µ Vaccination Rate 0
σ Rate of progression from exposed to infected 0.0049
γ Recovery rate of infected individuals 0.125
v Vaccination proportion (Newborns) 0

as an implementation of the SEIR model, has the following form:

dS

dt
= Λ− vN − β

SI

N
− dS + εR− µS

dE

dt
= β

SI

N
− (σ + d)E

dI

dt
= σE − (γ + d+ ε)I

dR

dt
= γI − (d+ ε)R + µS.

(2.4)

If one assumes that the individuals in R are immune; i.e., the individuals in
R will not never return to S for the duration of the model, then εR vanishes.
Besides, if we assume that there is no effective vaccine so far, then v and µ

will also vanish from the model, as reported in Table 2. Hence, the model in
(2.4) will take the following form:

dS

dt
= Λ− β

SI

N
− dS

dE

dt
= β

SI

N
− (σ + d)E

dI

dt
= σE − (γ + d+ ε)I

dR

dt
= γI − dR.

(2.5)

For the purpose of introducing the proposed COVID-19 model in this work,
which relies on the Caputo operator, we have to fractionalize system (2.5) as
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follows:

CDα
t S(t) = Λ− β

SI

N
− dS

CDα
t E(t) = β

SI

N
− (σ + d)E

CDα
t I(t) = σE − (γ + d+ ε)I

CDα
t R(t) = γI − dR.

(2.6)

Since N = S + E + I +R, one can easily obtain the following assertion:

CDα
t N(t) = Λ− dN − εI. (2.7)

This means that N is not constant, which implies that R(t) can be obtained
using the following relation:

R(t) = N(t)− S(t)−E(t)− I(t). (2.8)

In conclusion of this section, an equivalent model to model (2.6) can be
proposed based on the previous discussion. This model has the following
form:

CDα
t S(t) = Λ− β

S(t)I(t)

N(t)
− dS(t)

CDα
t E(t) = β

S(t)I(t)

N(t)
− (σ + d)E(t)

CDα
t I(t) = σE(t)− (γ + d+ ε)I(t)

CDα
t N(t) = Λ− dN(t)− εI(t),

(2.9)

subject to initial conditions given in Table 1. The numerical solution of
system (2.9) can be obtained using one of significant numerical schemes,
namely the GEM. To get a full description about this method and how it can
be employed in actual research, we refer the reader to [9]. However, Figure
2 shows approximate solutions for all classes of system (2.9) according to
the initial states given in Table 1, and according to the balanced assumption
that assumes the births and the natural deaths are balanced (i.e., Λ and d

are assumed 0). Actually, this figure represents the whole size for each of
susceptible-, exposed-, infected-, and recovered-people over the time t, which
have been performed in view of different values of α. In view such figure,
one may observe that any variation in the fractional-order values can affect
on the current disease model.



Modeling COVID-19 Pandemic Outbreak using FOS 1411

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10
x 10

6

Time (day)

S
us

ce
pt

ib
le

Size of the Susceptible for diferent values of α

 

 
α=0.5
α=0.6
α=0.7
α=1.0

(a) Size of Susceptible people S over time t.
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(b) Size of Exposed people E over time t.
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(c) Size of Infected people I over time t.
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(d) Size of Recovered people R over time t.

Figure 2: Size of all classes over the time t (in days) for system (2.9) in view
of different values of α.

3 Stability analysis

This section is dedicated to deduce several stability analysis results associated
with the fractional-order COVID-9 model established in (2.9). These results
are associated with the equilibrium points, the positivity solution of such
system, and determining the basic reproductive number R0 as well as its
elasticity indices.

3.1 Positivity solution of the model

In this part, we focus on providing a useful result that associated with show-
ing that the solution Z(t) = [S(t), E(t), I(t), R(t)]T of system (2.6) sub-
ject to the initial conditions Z(0) = [S(0), E(0), I(0), R(0)]T ∈ R

4
+ :=

{Z(t) ∈ R
4 : Z(t) ≥ 0} is non-negative solution.

Theorem 3.1. There exists a unique solution Z(t) = [S(t), E(t), I(t), R(t)]T

of system (2.6) subject to the initial condition Z(0) = [S(0), E(0), I(0), R(0)]T ∈
R

4
+ := {Z(t) ∈ R

4 : Z(t) ≥ 0}, and this solution will still be in R
4
+.
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Proof. Referring to some novel results deduced by Lin in [10] leads us to
definitely identify a unique solution Z(t) on (0, ∞) for system (2.6) subject
to the initial condition Z(0). On the other hand, in order to show that the
domain R

4
+ is, indeed, positively invariant region, we have to observe the

following assertions:

CDαS(t)|S=0 = Λ ≥ 0, CDαE(t)|E=0 = β
SI

N
≥ 0,

CDαI(t)|I=0 = σE ≥ 0, CDαR(t)|R=0 = γI ≥ 0.
(3.10)

Thus, based on the above two results, one can deduce that R4
+ is an invariant

set, and this completes the proof.

3.2 The equilibrium points of the model

It could be argued that determining the equilibrium points of any epidemio-
logical model is considered one of the main aspects that needed to study its
stability analysis. Actually, there are two main kinds of those points that
could be classified according to absence of the infection; the Disease-Free
Equilibrium (DFE) point and the Endemic Equilibrium (EE) point. For in-
stance, to find the DFE point for system (2.9), we first put all right-hand
sides of all system’s equations to be equal 0, along with assuming that I = 0
in that system. This exactly has led us to the following point:

X̄DFE = (
Λ

d
, 0, 0,

Λ

d
). (3.11)

On the other hand, if one considers I 6= 0, then the following EE point will
be gained:

X̄EE = (S∗, E∗, I∗, N∗), (3.12)

where

S∗ =

(

σΛ− (σ + d)(γ + d+ ε)

σd

)

I∗, E∗ =

(

γ + d+ ε

σ

)

I∗,

N∗ =

(

Λ− ε

d

)

I∗, and I∗ =
Λ(σ + d)(γ + d+ ε)− σβΛ

(ε− β)(σ + d)(γ + d+ ε)
.

(3.13)

It is worth noting that the benefit of obtaining these equilibrium points
stems from its utmost importance in exploring some other stability results
that relate to the so-called basic reproductive number R0, which will be
considered in the next subsection.
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3.3 Basic reproductive number

The basic reproductive number R0 indicates to the average number of the
secondary cases generated from initial infective cases within a population
with no immunity to the disease [11]. Such critical scale has increasingly
being a principal quantity used for determining the force of required inter-
ferences for controlling the epidemics. In epidemic mathematical modeling,
it is common knowledge that if R0 < 1, then there is an absence of epidemics
in natural populations. On the contrary, if R0 > 1, then the disease will
increasingly spread in the susceptible population. However, the method to
determine such scale requires to find the spectral radius of the next genera-
tion matrix or the largest absolute value of its eigenvalues (i.e., R0 = ρ(K),
where K is the next generation matrix) [12]. The matrix K consists typically
of two components F and V −1, in which:

F =

[

∂Fi(X̄DFE)

∂tj

]

and V =

[

∂Vi(X̄DFE)

∂tj

]

, (3.14)

where Fi indicate the flux of newly infected in compartment zi, and Vi in-
dicate to other leaving/entering fluxes associated with the compartment zi,
for i, j = 1, 2, ..., m, in which m is the number of compartments established
in the model.

In view of the previous discussion, one can compute R0 for our proposed
fractional-order model given in (2.9) by first finding the two major matrices
F and V −1, which would be as follows:

F =

[

0 β

0 0

]

and V −1 =

[ 1
σ+d

0
σ

(σ+d)(γ+d+ε)
1

γ+d+ε

]

. (3.15)

Consequently, the next generation matrix would be in the form:

K = FV −1 =

[

βσ

(σ+d)(γ+d+ε)
β

γ+d+ε

0 0

]

. (3.16)

This definitely leads us to deduce the following form of R0:

R0 = ρ(K) =
βσ

(σ + d)(γ + d+ ε)
. (3.17)

In the same context, the above assertions pave the way to gain further result
associated with the local stability analysis of DFE point.
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Theorem 3.2. The DFE point X̄DFE of system (2.9) is locally stable if R0 <

1.

Proof. To begin with the proof of this theorem, one needs to find the corre-
sponding Jacobian matrix of system (2.9), which would be in the following
form:

J =









−
(

d+ β I
N

)

0 −β S
N

β IS
N2

β I
N

−(d + σ) β S
N

−β IS
N2

0 σ −(γ + d+ ε) 0
0 0 −ε −d









. (3.18)

Thus, the Jacobian matrix at the DFE point X̄DFE will be in the following
form:

J(X̄DFE) =









−d 0 −β 0
0 −(d+ σ) β 0
0 σ −(γ + d+ ε) 0
0 0 −ε −d









. (3.19)

After performing some long calculations, we have obtained all eigenvalues
of J(X̄DFE) to be as follows: λ1,2 = −d < 0, whereas λ3, λ4 < 0, only if
R0 < 1. Now, due to all eigenvalues of J(X̄DFE) are less than 0, and from
the perspective that asserts that the stability of the model formulated using
ODEs implies also its stability in its fractional-order case (see [13]), we obtain
the desired result.

3.4 Elasticity index of R0

The local sensitivity analysis illustrates how the basic reproductive number
R0 will be impacted in response to some changes that may occur to the
parameters of the model [12, 14]. The so-called elasticity index, which rep-
resents a normalization of the sensitivity index, is defined as the ratio of the
relative change in the variable to the relative change in the parameter. The
value of R0 will be increased, if elasticity index is positively increased, and
vice versa [12, 14]. However, the general expression of the elasticity index
with respect to the parameter ̺ can be represented as follows:

ΥR0

̺ =
∂R0

∂̺
×

̺

R0
. (3.20)

In accordance with the parameters’ values given in Table 2, we exhibit in
Table 3 the baseline parameter values and their corresponding elasticity in-
dices for the fractional-order COVID-19 model given in (2.9), whereas Figure
3 summarizes all these indices.
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Table 3: Baseline parameter values and elasticity indices for system (2.9).
Parameter Elasticity Numerical Elasticity

β ΥR0

β = 1 1

σ ΥR0

σ = 1− σ(2σ+d+γ+ε)
(σ+d)(γ+σ+ε)

0.9999

d ΥR0

d = −d(γ+σ+ε)
σ+d

0

γ ΥR0

γ = −γ

γ+σ+ε
−0.9197

ε ΥR0

ε = −ε
γ+σ+ε

−0.0442

Figure 3: Bar graph illustrating the elasticity index for each parameter of
system (2.9).

In view of the results exhibited in Table 3 and Figure 3, one can deduce
that the parameter with most impact on the calculation of R0 is the proba-
bility of transmission per contact β. In other words, any increase in β will
correspond to major increase in the probability of humans becoming infected
with COVID-19, see Figures 4(a). On the other hand, the sensitive parame-
ter on R0 with the least impact is the recovery rate of the infected individuals
γ. That is, any increase in such parameter will correspond to a major de-
crease in the probability of humans becoming infected with COVID-19, see
Figure 4(b).
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(a) Effect of the parameter β on R0.
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(b) Effect of the parameter γ on R0.

Figure 4: Effect of the most and least impact parameters on R0.

4 Adding the disease prevention compartment

to the model
In view of lack of comprehensive vaccines in the pandemic period of COVID-
19 outbreak, many countries have adopted a highest control measures rea-
sonably practicable and the maximum disease prevention strategies for the
purpose of controlling the spread of infection [11]. Such interventions or
strategies have shown their roles in lowering the risk of infection from con-
firmed or possible Coronavirus (COVID-19) infection or even the risk of
death. Some of these strategies include isolation, quarantine and lockdowns.
In this section, we intend to formulate a modification for the fractional-order
COVID-19 model given in (2.9) by adding a new compartment namely the
disease prevention compartment that includes the use of face masks, gloves
and sterilizers. The main motivation of performing this task is to prove the
extreme significance of adhering to these disease prevention tools. The new
compartmental diagram of the modified model for system (2.9) with its all
corresponding equations is exhibited in Figure 5.

Figure 5: A compartmental diagram of the new modification for the
fractional-order COVID-19 model.
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Actually, this compartmental diagram necessitates one to develop system
(2.9) to be in the following form:

CDα
t S(t) = Λ− β

S(t)I(t)

N(t)
− dS(t)− ωS(t)

CDα
t P (t) = ωS(t)

CDα
t E(t) = β

S(t)I(t)

N(t)
− (σ + d)E(t)

CDα
t I(t) = σE(t)− (γ + d+ ε)I(t)

CDα
t N(t) = Λ− dN(t)− εI(t),

(4.21)

where P (t) is the disease prevention compartment and ω is the ratio of people
who adhere to the disease prevention tools.

In order to examine the modified fractional-order COVID-19 model, sev-
eral comparison numerical simulations are performed between the two vector-
valued solutions of the two systems given in (2.9) and (4.21). These com-
parisons consider the same initial values given in Table 1 with P (0) = 100,
and the same parameters’ values given in Table 2. Besides, we assume that
the ratio of people who adhere to the disease prevention tools as ω = 0.0025.
The overall results of these comparisons are shown in Figure 6. These re-
sults definitely reveal that although the performed addition requires a slight
modification to the models equations, it has given a significant improvement
in reducing the number of susceptible people from the disease, and hence re-
ducing the number of exposed and infected people. This would undoubtedly
decrease the risk of COVID-19 spread.

In view of the aforementioned comparison results, the effect of the param-
eter ω has shown its significant role in reducing the number of susceptible
people from the disease. This relation between ω and S can be further ex-
plored by considering the next result.

Proposition 4.1. The susceptible class S(t) approaches 0 as the parameter
ω approaches 1.

Proof. If one supposes that ω → 1, then the second equation of system (4.21)
will be CDα

t P (t) = S(t). Consequently, the first equation of such system will
be in the following form:

CDα
t S(t) + dS(t) = Λ− β

S(t)I(t)

N(t)
. (4.22)
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(a) Size of Susceptible people S over time t.
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(b) Size of Exposed people E over time t.
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(c) Size of Infected people I over time t.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

10
x 10

6

Time

R
ec

ov
er

ed

Size of the recovered versus time

 

 

With Prevention of COVID−19
Without Prevention of COVID−19

(d) Size of Recovered people R over time t.

Figure 6: Comparison results between the approximate solutions of (3.13)
and (4.21) with α = 0.95.

Combining this equation with the third equation of system (4.21) yields:

CDα
t S(t) + dS(t) = Λ− (CDα

t E(t) + (σ + d)E(t)). (4.23)

Suppose, to the contrary, that S(t) 9 0. That is, S(t) > 0, ∀t. Together
with (4.23), this implies the following:

CDα
t E(t) + (σ + d)E(t)) < Λ. (4.24)

Together with the third equation of the system, this inequality implies β S(t)I(t)
N(t)

<

Λ, which contradicts its converse (β S(t)I(t)
N(t)

< Λ) that can be deduced easily
from the first equation of the system. The desired result follows,

The above result can be further asserted by some numerical simulations
shown in Figure 7. In particular, part (a) shows that the susceptible class will
vanish once the people in such class adhere to the disease prevention tools
that include face masks, gloves and sterilizers, while part (d) of the same
figure shows that the size of the recovered people will increase once they also
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adhere the aforesaid tools. In general, the modified fractional-order model
given in (4.21) can assist the health authorities with fighting the COVID-19
outbreak, and it may also let us to say that an ounce of prevention is better
than a pound of cure.
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(b) Size of Exposed people E over time t.
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(c) Size of Infected people I over time t.
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(d) Size of Recovered people R over time t.

Figure 7: Numerical results of the vector-valued solutions of model (4.21)
with α = 0.9, for different values of ω.

5 Conclusion

In this work, a novel fractional-order SEIR models for spread of COVID-19
pandemic has been established in view of the Caputo fractional-order oper-
ator. The graphical simulation results obtained from using the generalized
Euler method have revealed that any varying in the fractional-order values
will affect on the established disease model. The proposed fractional-order
COVID-19 model has been addressed in terms of its equilibrium points, its
positivity solution, and its basic reproductive number R0 with its elasticity
indices. For instance, in view of all computed elasticity indices of R0 to-
gether with some graphical results, it has been shown that the probability of
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transmission per contact is the most impact parameter on the calculation of
R0, while the least impact sensitive parameter on such number is the recov-
ery rate of the infected individuals. Finally, the fractional-order COVID-19
model has been further modified by adding a new compartment namely the
disease prevention compartment that includes the use of face masks, gloves
and sterilizers. It also has been examined by performing several comparison
simulations between its numerical solution and the other numerical solution
obtained previously for the original model. Such comparison simulations have
revealed that the performed modification of the fractional-order COVID-19
model yields a significant improvement in reducing the risk of COVID-19
spread.
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