Structural Properties and Submonoids of Generalized Cohypersubstitutions

Nagornchat Chansuriya¹, Sarawut Phuapong²

¹Faculty of Science, Energy and Environment
King Mongkut’s University of Technology North Bangkok
(Rayong Campus) Rayong 21120, Thailand

²Department of Mathematics
Faculty of Science and Agricultural Technology
Rajamangala University of Technology Lanna
Chiang Mai 50300, Thailand

e-mail: nagornchat.c@sciee.kmutnb.ac.th, Phuapong.sa@gmail.com

(Received December 15, 2020, Accepted February 13, 2021)

Abstract

Generalized cohypersubstitutions of type $\tau = (n_i)_{i \in I}$ are mappings which send the n_i-ary cooperations symbols to coterms of type τ. We define the operations $+_CG$ and $\oplus CG$ on the set $Cohyp_G(\tau)$ and consider some submonoids of the monoid $Cohyp_G(\tau)$. Finally, we give some structural properties and the relationship among submonoids.

1 Introduction

The topic cohypersubstitution of type τ in universal algebra has gained interest among many authors. In 2009, Denecke and Seangsura [2] initially introduced and used the main tool in the study of cohyperidentities. They defined coalgebras, coidentities, cohyperidentities and applied all the concepts to construct the monoid of cohypersubstitutions of type τ. In 2013,
Jermjitpornchai and Seangsura [4] generalized the concepts in [2] by studying generalized cohypersubstitutions. They introduced the coterms involving generalized superpositions, discovered some algebraic-structural properties, and constructed the monoid of generalized cohypersubstitutions of type \(\tau = (n_i)_{i \in I} \). The structural properties and special elements of the monoid of generalized cohypersubstitutions of type \(\tau = (2) \), \(\tau = (3) \) and \(\tau = (n) \) has since been studied by many other authors. In this paper we focus on the generalized cohypersubstitutions of type \(\tau \) and define the operation on \(\text{Cohyp}_G(\tau) \), and give some algebra-structural properties of the set of all generalized cohypersubstitutions. In addition, we focus on some submonoid of the monoid \(\text{Cohyp}_G(\tau) \), and study some structural properties and the relationship among submonoids.

2 Generalized Cohypersubstitutions

In this section we provide the basic concept of the monoid of all generalized cohypersubstitutions which is very useful in this paper.

Let \(A \) be a non-empty set and \(n \in \mathbb{N} \). Define the union of \(n \) disjoint copies of \(A \) by \(A^{\text{lin}} := n \times A \), where \(n = \{1, 2, \ldots, n\} \). This is called the \(n \)-th copower of \(A \). An element \((i, a)\) in this copower corresponds to the element \(a \) in the \(i \)-th copy of \(A \), where \(i \in n \). For some natural number \(n \), a mapping \(f^A : A \rightarrow A^{\text{lin}} \) is a co-operation on \(A \); \(n \) is called the arity of the co-operation \(f^A \). Every \(n \)-ary co-operation \(f^A \) on the set \(A \) can be uniquely expressed as the pair of mappings \((f^A_1, f^A_2)\), where \(f^A_1 : A \rightarrow n \) gives the labeling used by \(f^A \) of mapping elements to copies of \(A \), and \(f^A_2 : A \rightarrow A \) shows what element of \(A \) any element is mapped to, so \(f^A(a) = (f^A_1(a), f^A_2(a)) \). We denote the set of all \(n \)-ary co-operations defined on \(A \) by \(cO_A^{(n)} = \{f^A : A \rightarrow A^{\text{lin}}\} \).

Let \(\tau = (n_i)_{i \in I} \) and \((f_i)_{i \in I}\) be an indexed set of co-operation symbols which \(f_i \) has arity \(n_i \) for each \(i \in I \). Let \(\bigcup \{e^n_j | n \geq 1, n \in \mathbb{N}, 0 \leq j \leq n - 1\} \) be a set of symbols which disjoint from \(\{f_i | i \in I\} \) such that \(e^n_j \) has arity \(n \) for each \(0 \leq j \leq n - 1 \). The coterms of type \(\tau \) are defined as follows:

(i) For every \(i \in I \) the co-operation symbol \(f_i \) is an \(n_i \)-ary coterm of type \(\tau \).

(ii) For every \(n \geq 1 \) and \(0 \leq j \leq n - 1 \) the symbol \(e^n_j \) is an \(n \)-ary coterm of type \(\tau \).

(iii) If \(t_1, \ldots, t_n \) are \(n \)-ary coterms of type \(\tau \), then for every \(i \in I \), \(f_i[t_1, \ldots, t_n] \) is an \(n \)-ary coterm of type \(\tau \), and if \(t_0, \ldots, t_{n-1} \) are \(m \)-ary coterm of
Structural Properties of Cohyp$_C(\tau)$

Denoted by $CT'_\tau(n)$ the set of all n-ary coterm of type τ, and $CT'\tau := \bigcup_{n \geq 1} CT'_\tau(n)$ the set of all coterm of type τ.

Let $m \in \mathbb{N}^n$. A *generalized superposition* of a coterm $S'^m : CT'^m_m \times CT'\tau \to CT'\tau$ defined inductively by the following steps:

(i) If $t = e^n_i$ and $0 \leq i \leq m-1$, then $S'^m(e^n_i, t_0, \ldots, t_{m-1}) = e^n_i$, where $t_0, \ldots, t_{m-1} \in CT'\tau$.

(ii) If $t = e^n_i$ and $0 < m \leq i \leq n-1$, then $S'^m(e^n_i, t_0, \ldots, t_{m-1}) = e^n_i$, where $t_0, \ldots, t_{m-1} \in CT'\tau$.

(iii) If $t = f_i[s_1, \ldots, s_n]$, then

\[
S'^m(t, t_1, \ldots, t_m) = f_i(S'^m(s_1, t_1, \ldots, t_m), \ldots, S'^m(s_n, t_1, \ldots, t_m)),
\]

where $S'^m(s_1, t_1, \ldots, t_m), \ldots, S'^m(s_n, t_1, \ldots, t_m) \in CT'\tau$.

The above definition can be written as the following forms:

(i) If $t = e^n_i$ and $0 \leq i \leq m-1$, then $e^n_i[t_0, \ldots, t_{m-1}] = e^n_i$, where $t_0, \ldots, t_{m-1} \in CT'\tau$.

(ii) If $t = e^n_i$ and $0 < m \leq i \leq n-1$, then $e^n_i[t_0, \ldots, t_{m-1}] = e^n_i$, where $t_0, \ldots, t_{m-1} \in CT'\tau$.

(iii) If $t = f_i[s_1, \ldots, s_n]$, then

\[
(f_i[s_1, \ldots, s_n])[t_1, \ldots, t_m] = f_i(s_1[t_1, \ldots, t_m], \ldots, s_n[t_1, \ldots, t_m]),
\]

where $s_1[t_1, \ldots, t_m], \ldots, s_n[t_1, \ldots, t_m] \in CT'\tau$.

Definition 2.1. [1] For arbitrary coterm $t, t_0, \ldots, t_{m-1} \in CT'\tau$,

\[
t[s_0[t_0, \ldots, t_{m-1}], \ldots, s_{n-1}[t_0, \ldots, t_{m-1}]] = (t[s_0, \ldots, s_{n-1}])[t_0, \ldots, t_{m-1}].
\]

A *generalized co hypersubstitution* of type τ is a mapping $\sigma : \{f_i \mid i \in I\} \to CT'\tau$. The extension of σ is a mapping $\hat{\sigma} : CT'\tau \to CT'\tau$ which is inductively defined by the following steps:

(i) $\hat{\sigma}(e^n_j) := e^n_j$ for every $n \geq 1$ and $0 \leq j \leq n-1$,

(ii) $\hat{\sigma}(f_i) := \sigma(f_i)$ for every $i \in I$,

(iii) $\hat{\sigma}(f_i[t_1, \ldots, t_n]) := \sigma(f_i)[\hat{\sigma}[t_1], \ldots, \hat{\sigma}[t_n]]$ for $t_1, \ldots, t_n \in CT'^{(n)}$.
Denoted by $\text{Cohyp}_G(\tau)$ the set of all generalized cohypersubstitutions of type τ.

Definition 2.2. [4] If $t, t_1, \ldots, t_n \in CT$ and $\sigma \in \text{Cohyp}_G(\tau)$, then

$$\hat{\sigma}(t[t_1, \ldots, t_n]) = \hat{\sigma}(t)[\hat{\sigma}(t_1), \ldots, \hat{\sigma}(t_n)].$$

Proposition 2.3. [1] For arbitrary coterms t, t_0, \ldots, t_{n-1} and $\sigma_1, \sigma_2 \in \text{Cohyp}_G(\tau)$,

$$(\hat{\sigma}_1 \circ \hat{\sigma}_2) = \hat{\sigma}_1 \circ \hat{\sigma}_2.$$

Define a binary operation $\circ_{CG} : \text{Cohyp}_G(\tau) \times \text{Cohyp}_G(\tau) \to \text{Cohyp}_G(\tau)$ on the set of all generalized cohypersubstitutions, $\text{Cohyp}_G(\tau)$, by $\sigma_1 \circ_{CG} \sigma_2 := \hat{\sigma}_1 \circ \hat{\sigma}_2$ for all $\sigma_1, \sigma_2 \in \text{Cohyp}_G(\tau)$ where \circ is the usual composition of mappings. Let σ_{id} be the generalized cohypersubstitution such that $\sigma_{id}(f_i) := f_i$ for all $i \in I$. Then σ_{id} is an identity element in $\text{Cohyp}_G(\tau)$. So, $\text{Cohyp}_G(\tau) := (\text{Cohyp}_G(\tau), \circ_{CG}, \sigma_{id})$ is a monoid and called the monoid of generalized cohypersubstitutions of type τ. The algebraic structural-properties of the monoid $\text{Cohyp}_G(\tau)$, see [4].

Throughout this paper, we use the following notations:

- $\sigma_t :=$ the generalized cohypersubstitution σ of type τ which maps f to the coterms t,
- $e^n_j :=$ the injection symbol for all $0 \leq j \leq n - 1, n \in \mathbb{N}$,
- $E :=$ the set of all injection symbols i.e. $E := \{e^n_j \mid n, j \in \mathbb{N}\}$,
- $E(t) :=$ the set of all injection symbols which occur in the coterms t.

3 Algebraic-structural Properties of Generalized Cohypersubstitutions

Definition 3.1. A nonempty set R together with two binary operations, denoted by $+$ and \cdot respectively, is said to be a left(right) seminear-ring if $(R, +)$ and (R, \cdot) are semigroups and satisfy the left (right) distributive law; i.e., for all $a, b, c \in R$, $a \cdot (b + c) = a \cdot b + a \cdot c((a + b) \cdot c = a \cdot c + b \cdot c)$.

Now, we define the binary operation $+_{CG}$ on the set $\text{Cohyp}_G(\tau)$ by

$$(\sigma_1 +_{CG} \sigma_2)(f_i) := (\sigma_2(f_i))[\sigma_1(f_i), \ldots, \sigma_1(f_i)] \in CT,$$

for all $\sigma_1, \sigma_2 \in \text{Cohyp}_G(\tau)$. Then we have the following propositions:
Proposition 3.2. For any \(\sigma_1, \sigma_2, \sigma_3 \in Cohyp_G(\tau) \) and \(i \in I \),
\[
\sigma_1 + CG (\sigma_2 + CG \sigma_3) = (\sigma_1 + CG \sigma_2) + CG \sigma_3.
\]

Proof. Let \(\sigma_1, \sigma_2, \sigma_3 \in Cohyp_G(\tau) \). We consider
\[
(\sigma_1 + CG (\sigma_2 + CG \sigma_3))(f_i) = (\sigma_2 + CG \sigma_3)(f_i)[\sigma_1(f_i), \ldots, \sigma_1(f_i)]
\]
\[
= (\sigma_3(f_i))[\sigma_1(f_i), \ldots, \sigma_1(f_i)][\sigma_1(f_i), \ldots, \sigma_1(f_i)]
\]
\[
= (\sigma_3(f_i))\left[\sigma_2(f_i), \ldots, \sigma_2(f_i)\right]\left[\sigma_1(f_i), \ldots, \sigma_1(f_i)\right]
\]
\[
= (\sigma_3(f_i))\left[\sigma_1 + CG \sigma_2(f_i), \ldots, \sigma_1 + CG \sigma_2(f_i)\right]
\]
\[
= (\sigma_1 + CG \sigma_2 + CG \sigma_3)(f_i).
\]

Then \((Cohyp_G(\tau), +CG) \) is a semigroup.

Proposition 3.3. For any \(\sigma_1, \sigma_2, \sigma_3 \in Cohyp_G(\tau) \) and \(i \in I \),
\[
\sigma_1 \circ CG (\sigma_2 + CG \sigma_3) = (\sigma_1 \circ CG \sigma_2) + CG (\sigma_1 \circ CG \sigma_3).
\]

Proof. Let \(\sigma_1, \sigma_2, \sigma_3 \in Cohyp_G(\tau) \). Consider
\[
(\sigma_1 \circ CG (\sigma_2 + CG \sigma_3))(f_i) = \hat{\sigma}_1((\sigma_2 + CG \sigma_3)(f_i))
\]
\[
= \hat{\sigma}_1((\sigma_3(f_i)\left[\sigma_2(f_i), \ldots, \sigma_2(f_i)\right])
\]
\[
= (\hat{\sigma}_1(\sigma_3(f_i))\left[\hat{\sigma}_1(\sigma_2(f_i)), \ldots, \hat{\sigma}_1(\sigma_2(f_i))\right]
\]
\[
= (\sigma_1 \circ CG \sigma_3)(f_i)\left[\sigma_1 \circ CG \sigma_2(f_i), \ldots, \sigma_1 \circ CG \sigma_2(f_i)\right]
\]
\[
= ((\sigma_1 \circ CG \sigma_2) + CG (\sigma_1 \circ CG \sigma_3))(f_i).
\]

For any generalized cohypersubstitutions \(\sigma_1, \sigma_2 \) and \(\sigma_3 \), the right distributive law; i.e., \((\sigma_1 + CG \sigma_2) \circ CG \sigma_3 = (\sigma_1 \circ CG \sigma_3) + CG (\sigma_2 \circ CG \sigma_3) \), is not true as the following example shows:
Example 3.4. Let $\tau = (2)$; that is, there is a binary cooperation symbol f, and $\sigma_1, \sigma_2, \sigma_3 \in \text{Cohyp}_G(\tau)$ such that $\sigma_1(f) = f[e_0^2, f[e_3^2, e_1^2]], \sigma_2(f) = f[f[e_1^2, e_3^2], e_2^2]$, and $\sigma_3(f) = f[e_1^2, e_3^2]$. So,

$$((\sigma_1 \circ CG \sigma_2) \circ CG \sigma_3)(f) = f[f[e_1^2, f[e_3^2, e_2^2]], e_2^2]$$

and

$$((\sigma_1 \circ CG \sigma_3) + CG (\sigma_2 \circ CG \sigma_3))(f) = f[f[e_3^2, e_2^2], e_2^2].$$

Thus $(\sigma_1 + CG \sigma_2) \circ CG \sigma_3 \neq (\sigma_1 \circ CG \sigma_3) + CG (\sigma_2 \circ CG \sigma_3)$.

Then we obtain the following lemma:

Lemma 3.5. $\text{Cohyp}_{G}^{+CG}(\tau) := (\text{Cohyp}_G(\tau), \circ CG, + CG)$ is a left seminear-ring.

Proof. Since $(\text{Cohyp}_G(\tau), \circ CG)$ is a monoid, the proof directly follows from Propositions 3.2 and 3.3. \qed

Next, we define another binary operation \oplus_{CG} on the set $\text{Cohyp}_G(\tau)$ by

$$(\sigma_1 \oplus_{CG} \sigma_2)(f_i) := (\sigma_1(f_i))[\sigma_2(f_i)]^{n_i}_{\text{terms}} \in CT(\tau),$$

for all $\sigma_1, \sigma_2 \in \text{Cohyp}_G(\tau)$. Then we have the following.

Proposition 3.6. For any $\sigma_1, \sigma_2, \sigma_3 \in \text{Cohyp}_G(\tau)$ and $i \in I$,

$$\sigma_1 \oplus_{CG} (\sigma_2 \oplus_{CG} \sigma_3) = (\sigma_1 \oplus_{CG} \sigma_2) \oplus_{CG} \sigma_3.$$

Proof. Let $\sigma_1, \sigma_2, \sigma_3 \in \text{Cohyp}_G(\tau)$. Consider

$$((\sigma_1 \oplus_{CG} \sigma_2) \oplus_{CG} \sigma_3)(f_i) = ((\sigma_1 \oplus_{CG} \sigma_2)(f_i))[\sigma_3(f_i)]^{n_i}_{\text{terms}}$$

$$= (\sigma_1(f_i))[\sigma_2(f_i)]^{n_i}_{\text{terms}}[\sigma_3(f_i)]^{n_i}_{\text{terms}}$$

$$= (\sigma_1(f_i))[\sigma_2(f_i)][\sigma_3(f_i)]^{n_i}_{\text{terms}}[\sigma_3(f_i)], \ldots,$$

$$= (\sigma_1(f_i))[\sigma_2(f_i)][\sigma_3(f_i)]^{n_i}_{\text{terms}}[\sigma_3(f_i))]

= (\sigma_1(f_i))[\sigma_2(\oplus_{CG} \sigma_3)(f_i)], \ldots, (\sigma_2(\oplus_{CG} \sigma_3)(f_i)]

= (\sigma_1(\oplus_{CG} (\sigma_2(\oplus_{CG} \sigma_3)(f_i))+ (\sigma_1(\oplus_{CG} \sigma_3)(f_i))]

= (\sigma_1 \oplus_{CG} (\sigma_2 \oplus_{CG} \sigma_3))(f_i).$$

\qed
Then \((\text{Cohyp}_G(\tau), \oplus_{CG})\) is a semigroup.

Proposition 3.7. For any \(\sigma_1, \sigma_2, \sigma_3 \in \text{Cohyp}_G(\tau)\) and \(i \in I\),

\[
\sigma_1 \circ_{CG} (\sigma_2 \oplus_{CG} \sigma_3) = (\sigma_1 \circ_{CG} \sigma_2) \oplus_{CG} (\sigma_1 \circ_{CG} \sigma_3).
\]

Proof. Let \(\sigma_1, \sigma_2, \sigma_3 \in \text{Cohyp}_G(\tau)\). Consider

\[
(\sigma_1 \circ_{CG} (\sigma_2 \oplus_{CG} \sigma_3))(f_i) = \hat{\sigma}_1((\sigma_2 \oplus_{CG} \sigma_3)(f_i))
\]

\[
= \hat{\sigma}_1((\sigma_2)(f_i)[\sigma_3(f_i), \ldots, \sigma_3(f_i)])
\]

\[
= (\hat{\sigma}_1(\sigma_2))(f_i)[\hat{\sigma}_1(\sigma_3(f_i)), \ldots, \hat{\sigma}_1(\sigma_3(f_i))],
\]

\[
= ((\sigma_1 \circ_{CG} \sigma_2)(f_i))[\sigma_1(\sigma_3(f_i)), \ldots, \sigma_1(\sigma_3(f_i))]
\]

\[
= ((\sigma_1 \circ_{CG} \sigma_2) \oplus_{CG} (\sigma_1 \circ_{CG} \sigma_3))(f_i).
\]

However, the equation \((\sigma_1 \oplus_{CG} \sigma_2) \circ_{CG} \sigma_3 = (\sigma_1 \circ_{CG} \sigma_3) \oplus_{CG} (\sigma_2 \circ_{CG} \sigma_3)\) is not true for all \(\sigma_1, \sigma_2, \sigma_3 \in \text{Cohyp}_G(\tau)\) as the following example shows:

Example 3.8. Let \(\tau = (2); \) that is, there is a binary operation symbol \(f\) and \(\sigma_1, \sigma_2, \sigma_3 \in \text{Cohyp}_G(\tau)\) such that \(\sigma_1(f) = f[e_1^2, e_2^2], \sigma_2(f) = f[e_0^2, f[e_3^2, e_1^2]],\) and \(\sigma_3(f) = f[f[e_1^2, e_0^2], e_2^2].\) So

\[
((\sigma_1 \oplus_{CG} \sigma_2) \circ_{CG} \sigma_3)(f) = f[f[f[e_1^2, f[e_2^2, e_3^2]], f[e_3^2, e_1^2]], e_2^2]
\]

and

\[
((\sigma_1 \circ_{CG} \sigma_3) \oplus_{CG} (\sigma_2 \circ_{CG} \sigma_3))(f) = f[e_2^2, e_2^2].
\]

Thus \((\sigma_1 \oplus_{CG} \sigma_2) \circ_{CG} \sigma_3 \neq (\sigma_1 \circ_{CG} \sigma_3) \oplus_{CG} (\sigma_2 \circ_{CG} \sigma_3)\).

So, we have the following lemma.

Lemma 3.9. \(\text{Cohyp}^{\oplus_{CG}}_G(\tau) := (\text{Cohyp}_G(\tau), \circ_{CG}, \oplus_{CG})\) is a left seminear-ring.

Proof. Since \((\text{Cohyp}_G(\tau), \circ_{CG})\) is a monoid, the proof directly follows from Propositions 3.6 and 3.7.

4 Submonoids of Generalized Cohypersubstitutions

Definition 4.1. Let $\tau = (n_i)_{i \in I}$, $n_i \in \mathbb{N} \setminus \{0\}$ be a type with a cooperation symbol f_i of the arity n_i, for each $i \in I$.

A generalized cohypersubstitution σ of type τ is called a projection generalized cohypersubstitution if the coterm $\sigma(f_i)$ is the injection symbol for each $i \in I$. Let $P_{CG}^\tau(\tau)$ be the set of all projection generalized cohypersubstitutions of type τ.

A generalized cohypersubstitution σ of type τ is called a dual generalized cohypersubstitution if the coterm $\sigma(f_i) = f[\pi^{n_i}_{(0)}, \ldots, \pi^{n_i}_{(n_i-1)}]$, where π is a permutation of the set $J = \{0, 1, \ldots, n_i - 1\}$. Let $D_{CG}^\tau(\tau)$ be the set of all such dual generalized cohypersubstitutions of type τ.

A generalized cohypersubstitution σ of type τ is called leftmost if for every $i \in I$, the first injection symbol occurs in $\hat{\sigma}(f_i[\pi^{n_i}_{0}, \ldots, \pi^{n_i}_{n_i-1}])$ is $\pi^{n_i}_{0}$. Let $\text{Left}^{\tau}_{CG}(\tau)$ be the set of all leftmost generalized cohypersubstitutions of type τ.

A generalized cohypersubstitution σ of type τ is called rightmost if for every $i \in I$, the last injection symbol occur in $\hat{\sigma}(f_i[\pi^{n_i}_{0}, \ldots, \pi^{n_i}_{n_i-1}])$ is $\pi^{n_i}_{n_i-1}$. Let $\text{Right}^{\tau}_{CG}(\tau)$ be the set of all rightmost generalized cohypersubstitutions of type τ.

A generalized cohypersubstitution σ of type τ is called outermost if for every $i \in I$, the first injection symbol occurs in $\hat{\sigma}(f_i[\pi^{n_i}_{0}, \ldots, \pi^{n_i}_{n_i-1}])$ is $\pi^{n_i}_{0}$ and the last injection symbol is $\pi^{n_i}_{n_i-1}$. Let $\text{Out}^{\tau}_{CG}(\tau)$ be the set of all outermost generalized cohypersubstitutions of type τ. Note that $\text{Out}^{\tau}_{CG}(\tau) = \text{Left}^{\tau}_{CG}(\tau) \cap \text{Right}^{\tau}_{CG}(\tau)$.

A generalized cohypersubstitution σ of type τ is called regular if, for every $i \in I$, each of injection symbols $\pi^{n_i}_{0}, \ldots, \pi^{n_i}_{n_i-1}$ occurs in $\hat{\sigma}(f_i[\pi^{n_i}_{0}, \ldots, \pi^{n_i}_{n_i-1}])$. Let $\text{Reg}^{\tau}_{CG}(\tau)$ be the set of all regular generalized cohypersubstitutions of type τ.

A generalized cohypersubstitution σ of type τ is called pre-generalized cohypersubstitution if the coterm $\sigma(f_i)$ is not the injection symbol. Let $\text{Pre}^{\tau}_{CG}(\tau)$ be the set of all pre-generalized cohypersubstitutions of type τ.

Proposition 4.2. Let τ be a type of generalized cohypersubstitution. The sets $P_{CG}^\tau(\tau) \cup \{\sigma_{id}\}$, $D_{CG}^\tau(\tau)$, $\text{Left}^{\tau}_{CG}(\tau)$, $\text{Right}^{\tau}_{CG}(\tau)$, $\text{Out}^{\tau}_{CG}(\tau)$, $\text{Reg}^{\tau}_{CG}(\tau)$ and $\text{Pre}^{\tau}_{CG}(\tau)$ are submonoids of $\text{Cohyp}_{CG}(\tau)$.

Structural Properties of Cohyp$_G(\tau)$

Proof. Obviously σ_{id} belongs to all of the sets. We only show that all of the sets are closed under the binary operation \circ_{CG}.

Let $\sigma_1, \sigma_2 \in P_{CG}^{inj}(\tau) \cup \{0\}$. Consider the possible four cases as follows:

Case 1. If σ_1, σ_2 are not σ_{id}, then both $\sigma_1(f_i)$ and $\sigma_2(f_i)$ are injection symbols for each $i \in I$. Thus $(\sigma_1 \circ_{CG} \sigma_2)(f_i) = \hat{\sigma}_1(\sigma_2(f_i)) = \hat{\sigma}_1(e^{n_i}_j) = e^{n_i}_j \in \hat{E}$.

Case 2. If $\sigma_1 = \sigma_2 = \sigma_{id}$, then

\[
(\sigma_1 \circ_{CG} \sigma_2)(f_i) = (\sigma_{id} \circ_{CG} \sigma_{id})(f_i) = \hat{\sigma}_{id}(\sigma_{id}(f_i)) = \hat{\sigma}_{id}(f_i[e^{n_i}_0, \ldots, e^{n_i}_{n_i-1}]) = \sigma_{id}(f_i)[e^{n_i}_0, \ldots, e^{n_i}_{n_i-1}]
\]

Case 3. If $\sigma_1 \in P_{CG}^{inj}(\tau)$ and $\sigma_2 = \sigma_{id}$, then

\[
(\sigma_1 \circ_{CG} \sigma_2)(f_i) = (\sigma_{id} \circ_{CG} \sigma_{id})(f_i) = \hat{\sigma}_{id}(\sigma_{id}(f_i)) = \hat{\sigma}_{id}(f_i)[e^{n_i}_0, \ldots, e^{n_i}_{n_i-1}].
\]

So, if $\sigma_1(f_i) = e^{n_i}_j; 0 \leq j \leq n_i - 1$, then $(\sigma_1 \circ_{CG} \sigma_2)(f_i) = e^{n_i}_j$ and if $\sigma_1(f_i) = e^{n_i}_k; k \geq n_i$, then $(\sigma_1 \circ_{CG} \sigma_2)(f_i) = e^{n_i}_k$.

Case 4. If $\sigma_2 \in P_{CG}^{inj}(\tau)$ and $\sigma_1 = \sigma_{id}$, then $(\sigma_1 \circ_{CG} \sigma_2)(f_i) = (\sigma_{id} \circ_{CG} \sigma_2)(f_i) = \hat{\sigma}_{id}(\sigma_2(f_i)) = \epsilon^{n_i}_j \in \hat{E}$. Hence $\sigma_1 \circ_{CG} \sigma_2 \in P_{CG}^{inj}(\tau) \cup \{\sigma_{id}\}$.

Let $\sigma_1, \sigma_2 \in D_{CG}^{inj}(\tau)$. Then $\sigma_1(f_i) = f_i[e^{n_i}_0, \ldots, e^{n_i}_{n_i-1}]$ and $\sigma_2(f_i) = f_i[e^{n_i}_{\pi(0)}, \ldots, e^{n_i}_{\pi(n_i-1)}]$, where π, π' are permutations of the set $J = \{0, 1, \ldots, n_i-1\}$. Consider

\[
(\sigma_1 \circ_{CG} \sigma_2)(f_i) = \hat{\sigma}_1(\sigma_2(f_i)) = \hat{\sigma}_1(f_i[e^{n_i}_{\pi(0)}, \ldots, e^{n_i}_{\pi(n_i-1)}]) = \hat{\sigma}_1(f_i)[e^{n_i}_{\pi(0)}, \ldots, e^{n_i}_{\pi(n_i-1)}] = (f_i[e^{n_i}_{\pi(0)}, \ldots, e^{n_i}_{\pi(n_i-1)}])[e^{n_i}_{\pi(0)}, \ldots, e^{n_i}_{\pi(n_i-1)}] = f_i[e^{n_i}_{\pi'(0)}, \ldots, e^{n_i}_{\pi'(n_i-1)}] = f_i[e^{n_i}_{\pi'\circ\pi(0)}, \ldots, e^{n_i}_{\pi'\circ\pi(n_i-1)}].
\]

Hence, $\sigma_1 \circ_{CG} \sigma_2 \in D_{CG}^{inj}(\tau)$.

Let $\sigma \in Out_{CG}^{inj}(\tau)$ and $t \in CT_{\tau}$. We will prove by induction on the complexity of the coterm t that the first and last injection symbols occurring
in \(\hat{\sigma}(t) \) agree with the first and last injection symbols, respectively, occurring in \(t \). If \(t = e^n_j \) is an injection symbol, then \(\hat{\sigma}(t) = \hat{\sigma}(e^n_j) = e^n_j \). If \(t = f_i[t_0, \ldots, t_{n_i-1}] \) is a composed coterm where the first and last injection symbol occurring in \(\hat{\sigma}(t_i) \) agree with the first and last injection symbol occurring in \(t_i; 0 \leq l \leq n_i - 1 \), respectively. Suppose that the first injection symbol in \(\hat{\sigma}(t_0) \) is \(e^0_i \) and the last injection symbol in \(\hat{\sigma}(t_{n_i-1}) \) is \(e^{n_i}_{n_i-1} \). Then the first and last injection symbols in \(t \) is \(e^0_i \) and \(e^{n_i}_{n_i-1} \), respectively. Since \(\sigma \in \text{Out}_{\text{CG}}^{\text{inj}}(\tau) \), the first and last injection symbol in \(\hat{\sigma}(t) = (\sigma(f_i))[\hat{\sigma}(t_0), \ldots, \hat{\sigma}(t_{n_i-1})] \) is \(e^0_i \) and \(e^{n_i}_{n_i-1} \), respectively.

Now, we can show that \(\text{Left}_{\text{CG}}^{\text{inj}}(\tau), \text{Right}_{\text{CG}}^{\text{inj}}(\tau) \), and \(\text{Out}_{\text{CG}}^{\text{inj}}(\tau) \) are closed under the operation \(\circ_{\text{CG}} \). Let \(\sigma_1, \sigma_2 \) be generalized cohypersubstitutions, both either leftmost, rightmost or outermost. Then

\[
(\sigma_1 \circ_{\text{CG}} \sigma_2)(f_i[e^0_i, \ldots, e^{n_i}_{n_i-1}]) = (\hat{\sigma}_1 \circ \hat{\sigma}_2)(f_i[e^0_i, \ldots, e^{n_i}_{n_i-1}]) = \hat{\sigma}_1(\hat{\sigma}_2(f_i[e^0_i, \ldots, e^{n_i}_{n_i-1}])),
\]

and it follows from the previous reasoning that this product has the corresponding property.

Let \(\sigma \in \text{Reg}_{\text{CG}}^{\text{inj}}(\tau) \) and \(t \in CT_\tau \). We will prove by induction on the complexity of the coterm \(t \) that the injection symbols occurring in \(t \) and \(\hat{\sigma}(t) \) are the same. If \(t = e^n_j \) is an injection symbol, then \(\hat{\sigma}(t) = \hat{\sigma}(e^n_j) = e^n_j \). If \(t = f_i[t_0, \ldots, t_{n_i-1}] \), where the injection symbol occurring in \(\hat{\sigma}(t_i) \) and \(t_i; 0 \leq l \leq n_i - 1 \) are the same. Since \(\hat{\sigma}(t) = (\sigma(f_i))[\hat{\sigma}(t_0), \ldots, \hat{\sigma}(t_{n_i-1})] \) and \(\sigma \in \text{Reg}_{\text{CG}}^{\text{inj}}(\tau) \), the injection symbols occurring in \(t \) and \(\hat{\sigma}(t) \) are the same. So, if \(\sigma_1, \sigma_2 \in \text{Reg}_{\text{CG}}^{\text{inj}}(\tau) \), then \((\sigma_1 \circ_{\text{CG}} \sigma_2)(f_i[e^0_i, \ldots, e^{n_i}_{n_i-1}]) = \hat{\sigma}_1(\hat{\sigma}_2(f_i[e^0_i, \ldots, e^{n_i}_{n_i-1}]))) \). It follows from the previous reasoning that this product has the corresponding property.

Finally, let \(\sigma_1, \sigma_2 \in \text{Pre}_{\text{CG}}^{\text{inj}}(\tau) \). It is clear that \(\sigma_1 \circ_{\text{CG}} \sigma_2 \) is again a pre-generalized cohypersubstitution.

Therefore, the sets \(D_{\text{CG}}^{\text{inj}}(\tau) \cup \{\sigma_\text{id}\}, D_{\text{CG}}^{\text{inj}}(\tau), \text{Left}_{\text{CG}}^{\text{inj}}(\tau), \text{Right}_{\text{CG}}^{\text{inj}}(\tau), \text{Out}_{\text{CG}}^{\text{inj}}(\tau), \text{Reg}_{\text{CG}}^{\text{inj}}(\tau), \text{Pre}_{\text{CG}}^{\text{inj}}(\tau) \) are submonoids of \(\text{Cohyp}_{\text{CG}}(\tau) \).

Proposition 4.3. For any type \(\tau \), the following properties hold:

(i) \(D_{\text{CG}}^{\text{inj}}(\tau) \subset \text{Pre}_{\text{CG}}^{\text{inj}}(\tau) \),

(ii) \(\text{Reg}_{\text{CG}}^{\text{inj}}(\tau) \subset \text{Pre}_{\text{CG}}^{\text{inj}}(\tau) \),

(iii) \(\text{Out}_{\text{CG}}^{\text{inj}}(\tau) \subset \text{Pre}_{\text{CG}}^{\text{inj}}(\tau) \).

Proof. The proof is straightforward. \(\square \)
Proposition 4.4. For any type \(\tau \), the sets \(\text{Pre}_{CG}^{\text{inj}}(\tau) \cup \{ \sigma_{id} \}, \text{Left}_{CG}^{\text{inj}}(\tau), \text{Right}_{CG}^{\text{inj}}(\tau), \text{Out}_{CG}^{\text{inj}}(\tau), \text{Reg}_{CG}^{\text{inj}}(\tau) \), and \(\text{Pre}_{CG}^{\text{inj}}(\tau) \) are subsemigroups of \((\text{Cohyp}_{CG}(\tau), +_{CG})\).

Proof. We will prove that the sets \(\text{Pre}_{CG}^{\text{inj}}(\tau) \cup \{ \sigma_{id} \}, \text{Left}_{CG}^{\text{inj}}(\tau), \text{Right}_{CG}^{\text{inj}}(\tau), \text{Out}_{CG}^{\text{inj}}(\tau), \text{Reg}_{CG}^{\text{inj}}(\tau) \), and \(\text{Pre}_{CG}^{\text{inj}}(\tau) \) are closed under the operation \(+_{CG} \).

Let \(\sigma_1, \sigma_2 \in \text{Pre}_{CG}^{\text{inj}}(\tau) \). Then \(\sigma_1(f_i) \) and \(\sigma_2(f_i) \) are injection symbols for each \(i \in I \). Since \((\sigma_1 +_{CG} \sigma_2)f_i := (\sigma_2(f_i))\left[\sigma_1(f_i), \ldots, \sigma_1(f_i)\right] \) and both of the coterm \(\sigma_1(f_i) \) and \(\sigma_2(f_i) \) are injection symbols, this implies that the coterm \((\sigma_1 +_{CG} \sigma_2)(f_i) \) is an injection symbol. So \((\sigma_1 +_{CG} \sigma_2)f_i \in \text{Pre}_{CG}^{\text{inj}}(\tau) \).

Let \(\sigma_1, \sigma_2 \in \text{Left}_{CG}^{\text{inj}}(\tau) \). Then \(\text{leftmost}_{inj}(\sigma_1(f_i)) = \text{leftmost}_{inj}(\sigma_2(f_i)) = e^{n_i}_{0} \). By the definition of \(+_{CG} \), we have \((\sigma_1 +_{CG} \sigma_2)f_i := (\sigma_2(f_i))\left[\sigma_1(f_i), \ldots, \sigma_1(f_i)\right] \). Since \(\text{leftmost}_{inj}(\sigma_1(f_i)) = \text{leftmost}_{inj}(\sigma_2(f_i)) = e^{n_i}_{0} \), if we substitute the coterm \(\sigma_2(f_i) \) by a coterm \(\sigma_1(f_i) \), then we also have \(\text{leftmost}_{inj}((\sigma_2(f_i))\left[\sigma_1(f_i), \ldots, \sigma_1(f_i)\right]) = e^{n_i}_{0} \). So, \(\sigma_1 +_{CG} \sigma_2 \in \text{Left}_{CG}^{\text{inj}}(\tau) \).

Similarly, we can show that \(\sigma_1 +_{CG} \sigma_2 \in \text{Right}_{CG}^{\text{inj}}(\tau) \) and \(\sigma_1 +_{CG} \sigma_2 \in \text{Out}_{CG}^{\text{inj}}(\tau) \).

Let \(\sigma_1, \sigma_2 \in \text{Reg}_{CG}^{\text{inj}}(\tau) \). Then every injection symbols \(e^{n_i}_{0}, \ldots, e^{n_i}_{1} \) occurs in \(\sigma_1(f_i) \) and \(\sigma_2(f_i) \). Since \((\sigma_1 +_{CG} \sigma_2)(f_i) := (\sigma_2(f_i))\left[\sigma_1(f_i), \ldots, \sigma_1(f_i)\right] \) and each of injection symbols \(e^{n_i}_{0}, \ldots, e^{n_i}_{1} \) occurs in \(\sigma_1(f_i) \) and \(\sigma_2(f_i) \), then every injection symbols \(e^{n_i}_{0}, \ldots, e^{n_i}_{1} \) are in \((\sigma_1 +_{CG} \sigma_2)(f_i) \). Thus \(\sigma_1 +_{CG} \sigma_2 \in \text{Reg}_{CG}^{\text{inj}}(\tau) \).

Therefore, \(\text{Pre}_{CG}^{\text{inj}}(\tau) \cup \{ \sigma_{id} \}, \text{Left}_{CG}^{\text{inj}}(\tau), \text{Right}_{CG}^{\text{inj}}(\tau), \text{Out}_{CG}^{\text{inj}}(\tau), \text{Reg}_{CG}^{\text{inj}}(\tau) \), and \(\text{Pre}_{CG}^{\text{inj}}(\tau) \) are subsemigroups of \((\text{Cohyp}_{CG}(\tau), +_{CG})\). \(\square \)

Proposition 4.5. Let \(\tau \) be a type of generalized cohypersubstitution. The set \(D_{CG}^{\text{inj}}(\tau) \) is not a subsemigroup of \((\text{Cohyp}_{CG}(\tau), +_{CG})\).

Proof. Let \(\sigma_1, \sigma_2 \in D_{CG}^{\text{inj}}(\tau) \). Then \(\sigma_1(f_i) = f_i[e^{n_i}_{0}, \ldots, e^{n_i}_i] \) and \(\sigma_2(f_i) = f_i[e^{n_i}_{0}, \ldots, e^{n_i}_i] \) where \(\pi, \pi' \) are permutations of the set \(J = \{0, \ldots, n_i- \).
1}. Consider

\[
\begin{align*}
(\sigma_1 +_{CG} \sigma_2)(f_i) &= (\sigma_2(f_i))[\sigma_1(f_i), \ldots, \sigma_1(f_i)] \\
&= (f_i[e_{\pi'(0)}^{n_i}, \ldots, e_{\pi'(n_i-1)}^{n_i}]) [f_i[e_{\pi(0)}^{n_i}, \ldots, e_{\pi(n_i-1)}^{n_i}], \ldots, f_i[e_{\pi(0)}^{n_i}, \ldots, e_{\pi(n_i-1)}^{n_i}]], \\
&= f_i[f_i[e_{\pi(0)}^{n_i}, \ldots, e_{\pi(n_i-1)}^{n_i}], \ldots, f_i[e_{\pi(0)}^{n_i}, \ldots, e_{\pi(n_i-1)}^{n_i}]].
\end{align*}
\]

Hence, \(\sigma_1 \circ_{CG} \sigma_2 \notin D_{CG}^{inj}(\tau)\). Therefore, \(D_{CG}^{inj}(\tau)\) is not a subsemigroup of \((\text{Cohyp}_{CG}(\tau), +_{CG})\).

Proposition 4.6. For any type \(\tau\), the set \(\text{Pre}_{CG}^{inj}(\tau)\) is a maximal subsemigroup of \((\text{Cohyp}_{CG}(\tau), +_{CG})\).

Proof. The proof directly follows from Propositions 4.3, 4.4, and 4.5.

Proposition 4.7. For any type \(\tau\), the sets \(\text{P}_{CG}^{inj}(\tau) \cup \{\sigma_{id}\}, \text{Left}_{CG}^{inj}(\tau), \text{Right}_{CG}^{inj}(\tau), \text{Out}_{CG}^{inj}(\tau), \text{Reg}_{CG}^{inj}(\tau), \) and \(\text{Pre}_{CG}^{inj}(\tau)\) are subsemigroups of \((\text{Cohyp}_{CG}(\tau), +_{CG})\).

Proof. The proof is similar to that of Proposition 4.4 by considering \((\sigma_1 \oplus_{CG} \sigma_2)(f_i) := (\sigma_1(f_i))[\sigma_2(f_i), \ldots, \sigma_2(f_i)]\).

Proposition 4.8. Let \(\tau\) be a type of generalized cohypersubstitution. The set \(D_{CG}^{inj}(\tau)\) is not a subsemigroup of \((\text{Cohyp}_{CG}(\tau), +_{CG})\).

Proof. The proof is similar to that of Proposition 4.5.

Proposition 4.9. For any type \(\tau\), the set \(\text{Pre}_{CG}^{inj}(\tau)\) is a maximal subsemigroup of \((\text{Cohyp}_{CG}(\tau), +_{CG})\).

Proof. The proof directly follows from Propositions 4.3, 4.7, and 4.8.

Now, we have the following theorem:

Theorem 4.10. Let \(\tau\) be a type of generalized cohypersubstitution. The sets \(\text{P}_{CG}^{inj}(\tau) \cup \{\sigma_{id}\}, \text{Left}_{CG}^{inj}(\tau), \text{Right}_{CG}^{inj}(\tau), \text{Out}_{CG}^{inj}(\tau), \text{Reg}_{CG}^{inj}(\tau), \) and \(\text{Pre}_{CG}^{inj}(\tau)\) are sub-left seminear-ring of \(\text{Cohyp}_{CG}^{+}(\tau)\).

Proof. The proof directly follows from Propositions 4.2 and 4.4.
Theorem 4.11. Let τ be a type of generalized cohypersubstitution. The sets $P_{CG}^{inj}(\tau) \cup \{\sigma_d\}$, $Left_{CG}^{inj}(\tau)$, $Right_{CG}^{inj}(\tau)$, $Out_{CG}^{inj}(\tau)$, $Reg_{CG}^{inj}(\tau)$, and $Pre_{CG}^{inj}(\tau)$ are sub-left seminear-ring of $Cohyp_{CG}^{G}(\tau)$.

Proof. The proof directly follows from Propositions 4.2 and 4.7.

Acknowledgment. The authors would like to thank the referees for their careful reading of the manuscript and their useful comments.

References

