Corrigendum to: On The Diophantine Equation $(132 k)^{x}+(4355 k)^{y}=(4357 k)^{z}$

Abdulrahman Balfaqih, Hailiza Kamarulhaili

School of Mathematical Sciences
Universiti Sains Malaysia
11800, Penang, Malaysia
email: mathsfriend417154@hotmail.com, hailiza@usm.my
(Received March 8, 2021, Accepted June 10, 2021)

Abstract

The Jeśmanowicz's conjecture written in 1956 states that for any primitive Pythagorean triple (a, b, c) with $a^{2}+b^{2}=c^{2}$ and any positive integer k, the only solution of equation $(a k)^{x}+(b k)^{y}=(c k)^{z}$ in positive integers is $(x, y, z)=(2,2,2)$. In this paper, we show that the special Diophantine equation $(132 k)^{x}+(4355 k)^{y}=(4357 k)^{z}$ has the only positive integer solution $(x, y, z)=(2,2,2)$ for every positive integer k.

1 Introduction

In 1956, Sierpiński [6] showed that the only positive integer solution of the Diophantine Equation

$$
\begin{equation*}
(a k)^{x}+(b k)^{y}=(c k)^{z} \tag{1.1}
\end{equation*}
$$

is $(x, y, z)=(2,2,2)$, for $k=1$ and $(a, b, c)=(3,4,5)$, and Jeśmanowicz [2] proved that the conjecture is true when $k=1$ and $(a, b, c) \in\{(5,12,13),(7,24,25),(9,40,41),(11,60,61)\}$. Jeśmanowicz also conjectured that the Diophantine equation (1.1) has the only positive integer solution $(x, y, z)=(2,2,2)$ for any positive integer k. There are many special

Key words and phrases: Jeśmanowicz's conjecture, Diophantine equation, Pythagorean triple.
AMS (MOS) Subject Classification: 11D61.
ISSN 1814-0432, 2021, http://ijmcs.future-in-tech.net
cases of Jeśmanowicz's conjecture solved for $k=1$. In 2012, Yang and Tang [11] proved that the only solution of the Diophantine Equation

$$
\begin{equation*}
(8 k)^{x}+(15 k)^{y}=(17 k)^{z} \tag{1.2}
\end{equation*}
$$

is $(x, y, z)=(2,2,2)$, for $k \geqslant 1$. Several authors had shown that Jeśmanowicz's conjecture is true for $n \in\{2,3,4,8\}$ where $(a, b, c)=\left(4 n, 4 n^{2}-1,4 n^{2}+1\right)$, see [9] and [12]. Yang and Jianxin [12] proved that the only solution of

$$
\begin{equation*}
(12 k)^{x}+(35 k)^{y}=(37 k)^{z} \tag{1.3}
\end{equation*}
$$

is $(x, y, z)=(2,2,2)$ for $k \geqslant 1$. In 2015, Ma and Wu [5] proved that the only solution of the Diophantine Equation

$$
\begin{equation*}
\left(\left(4 n^{2}-1\right) k\right)^{x}+(4 n k)^{y}=\left(\left(4 n^{2}+1\right) k\right)^{z} \tag{1.4}
\end{equation*}
$$

is $(x, y, z)=(2,2,2)$ when $P\left(4 n^{2}-1\right) \mid k$, where $P(m)$ denotes the product of distinct primes of m. They showed that if k is a positive integer and $P(k) \nmid$ $\left(4 n^{2}-1\right)$, then the only solution for equation (1.4) is $(x, y, z)=(2,2,2)$. In this case, they considered $n=p^{m}, p$ prime and $m \geqslant 0$ with $p \equiv-1(\bmod$ 4). In 2017, Soydan, Demirci, Cangul, and Togbé [7] considered(1.1) with $(a, b, c)=(20,99,101)$ and they proved the Diophantine equation

$$
\begin{equation*}
(20 k)^{x}+(99 k)^{y}=(101 k)^{z} \tag{1.5}
\end{equation*}
$$

has only the solution $(x, y, z)=(2,2,2)$. In this paper, we consider the case $n=33$ and $(a, b, c)=\left(4 n, 4 n^{2}-1,4 n^{2}+1\right)$ for (1.1). For other results, see for instance [10], [8], [3] and [1]. Our main result is the following theorem.

Theorem 1.1. The only positive integer solution of the Diophantine equation

$$
\begin{equation*}
(132 k)^{x}+(4355 k)^{y}=(4357 k)^{z} \tag{1.6}
\end{equation*}
$$

is $(x, y, z)=(2,2,2)$, for every positive integer k.

2 Proof Of Theorem 1.1

In this section, we begin with three useful results as follows:
Lemma 2.1. (see [3]) If (x, y, z) is a solution of (1.1) with $(x, y, z) \neq$ $(2,2,2)$, then x, y and z are distinct.

Lemma 2.2. (see [4]) The only positive integer solution of the Diophantine equation $\left(4 n^{2}-1\right)^{x}+(4 n)^{y}=\left(4 n^{2}+1\right)^{z}$ is $(x, y, z)=(2,2,2)$.
Lemma 2.3. (see [1]) If $z \geqslant \max \{x, y\}$, then the Diophantine equation $a^{x}+$ $b^{y}=c^{z}$, where a, b and c are any positive integers (not necessarily relatively prime) such that $a^{2}+b^{2}=c^{2}$, has no solution other than $x=y=z=2$.

Proof. (Theorem 1.1)

When $k=1$, equation (1.6) becomes

$$
\begin{equation*}
(132)^{x}+(4355)^{y}=(4357)^{z} \tag{2.7}
\end{equation*}
$$

from lemma 2.2, the Diophantine equation (2.7) has the only positive integer solution $(x, y, z)=(2,2,2)$. Suppose that (1.6) has at least another solution $(x, y, z) \neq(2,2,2)$. Then, by lemma 2.3, we have $z<\max \{x, y\}$ and, from lemma 2.1, $x \neq y, y \neq z$ and $x \neq z$. Thus, we consider two cases as follows:

Case 1 If $x<y$, then we consider two subcases $z<x<y$ and $x<z<y$.
Subcase 1.1 If $z<x<y$, then rewrite equation (1.6) as

$$
\begin{equation*}
k^{x-z}\left(132^{x}+4355^{y} k^{y-x}\right)=4357^{z} . \tag{2.8}
\end{equation*}
$$

So if $(k, 4357)=1$, then $x=z$, where $k \geqslant 2$, which is a contradiction. In addition, if $(k, 4357)=4357$, then we can write $k=4357^{m} n_{1}$, where $m \geqslant 1$, $n_{1} \geqslant 1$ and $\left(4357, n_{1}\right)=1$. Rewrite equation (2.8) as

$$
\begin{equation*}
4357^{m(x-z)} n_{1}^{x-z}\left(132^{x}+4355^{y} 4357^{m(y-x)} n_{1}^{y-x}\right)=4357^{z} . \tag{2.9}
\end{equation*}
$$

Then $n_{1}^{x-z} \mid 4357^{z}$ and so $n_{1}=1$. Therefore (2.9) becomes

$$
\begin{equation*}
132^{x}+4355^{y} 4357^{m(y-x)}=4357^{z-m(x-z)} \tag{2.10}
\end{equation*}
$$

which implies that $4357 \mid 132^{x}$ which is impossible.
Subcase 1.2 If $x<z<y$, then we rewrite (1.6) as

$$
\begin{equation*}
132^{x}+4355^{y} k^{y-x}=4357^{z} k^{z-x} \tag{2.11}
\end{equation*}
$$

So if $(k, 132)=1$, then $x=z$, where $k \geqslant 2$, which is a contradiction. In addition, if $(k, 132)>1$, then we can write $k=2^{r} 3^{s} 11^{q} n_{1}$, where $r+s+q \geqslant 1$, $n_{1} \geqslant 1$ and $\left(66, n_{1}\right)=1$, So rewrite (2.11) as
$132^{x}=2^{r(z-x)} 3^{s(z-x)} 11^{q(z-x)} n_{1}^{z-x}\left[4357^{z}-4355^{y} 2^{r(y-z)} 3^{s(y-z)} 11^{q(y-z)} n_{1}^{y-z}\right]$

Then we get seven cases as follows:

1. If $k=2^{r} n_{1}$, where $r \geqslant 1, n_{1} \geqslant 1, s=q=0$ and $\left(66, n_{1}\right)=1$, then (2.12) becomes

$$
\begin{equation*}
132^{x}=2^{r(z-x)} n_{1}^{z-x}\left[4357^{z}-4355^{y} 2^{r(y-z)} n_{1}^{y-z}\right] \tag{2.13}
\end{equation*}
$$

Thus $2 x=r(z-x)$ and $33^{x}=n_{1}^{z-x}\left[4357^{z}-4355^{y} 2^{r(y-z)} n_{1}^{y-z}\right]$. Hence $n_{1}=1$ and

$$
\begin{equation*}
4357^{z}-33^{x}=5^{y} 13^{y} 67^{y} 2^{r(y-z)} \tag{2.14}
\end{equation*}
$$

where $\left(66, n_{1}\right)=1$. By considering Equation (2.14) modulo 67, we obtain

$$
\begin{equation*}
2^{z}-33^{x} \equiv 0(\bmod 67) \tag{2.15}
\end{equation*}
$$

Since 2 is a primitive root of 67 , the congruence (2.15) becomes

$$
\begin{equation*}
z \equiv 32 x(\bmod 66) \tag{2.16}
\end{equation*}
$$

Therefore, z is even. Also, by considering Equation (2.14) modulo 13, we obtain

$$
\begin{equation*}
2^{z}-7^{x} \equiv 0(\bmod 13) \tag{2.17}
\end{equation*}
$$

Since 2 is a primitive root of 13 , the congruence (2.17) becomes

$$
\begin{equation*}
z \equiv 11 x(\bmod 12) \tag{2.18}
\end{equation*}
$$

Since $z-11 x$ and z are even, x is even. Assume that $z=2 z_{1}$ and $x=2 x_{1}$ with $z_{1}>x_{1}$. Therefore, Equation (2.14) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-33^{x_{1}}\right)\left(4357^{z_{1}}+33^{x_{1}}\right)=5^{y} 13^{y} 67^{y} 2^{r(y-z)} \tag{2.19}
\end{equation*}
$$

Since

$$
\left(4357^{z_{1}}-33^{x_{1}}, 4357^{z_{1}}+33^{x_{1}}\right)=2
$$

based on Equation (2.19), we obtain

$$
\begin{equation*}
67^{y} \mid 4357^{z_{1}}-33^{x_{1}} \text { or } 67^{y} \mid 4357^{z_{1}}+33^{x_{1}} \tag{2.20}
\end{equation*}
$$

But

$$
\begin{aligned}
67^{y}>67^{z}=4489^{z_{1}} & >(4357+33)^{z_{1}} \\
& >4357^{z_{1}}+33^{z_{1}} \\
& >4357^{z_{1}}+33^{x_{1}} \\
& >4357^{z_{1}}-33^{x_{1}}
\end{aligned}
$$

and this contradicts (2.20).
2. If $k=3^{s} n_{1}$ where $s \geqslant 1, n_{1} \geqslant 1, r=q=0$ and $\left(66, n_{1}\right)=1$, then (2.12) becomes

$$
\begin{equation*}
\frac{2^{2 x} 3^{x} 11^{x}}{3^{s(z-x)}}=n_{1}^{z-x}\left[4357^{z}-4355^{y} 3^{s(y-z)} n_{1}^{y-z}\right] \tag{2.21}
\end{equation*}
$$

Thus $x=s(z-x)$ and $44^{x}=n_{1}^{z-x}\left[4357^{z}-4355^{y} 3^{s(y-z)} n_{1}^{y-z}\right]$. So $n_{1}=1$. Accordingly, Equation (2.21) becomes

$$
\begin{equation*}
4357^{z}-44^{x}=67^{y} 13^{y} 5^{y} 3^{s(y-z)} \tag{2.22}
\end{equation*}
$$

By considering Equation (2.22) modulo 3, we get

$$
2^{x} \equiv 1(\bmod 3)
$$

Thus $x \equiv 0(\bmod 2)$. Similarly, by taking Equation (2.22) modulo 5, we obtain

$$
2^{z} \equiv(-1)^{x} \equiv 1(\bmod 5)
$$

Thus $z \equiv 0(\bmod 4)$. Therefore, we can write $x=2 x_{1}$ and $z=2 z_{1}$ with $z_{1}>x_{1}$. Accordingly, Equation (2.22) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-44^{x_{1}}\right)\left(4357^{z_{1}}+44^{x_{1}}\right)=67^{y} 13^{y} 5^{y} 3^{s(y-z)} \tag{2.23}
\end{equation*}
$$

Since

$$
\left(4357^{z_{1}}-44^{x_{1}}, 4357^{z_{1}}+44^{x_{1}}\right)=1,
$$

based on Equation (2.23), we have

$$
\begin{equation*}
67^{y} \mid 4357^{z_{1}}-44^{x_{1}} \text { or } 67^{y} \mid 4357^{z_{1}}+44^{x_{1}} . \tag{2.24}
\end{equation*}
$$

However,

$$
\begin{aligned}
67^{y}>67^{z}=4489^{z_{1}} & >(4357+44)^{z_{1}} \\
& >4357^{z_{1}}+44^{z_{1}} \\
& >4357^{z_{1}}+44^{x_{1}} \\
& >4357^{z_{1}}-44^{x_{1}}
\end{aligned}
$$

and this contradicts (2.24).
3. If $k=11^{q} n_{1}$, where $q \geqslant 1, n_{1} \geqslant 1, r=s=0$ and $\left(66, n_{1}\right)=1$, then, from (2.12), we get

$$
\begin{equation*}
\frac{2^{2 x} 3^{x} 11^{x}}{11^{q(z-x)}}=n_{1}^{z-x}\left[4357^{z}-4355^{y} 11^{q(y-z)} n_{1}^{y-z}\right] \tag{2.25}
\end{equation*}
$$

Thus, $x=q(z-x)$ and $12^{x}=n_{1}^{z-x}\left[4357^{z}-4355^{y} 11^{q(y-z)} n_{1}^{y-z}\right]$. So $n_{1}=1$. Then Equation (2.25) becomes

$$
\begin{equation*}
4357^{z}-12^{x}=67^{y} 13^{y} 5^{y} 11^{q(y-z)} \tag{2.26}
\end{equation*}
$$

By considering Equation (2.26) modulo 13, we obtain

$$
\begin{equation*}
2^{z}-12^{x} \equiv 0(\bmod 13) \tag{2.27}
\end{equation*}
$$

Since 2 is a primitive root of 13 , the congruence (2.27) becomes

$$
\begin{equation*}
z \equiv 6 x(\bmod 12) \tag{2.28}
\end{equation*}
$$

Thus z must be even. Also, by considering Equation (2.26) modulo 5, we obtain

$$
\begin{equation*}
2^{z}-2^{x} \equiv 0(\bmod 5) \tag{2.29}
\end{equation*}
$$

Since 2 is a primitive root of 5 , the congruence (2.29) becomes

$$
\begin{equation*}
z \equiv x(\bmod 4) \tag{2.30}
\end{equation*}
$$

and since $z-x$ and z are even, x is even. Therefore, we can write $x=2 x_{1}$ and $z=2 z_{1}$ with $z_{1}>x_{1}$. Accordingly, Equation (2.26) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-12^{x_{1}}\right)\left(4357^{z_{1}}+12^{x_{1}}\right)=67^{y} 13^{y} 5^{y} 11^{q(y-z)} \tag{2.31}
\end{equation*}
$$

We have $\left(4357^{z_{1}}-12^{x_{1}}, 4357^{z_{1}}+12^{x_{1}}\right)=1$. Thus, based on Equation (2.31), we obtain

$$
\begin{equation*}
67^{y} \mid 4357^{z_{1}}-12^{x_{1}} \text { or } 67^{y} \mid 4357^{z_{1}}+12^{x_{1}} \tag{2.32}
\end{equation*}
$$

But, from $x<z<y$, we have

$$
\begin{aligned}
67^{y}>67^{z}=4489^{z_{1}} & >(4357+12)^{z_{1}} \\
& >4357^{z_{1}}+12^{z_{1}} \\
& >4357^{z_{1}}+12^{x_{1}} \\
& >4357^{z_{1}}-12^{x_{1}}
\end{aligned}
$$

and this contradicts (2.32).
4. If $k=2^{r} 3^{s} n_{1}$, where $r \geqslant 1, s \geqslant 1, n_{1} \geqslant 1, q=0$ and $\left(66, n_{1}\right)=1$, then, from (2.12), we get the equation

$$
\begin{equation*}
\frac{2^{2 x} 3^{x} 11^{x}}{2^{r(z-x)} 3^{s(z-x)}}=n_{1}^{z-x}\left[4357^{z}-4355^{y} 2^{r(y-z)} 3^{s(y-z)} n_{1}^{y-z}\right] \tag{2.33}
\end{equation*}
$$

Thus,
$2 x=r(z-x), x=s(z-x)$ and $11^{x}=n_{1}^{z-x}\left[4357^{z}-4355^{y} 12^{s(y-z)} n_{1}^{y-z}\right]$.
So, $n_{1}=1$ and Equation (2.33) becomes

$$
\begin{equation*}
4357^{z}-11^{x}=67^{y} 13^{y} 5^{y} 12^{s(y-z)} \tag{2.34}
\end{equation*}
$$

By considering Equation (2.34) modulo 3, we obtain $2^{x} \equiv 1(\bmod 3)$. Thus $x \equiv 0(\bmod 2)$. Also, by considering Equation (2.34) modulo 5, we get $2^{z} \equiv 1(\bmod 5)$. Hence, $z \equiv 0(\bmod 4)$. Therefore, we can write $x=2 x_{1}$ and $z=2 z_{1}$ with $z_{1}>x_{1}$. Accordingly, Equation (2.34) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-11^{x_{1}}\right)\left(4357^{z_{1}}+11^{x_{1}}\right)=67^{y} 13^{y} 5^{y} 12^{s(y-z)} \tag{2.35}
\end{equation*}
$$

Observe that

$$
\left(4357^{z_{1}}-11^{x_{1}}, 4357^{z_{1}}+11^{x_{1}}\right)=2 .
$$

Thus, based on Equation (2.35), we obtain

$$
\begin{equation*}
67^{y} \mid 4357^{z_{1}}-11^{x_{1}} \text { or } 67^{y} \mid 4357^{z_{1}}+11^{x_{1}} . \tag{2.36}
\end{equation*}
$$

But

$$
\begin{aligned}
67^{y}>67^{z}=4489^{z_{1}} & >(4357+11)^{z_{1}} \\
& >4357^{z_{1}}+11^{z_{1}} \\
& >4357^{z_{1}}+11^{x_{1}} \\
& >4357^{z_{1}}-11^{x_{1}}
\end{aligned}
$$

and this contradicts (2.36).
5. If $k=2^{r} 11^{q} n_{1}$, where $r \geqslant 1, q \geqslant 1, n_{1} \geqslant 1, s=0$ and $\left(66, n_{1}\right)=1$, then, from (2.12), we get the equation

$$
\begin{equation*}
\frac{2^{2 x} 3^{x} 11^{x}}{2^{r(z-x)} 11^{q(z-x)}}=n_{1}^{z-x}\left[4357^{z}-4355^{y} 2^{r(y-z)} 11^{q(y-z)} n_{1}^{y-z}\right] . \tag{2.37}
\end{equation*}
$$

Thus
$2 x=r(z-x), x=q(z-x)$ and $3^{x}=n_{1}^{z-x}\left[4357^{z}-4355^{y} 44^{q(y-z)} n_{1}^{y-z}\right]$.
So, $n_{1}=1$ and Equation (2.37) becomes

$$
\begin{equation*}
4357^{z}-3^{x}=67^{y} 13^{y} 5^{y} 44^{q(y-z)} \tag{2.38}
\end{equation*}
$$

By considering Equation (2.38) modulo 4, we obtain

$$
1 \equiv(-1)^{x}(\bmod 4)
$$

Thus x must be even. Similarly, by considering Equation (2.38) modulo 5, we obtain

$$
\begin{equation*}
2^{z} \equiv 3^{x}(\bmod 5) \tag{2.39}
\end{equation*}
$$

Since 2 is a primitive root of 5 , the congruence (2.39) becomes $z \equiv$ $3 x(\bmod 4)$. Since $z-3 x$ and x are even, z must be even. Therefore, we can write $x=2 x_{1}$ and $z=2 z_{1}$ with $z_{1}>x_{1}$. Hence, Equation (2.38) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-3^{x_{1}}\right)\left(4357^{z_{1}}+3^{x_{1}}\right)=67^{y} 13^{y} 5^{y} 44^{q(y-z)} \tag{2.40}
\end{equation*}
$$

Since $\left(4357^{z_{1}}-3^{x_{1}}, 4357^{z_{1}}+3^{x_{1}}\right)=2$,

$$
\begin{equation*}
67^{y} \mid 4357^{z_{1}}-3^{x_{1}} \text { or } 67^{y} \mid 4357^{z_{1}}+3^{x_{1}} \tag{2.41}
\end{equation*}
$$

But

$$
\begin{aligned}
67^{y}>67^{z}=4489^{z_{1}} & >(4357+3)^{z_{1}} \\
& >4357^{z_{1}}+3^{z_{1}} \\
& >4357^{z_{1}}+3^{x_{1}} \\
& >4357^{z_{1}}-3^{x_{1}}
\end{aligned}
$$

and this contradicts (2.41).
6. If $k=3^{s} 11^{q} n_{1}$, where $s \geqslant 1, q \geqslant 1, n_{1} \geqslant 1, r=0$ and $\left(66, n_{1}\right)=1$, then, from (2.12), we get

$$
\begin{equation*}
\frac{2^{2 x} 3^{x} 11^{x}}{3^{s(z-x)} 11^{q(z-x)}}=n_{1}^{z-x}\left[4357^{z}-4355^{y} 3^{s(y-z)} 11^{q(y-z)} n_{1}^{y-z}\right] . \tag{2.42}
\end{equation*}
$$

So
$x=s(z-x)=q(z-x)$ and $2^{2 x}=n_{1}^{z-x}\left[4357^{z}-4355^{y} 33^{s(y-z)} n_{1}^{y-z}\right]$.
Thus $n_{1}=1$ and Equation (2.42) becomes

$$
\begin{equation*}
4357^{z}-2^{2 x}=67^{y} 13^{y} 5^{y} 33^{s(y-z)} \tag{2.43}
\end{equation*}
$$

By considering Equation (2.43) modulo 5, we obtain

$$
\begin{equation*}
2^{z}-2^{2 x} \equiv 0(\bmod 5) \tag{2.44}
\end{equation*}
$$

Since 2 is a primitive root of 5 , the congruence (2.44) becomes

$$
\begin{equation*}
z \equiv 2 x(\bmod 4) \tag{2.45}
\end{equation*}
$$

and since $z-2 x$ is even, z is even. Put $z=2 z_{1}$. Hence Equation (2.43) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-2^{x}\right)\left(4357^{z_{1}}+2^{x}\right)=67^{y} 13^{y} 5^{y} 33^{s(y-z)} \tag{2.46}
\end{equation*}
$$

Since

$$
\begin{gather*}
\left(4357^{z_{1}}-2^{x}, 4357^{z_{1}}+2^{x}\right)=1 \\
67^{y} \mid 4357^{z_{1}}-2^{x} \text { or } 67^{y} \mid 4357^{z_{1}}+2^{x} \tag{2.47}
\end{gather*}
$$

But

$$
\begin{aligned}
67^{y}>67^{z}=4489^{z_{1}} & >\left(4357+2^{2}\right)^{z_{1}} \\
& >4357^{z_{1}}+2^{x} \\
& >4357^{z_{1}}-2^{x}
\end{aligned}
$$

and this contradicts (2.47).
7. If $k=2^{r} 3^{s} 11^{q} n_{1}$, where $r \geqslant 1, s \geqslant 1, q \geqslant 1, n_{1} \geqslant 1$, and $\left(66, n_{1}\right)=1$, then, from (2.12), we get the equation

$$
\begin{equation*}
n_{1}{ }^{z-x}\left[4357^{z}-4355^{y} 2^{r(y-z)} 11^{q(y-z)} 3^{s(y-z)} n_{1}^{y-z}\right]=1 \tag{2.48}
\end{equation*}
$$

Since $x \neq z, n_{1}=1$. Therefore,

$$
\begin{equation*}
4357^{z}-1=4355^{y} 2^{r(y-z)} 11^{q(y-z)} 3^{s(y-z)} \tag{2.49}
\end{equation*}
$$

Since $4357^{z}-1 \equiv 2^{z}-1(\bmod 5), z \equiv 0(\bmod 4)$.
But

$$
4357^{2} \equiv 1(\bmod 2179)
$$

Thus

$$
4357^{z}-1 \equiv 0(\bmod 2179)
$$

From (2.49), we obtain

$$
4355^{y} 2^{r(y-z)} 11^{q(y-z)} 3^{s(y-z)} \equiv 0(\bmod 2179)
$$

which is impossible. This completes the proof for the first case.
Case 2 If $x>y$, then we obtain two subcases $z<y<x$ and $y<z<x$.
Subcase 2.1 If $z<y<x$, then, rewrite Equation (1.6) as

$$
\begin{equation*}
k^{y-z}\left(132^{x} k^{x-y}+4355^{y}\right)=4357^{z} \tag{2.50}
\end{equation*}
$$

If $(k, 4357)=1$, then $y=z$, where $k \geqslant 2$, which is a contradiction. In addition, if $(k, 4357)=4357$, then we can write $k=4357^{m} n_{1}$, where $m \geqslant$ $1, n_{1} \geqslant 1$ and (4357, n_{1}) $=1$. Rewrite Equation (2.50) as

$$
\begin{equation*}
4357^{m(y-z)} n_{1}^{y-z}\left(132^{x} 4357^{m(x-y)} n_{1}^{x-y}+4355^{y}\right)=4357^{z} \tag{2.51}
\end{equation*}
$$

Since

$$
\begin{gathered}
\left(n_{1}, 4357\right)=\left(132^{x} 4357^{m(x-y)} n_{1}^{x-y}+4355^{y}, 4357\right)=1, \\
n_{1}^{y-z}\left(132^{x} 4357^{m(x-y)} n_{1}^{x-y}+4355^{y}\right)=1
\end{gathered}
$$

which is impossible.
Subcase 2.2 If $y<z<x$, then, rewriting (1.6) as

$$
\begin{equation*}
k^{z-y}\left(4357^{z}-132^{x} k^{x-z}\right)=4355^{y} \tag{2.52}
\end{equation*}
$$

we have if $(k, 4355)=1$, then $y=z$, where $k \geqslant 2$, which is a contradiction. In addition, if $(k, 4355)>1$, then we can write $k=5^{r} 13^{s} 67^{q} n_{1}$, where $r+s+q \geqslant 1, n_{1} \geqslant 1$ and $\left(4355, n_{1}\right)=1$.

Then we get seven cases as follows:

1. If $k=5^{r} n_{1}$, where $r \geqslant 1, n_{1} \geqslant 1$ and $s=q=0$ with $\left(4355, n_{1}\right)=1$, then rewrite Equation (2.52) as

$$
\begin{equation*}
\frac{4355^{y}}{5^{r(z-y)}}=\frac{5^{y} 13^{y} 67^{y}}{5^{r(z-y)}}=n_{1}^{z-y}\left[4357^{z}-132^{x} 5^{r(x-z)} n_{1}^{x-z}\right] \tag{2.53}
\end{equation*}
$$

So, $5^{y}=5^{r(z-y)}$ and $n_{1}=1$. Thus, Equation (2.53) becomes

$$
\begin{equation*}
4357^{z}-871^{y}=4^{x} 3^{x} 11^{x} 5^{r(x-z)}, \tag{2.54}
\end{equation*}
$$

By considering Equation (2.54) modulo 33, we obtain

$$
\begin{equation*}
1 \equiv 13^{y}(\bmod 33) \tag{2.55}
\end{equation*}
$$

Hence, we can write $y=10 \mathrm{~m}$. Similarly, by considering Equation (2.54) modulo 5 , we obtain

$$
\begin{equation*}
2^{z} \equiv 1(\bmod 5) \tag{2.56}
\end{equation*}
$$

So, write $z=4 c$. Thus, assume
$z=2 z_{1}$ and $y=2 y_{1}$ with $z_{1}>y_{1}$, where $z_{1}=2 c$ and $y_{1}=5 m$.
Hence, Equation (2.54) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-871^{y_{1}}\right)\left(4357^{z_{1}}+871^{y_{1}}\right)=2^{2 x} 3^{x} 11^{x} 5^{r(x-z)} \tag{2.58}
\end{equation*}
$$

Since

$$
\begin{equation*}
4357^{z_{1}}+871^{y_{1}} \equiv 1+1 \equiv 2(\bmod 3) \tag{2.59}
\end{equation*}
$$

Hence, from (2.59), we get $3 \nmid 4357^{z_{1}}+871^{y_{1}}$ and since

$$
\left(4357^{z_{1}}-871^{y_{1}}, 4357^{z_{1}}+871^{y_{1}}\right)=2
$$

based on Equation (2.58), we have two possibilities:

$$
\begin{equation*}
2^{2 x-1} 3^{x} \mid 4357^{z_{1}}-871^{y_{1}} \quad \text { and } \quad 2 \mid 4357^{z_{1}}+871^{y_{1}} \tag{2.60}
\end{equation*}
$$

or

$$
\begin{equation*}
2\left(3^{x}\right) \mid 4357^{z_{1}}-871^{y_{1}} \quad \text { and } \quad 2^{2 x-1} \mid 4357^{z_{1}}+871^{y_{1}} \tag{2.61}
\end{equation*}
$$

Taking (2.60), we observe that $4357^{z_{1}} \equiv 871^{y_{1}}(\bmod 4)$, $1 \equiv 3^{y_{1}}(\bmod 4)$. Thus y_{1} is even. From (2.57), we assume that $y_{1}=5 m=10 m_{1}$. Therefore

$$
4357^{z_{1}}+871^{y_{1}} \equiv 1+2^{y_{1}} \equiv 1+2^{10 m_{1}} \equiv 1+1 \equiv 2(\bmod 11)
$$

Hence, $11 \nmid 4357^{z_{1}}+871^{y_{1}}$. Consequently

$$
\begin{equation*}
2^{2 x-1} 3^{x} 11^{x} \mid 4357^{z_{1}}-871^{y_{1}} \tag{2.62}
\end{equation*}
$$

But

$$
\begin{aligned}
2^{2 x-1} 3^{x} 11^{x}=\frac{132^{x}}{2}=\frac{\left(2^{7}+2^{2}\right)^{x}}{2}>2^{7 x-1}+2^{2 x-1}>2^{7 x-1} & >2^{13 z_{1}} \\
& >(4357+871)^{z_{1}} \\
& >4357^{z_{1}}+871^{z_{1}} \\
& >4357^{z_{1}}+871^{y_{1}} \\
& >4357^{z_{1}}-871^{y_{1}}
\end{aligned}
$$

and this contradicts (2.62). On the other hand, if we take (2.61), we observe that $4357^{z_{1}}+871^{y_{1}} \equiv 0(\bmod 4)$ and so $1+3^{y_{1}} \equiv 0(\bmod 4)$. Therefore, y_{1} is odd. From (2.57), we write $y_{1}=5 m=10 m_{1}+5$. Similarly,

$$
4357^{z_{1}}+871^{y_{1}} \equiv 0(\bmod 16)
$$

thus

$$
5^{z_{1}}+7^{10 m_{1}+5} \equiv 5^{z_{1}}+7 \equiv 0(\bmod 16)
$$

Since $\operatorname{ord}_{16} 5=4, z_{1}=4 s+2$. Therefore,

$$
4357^{z_{1}}-871^{y_{1}} \equiv 1-2^{y_{1}} \equiv 1-2^{10 m_{1}+5} \equiv 1-10 \equiv 2(\bmod 11)
$$

and

$$
4357^{z_{1}}-871^{y_{1}} \equiv 2^{z_{1}}-1 \equiv 2^{4 s+2}-1 \equiv 3(\bmod 5)
$$

Hence $11 \nmid 4357^{z_{1}}-871^{y_{1}}$ and $5 \nmid 4357^{z_{1}}-871^{y_{1}}$. So, from (2.61), we have

$$
\begin{equation*}
2\left(3^{x}\right) \mid 4357^{z_{1}}-871^{y_{1}} \quad \text { and } \quad 2^{2 x-1} 11^{x} 5^{r(x-z)} \mid 4357^{z_{1}}+871^{y_{1}} \tag{2.63}
\end{equation*}
$$

Then, from Equations (2.58) and (2.63), we obtain

$$
\begin{equation*}
4357^{z_{1}}-871^{y_{1}}=2\left(3^{x}\right) \tag{2.64}
\end{equation*}
$$

Thus, by considering Equation (2.64) modulo 13, we obtain

$$
\begin{equation*}
2^{z_{1}} \equiv 2\left(3^{x}\right)(\bmod 13) \tag{2.65}
\end{equation*}
$$

Since 2 is a primitive root of 13 , the congruence (2.65) becomes

$$
\begin{equation*}
z_{1} \equiv 1+4 x(\bmod 12) \tag{2.66}
\end{equation*}
$$

Thus z_{1} is odd and this contradicts (2.57).
2. If $k=13^{s} n_{1}$, where $s \geqslant 1, n_{1} \geqslant 1$ and $r=q=0$ with $\left(4355, n_{1}\right)=1$, then rewrite Equation (2.52) as

$$
\begin{equation*}
\frac{4355^{y}}{13^{s(z-y)}}=\frac{5^{y} 13^{y} 67^{y}}{13^{s(z-y)}}=n_{1}^{z-y}\left[4357^{z}-132^{x} 13^{s(x-z)} n_{1}^{x-z}\right] \tag{2.67}
\end{equation*}
$$

It follows that $13^{y}=13^{s(z-y)}$ and $n_{1}=1$. Therefore Equation (2.67) becomes

$$
\begin{equation*}
4357^{z}-335^{y}=4^{x} 3^{x} 11^{x} 13^{s(x-z)} \tag{2.68}
\end{equation*}
$$

By considering Equation (2.68) modulo 99, we obtain

$$
\begin{equation*}
1 \equiv 38^{y}(\bmod 99) \tag{2.69}
\end{equation*}
$$

Thus, we can write $y=30 \mathrm{~m}$. Similarly, by considering Equation (2.68) modulo 16, we obtain

$$
\begin{equation*}
5^{z} \equiv 15^{y} \equiv 15^{30 m} \equiv 1(\bmod 16) \tag{2.70}
\end{equation*}
$$

So, write $z=4 c$. Suppose
$z=2 z_{1}$ and $y=2 y_{1}$ with $z_{1}>y_{1}$, where $z_{1}=2 c$ and $y_{1}=15 m$.
Hence Equation (2.68) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-335^{y_{1}}\right)\left(4357^{z_{1}}+335^{y_{1}}\right)=2^{2 x} 3^{x} 11^{x} 13^{s(x-z)} \tag{2.72}
\end{equation*}
$$

Since

$$
\begin{equation*}
4357^{z_{1}}+335^{y_{1}} \equiv 1+5^{15 m} \equiv 1+1 \equiv 2(\bmod 11) \tag{2.73}
\end{equation*}
$$

from (2.73), we get $11 \nmid 4357^{z_{1}}+335{ }^{y_{1}}$. Since

$$
\left(4357^{z_{1}}-335^{y_{1}}, 4357^{z_{1}}+335^{y_{1}}\right)=2
$$

based on Equation (2.72), we have two possibilities:

$$
\begin{equation*}
2^{2 x-1} 11^{x} \mid 4357^{z_{1}}-335^{y_{1}} \quad \text { and } \quad 2 \mid 4357^{z_{1}}+335^{y_{1}} \tag{2.74}
\end{equation*}
$$

or

$$
\begin{equation*}
2\left(11^{x}\right) \mid 4357^{z_{1}}-335^{y_{1}} \quad \text { and } \quad 2^{2 x-1} \mid 4357^{z_{1}}+335^{y_{1}} . \tag{2.75}
\end{equation*}
$$

Considering (2.74), observe that $4357^{z_{1}} \equiv 335^{y_{1}}(\bmod 4)$. So $1 \equiv 3^{y_{1}}(\bmod$ $4)$. Thus y_{1} is even. Based on (2.71), we can write $y_{1}=15 m=30 m_{1}$. Therefore

$$
4357^{z_{1}}+335^{y_{1}} \equiv 1+2^{y_{1}} \equiv 1+2^{30 m_{1}} \equiv 1+1 \equiv 2(\bmod 3) .
$$

Hence $3 \nmid 4357^{z_{1}}+335^{y_{1}}$. Consequently,

$$
\begin{equation*}
2^{2 x-1} 3^{x} 11^{x} \mid 4357^{z_{1}}-335^{y_{1}} \tag{2.76}
\end{equation*}
$$

However, we have $y<z<x$. Thus

$$
\begin{aligned}
2^{2 x-1} 3^{x} 11^{x}=\frac{132^{x}}{2}=\frac{\left(2^{7}+2^{2}\right)^{x}}{2}>2^{7 x-1}+2^{2 x-1}>2^{7 x-1} & >2^{13 z_{1}} \\
& >(4357+335)^{z_{1}} \\
& >4357^{z_{1}}+335^{z_{1}} \\
& >4357^{z_{1}}+335^{y_{1}} \\
& >4357^{z_{1}}-335^{y_{1}}
\end{aligned}
$$

and this contradicts (2.76). On the other hand, if we consider (2.75), we see that $4357^{z_{1}}+335^{y_{1}} \equiv 0(\bmod 4)$. Thus,

$$
1+3^{y_{1}} \equiv 0(\bmod 4)
$$

So, y_{1} is odd. Based on (2.71), we can write $y_{1}=15 m=30 m_{1}+15$. Therefore,

$$
4357^{z_{1}}-335^{y_{1}} \equiv 1-2^{y_{1}} \equiv 1-2^{30 m_{1}+15} \equiv 1-2 \equiv 2(\bmod 3)
$$

Hence,

$$
\begin{equation*}
3 \nmid 4357^{z_{1}}-335^{y_{1}} . \tag{2.77}
\end{equation*}
$$

Also, if $13 \mid 4357^{z_{1}}-335^{y_{1}}$, then

$$
2^{z_{1}} \equiv 335^{30 m_{1}+15} \equiv 10^{15} \equiv 12(\bmod 13)
$$

and since 2 is a primitive root of 13 , we obtain $z_{1} \equiv 6(\bmod 12)$. Thus $z_{1}=12 c+6$. It follows that

$$
4357^{12 c+6}+335^{30 m_{1}+15} \equiv 9+15 \equiv 24 \equiv 8(\bmod 16) ;
$$

that is, $16 \nmid 4357^{z_{1}}+335^{y_{1}}$ but this contradicts (2.75). Thus

$$
\begin{equation*}
13 \nmid 4357^{z_{1}}-335^{y_{1}} . \tag{2.78}
\end{equation*}
$$

Based on (2.68), (2.75), (2.77), and (2.78), we have

$$
4357^{z_{1}}-335^{y_{1}}=2(11)^{x}
$$

Therefore, $2^{z_{1}} \equiv 2(\bmod 5)$. Consequently, $z_{1}=4 q+1$; i.e., z_{1} is odd and this contradicts (2.71).
3. If $k=67^{q} n_{1}$, where $q \geqslant 1, n_{1} \geqslant 1$ and $r=s=0$ with $\left(4355, n_{1}\right)=1$, then rewrite Equation (2.52) as

$$
\begin{equation*}
\frac{4355^{y}}{67^{q(z-y)}}=\frac{5^{y} 13^{y} 67^{y}}{67^{q(z-y)}}=n_{1}^{z-y}\left[4357^{z}-132^{x} 67^{q(x-z)} n_{1}^{x-z}\right] . \tag{2.79}
\end{equation*}
$$

So, $67^{y}=67^{q(z-y)}$ and $n_{1}=1$. Thus Equation (2.79) becomes

$$
\begin{equation*}
4357^{z}-65^{y}=4^{x} 3^{x} 11^{x} 67^{q(x-z)} \tag{2.80}
\end{equation*}
$$

By considering Equation (2.80) modulo 3 and modulo 16, we obtain

$$
1 \equiv 2^{y}(\bmod 3), \quad \text { and } 1 \equiv 5^{z}(\bmod 16)
$$

Since $\operatorname{ord}_{3} 2=2$ and $\operatorname{ord}_{16} 5=4$, we can write

$$
\begin{equation*}
z=4 c=2 z_{1} \text { and } y=2 y_{1} \text { with } z_{1}>y_{1}, \quad \text { where } z_{1}=2 c \tag{2.81}
\end{equation*}
$$

Hence Equation (2.80) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-65^{y_{1}}\right)\left(4357^{z_{1}}+65^{y_{1}}\right)=2^{2 x} 3^{x} 11^{x} 67^{q(x-z)} \tag{2.82}
\end{equation*}
$$

Since $4357^{z_{1}}+65^{y_{1}} \equiv 2(\bmod 4), 4 \nmid 4357^{z_{1}}+65^{y_{1}}$ and since $\left(4357^{z_{1}}-\right.$ $\left.65^{y_{1}}, 4357^{z_{1}}+65^{y_{1}}\right)=2$, from Equation (2.82), we get

$$
\begin{equation*}
2^{2 x-1} \mid 4357^{z_{1}}-65^{y_{1}}, \text { and } 2 \mid 4357^{z_{1}}+65^{y_{1}} \tag{2.83}
\end{equation*}
$$

If $y_{1}=2 m$, then
$4357^{z_{1}}+65^{2 m} \equiv 1+1(\bmod 3), \quad$ and $4357^{z_{1}}+65^{2 m} \equiv 1+1(\bmod 11)$.
Hence $3 \nmid 4357^{z_{1}}+65^{y_{1}}$ and $11 \nmid 4357^{z_{1}}+65^{y_{1}}$. Thus, from (2.83), we have

$$
\begin{equation*}
2^{2 x-1} 3^{x} 11^{x} \mid 4357^{z_{1}}-65^{y_{1}} \tag{2.84}
\end{equation*}
$$

By $y<z<x$, we obtain

$$
\begin{aligned}
2^{2 x-1} 3^{x} 11^{x}=\frac{132^{x}}{2}=\frac{\left(2^{7}+2^{2}\right)^{x}}{2}>2^{7 x-1}+2^{2 x-1}>2^{7 x-1} & >2^{13 z_{1}} \\
& >(4357+65)^{z_{1}} \\
& >4357^{z_{1}}+65^{z_{1}} \\
& >4357^{z_{1}}+65^{y_{1}} \\
& >4357^{z_{1}}-65^{y_{1}}
\end{aligned}
$$

and this contradicts (2.84). Otherwise, if $y_{1}=2 m+1$, then $4357^{z_{1}}+65^{2 m+1} \equiv 1+2 \equiv 0(\bmod 3)$ and $4357^{z_{1}}+65^{2 m+1} \equiv 1+10 \equiv 0(\bmod 11)$.

Thus, (2.83) becomes

$$
\begin{equation*}
2^{2 x-1} \mid 4357^{z_{1}}-65^{y_{1}} \text { and } 2\left(3^{x} 11^{x}\right) \mid 4357^{z_{1}}+65^{y_{1}} \tag{2.85}
\end{equation*}
$$

So, we have two cases. The first case: if $67 \mid 4357^{z_{1}}-65^{y_{1}}$, then from Equation (2.82) and (2.85), where

$$
\left(4357^{z_{1}}-65^{y_{1}}, 4357^{z_{1}}+65^{y_{1}}\right)=2
$$

we get

$$
4357^{z_{1}}-65^{y_{1}}=2^{2 x-1} 67^{q(x-z)}
$$

and

$$
\begin{equation*}
4357^{z_{1}}+65^{y_{1}}=2\left(3^{x} 11^{x}\right) \tag{2.86}
\end{equation*}
$$

Then

$$
4357^{z_{1}}=3^{x} 11^{x}+2^{2 x-2} 67^{q(x-z)}
$$

and

$$
\begin{equation*}
65^{y_{1}}=3^{x} 11^{x}-2^{2 x-2} 67^{q(x-z)} \tag{2.87}
\end{equation*}
$$

From Equation (2.87), we have $1 \equiv 33^{x}(\bmod 64)$, since $\operatorname{ord}_{64} 33=2$, hence x is even, and from (2.86), we have

$$
\begin{equation*}
2^{z_{1}} \equiv 2\left(3^{x}\right)(\bmod 5) \tag{2.88}
\end{equation*}
$$

Since 2 is a primitive root of 5 , the congruence (2.88) becomes

$$
\begin{equation*}
z_{1} \equiv 1+3 x(\bmod 4) \tag{2.89}
\end{equation*}
$$

Since $z_{1}-1-3 x$ and x are even, z_{1} is odd and this contradicts (2.81). The second case: if $67 \mid 4357^{z_{1}}+65^{y_{1}}$, then from Equation (2.82) and (2.85), where $\left(4357^{z_{1}}-65^{y_{1}}, 4357^{z_{1}}+65^{y_{1}}\right)=2$, we have

$$
4357^{z_{1}}-65^{y_{1}}=2^{2 x-1}
$$

Therefore,

$$
\begin{equation*}
2^{z_{1}} \equiv 2^{2 x-1}(\bmod 5), \tag{2.90}
\end{equation*}
$$

and since 2 is a primitive root of 5 , the congruence (2.90) becomes

$$
\begin{equation*}
z_{1} \equiv 2 x-1(\bmod 4) \tag{2.91}
\end{equation*}
$$

Thus z_{1} is odd and this contradicts (2.81).
4. If $k=5^{r} 13^{s} n_{1}$, where $r \geqslant 1, s \geqslant 1, n_{1} \geqslant 1$ and $q=0$ with $\left(4355, n_{1}\right)=$ 1 , then rewrite Equation (2.52) as

$$
\begin{equation*}
\frac{5^{y} 13^{y} 67^{y}}{5^{r(z-y)} 13^{s(z-y)}}=n_{1}^{z-y}\left[4357^{z}-132^{x} 5^{r(x-z)} 13^{s(x-z)} n_{1}^{x-z}\right] \tag{2.92}
\end{equation*}
$$

Hence $n_{1}=1,5^{y}=5^{r(z-y)}$ and $13^{y}=13^{s(z-y)}$ and so $r=s$. Thus, Equation (2.92) becomes

$$
\begin{equation*}
4357^{z}-67^{y}=4^{x} 3^{x} 11^{x} 65^{r(x-z)} \tag{2.93}
\end{equation*}
$$

By considering Equation (2.93) modulo 4, we obtain $1 \equiv 3^{y}(\bmod 4)$. Hence y is even and we can write $y=2 y_{1}$. Also, by considering Equation (2.93) modulo 8, we obtain $5^{z} \equiv 3^{2 y_{1}} \equiv 1(\bmod 8)$. So z is even; say $z=2 z_{1}$. Hence Equation (2.93) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-67^{y_{1}}\right)\left(4357^{z_{1}}+67^{y_{1}}\right)=2^{2 x} 3^{x} 11^{x} 65^{r(x-z)} \tag{2.94}
\end{equation*}
$$

Since

$$
4357^{z_{1}}+67^{y_{1}} \equiv 2(\bmod 3), \quad \text { and } 4357^{z_{1}}+67^{y_{1}} \equiv 2(\bmod 11)
$$

it follows that $3 \nmid 4357^{z_{1}}+67^{y_{1}}$ and $11 \nmid 4357^{z_{1}}+67^{y_{1}}$. Since

$$
\left(4357^{z_{1}}-67^{y_{1}}, 4357^{z_{1}}+67^{y_{1}}\right)=2 .
$$

Thus, from Equation (2.94), we obtain

$$
\begin{equation*}
2^{2 x-1} 3^{x} 11^{x} \mid 4357^{z_{1}}-67^{y_{1}} \quad \text { and } \quad 2 \mid 4357^{z_{1}}+67^{y_{1}} \tag{2.95}
\end{equation*}
$$

or

$$
\begin{equation*}
2\left(3^{x} 11^{x}\right) \mid 4357^{z_{1}}-67^{y_{1}} \quad \text { and } \quad 2^{2 x-1} \mid 4357^{z_{1}}+67^{y_{1}} \tag{2.96}
\end{equation*}
$$

Considering (2.95), observe that $2^{2 x-1} 3^{x} 11^{x} \mid 4357^{z_{1}}-67^{y_{1}}$. But $y<$ $z<x$. So

$$
\begin{aligned}
2^{2 x-1} 3^{x} 11^{x}=\frac{132^{x}}{2}=\frac{\left(2^{7}+2^{2}\right)^{x}}{2}>2^{7 x-1}+2^{2 x-1}>2^{7 x-1} & >2^{13 z_{1}} \\
& >(4357+67)^{z_{1}} \\
& >4357^{z_{1}}+67^{y_{1}} \\
& >4357^{z_{1}}-67^{y_{1}}
\end{aligned}
$$

and this contradicts (2.95). On the other hand, if we consider (2.96), we observe that

$$
4357^{z_{1}}+67^{y_{1}} \equiv 1+3^{y_{1}} \equiv 0(\bmod 4)
$$

Thus y_{1} is odd. So, if $5 \mid 4357^{z_{1}}-67^{y_{1}}$, then

$$
2^{z_{1}} \equiv 2^{y_{1}}(\bmod 5)
$$

Since y_{1} is odd,

$$
\left(z_{1}, y_{1}\right) \in\left\{\left(4 c_{1}+1,4 c_{2}+1\right),\left(4 c_{1}+3,4 c_{2}+3\right)\right\}
$$

Hence

$$
4357^{z_{1}}+67^{y_{1}} \equiv 5^{4 c_{1}+1}+3^{4 c_{2}+1} \equiv 8(\bmod 16)
$$

and

$$
4357^{z_{1}}+67^{y_{1}} \equiv 5^{4 c_{1}+3}+3^{4 c_{2}+3} \equiv 8(\bmod 16)
$$

We conclude that $16 \nmid 4357^{z_{1}}+67^{y_{1}}$ but this contradicts (2.96). Thus

$$
\begin{equation*}
5 \mid 4357^{z_{1}}+67^{y_{1}} \tag{2.97}
\end{equation*}
$$

Similarly, if $13 \mid 4357^{z_{1}}-67^{y_{1}}$, then $2^{z_{1}} \equiv 2^{y_{1}}(\bmod 13)$ and since y_{1} is odd and $\operatorname{ord}_{13} 2=12$,
$\left(z_{1}, y_{1}\right) \in\left\{\begin{array}{l}\left(12 c_{1}+1,12 c_{2}+1\right),\left(12 c_{1}+3,12 c_{2}+3\right),\left(12 c_{1}+5,12 c_{2}+5\right), \\ \left(12 c_{1}+7,12 c_{2}+7\right),\left(12 c_{1}+9,12 c_{2}+9\right),\left(12 c_{1}+11,12 c_{2}+11\right)\end{array}\right\}$.

Hence,

$$
\begin{aligned}
& 4357^{z_{1}}+67^{y_{1}} \equiv 5^{12 c_{1}+1}+3^{12 c_{2}+1} \equiv 5+3 \equiv 8(\bmod 16), \\
& 4357^{z_{1}}+67^{y_{1}} \equiv 5^{12 c_{1}+3}+3^{12 c_{2}+3} \equiv 5^{3}+3^{3} \equiv 8(\bmod 16), \\
& 4357^{z_{1}}+67^{y_{1}} \equiv 5^{12 c_{1}+5}+3^{12 c_{2}+5} \equiv 5^{5}+3^{5} \equiv 8(\bmod 16), \\
& 4357^{z_{1}}+67^{y_{1}} \equiv 5^{12 c_{1}+7}+3^{12 c_{2}+7} \equiv 5^{7}+3^{7} \equiv 8(\bmod 16), \\
& 4357^{z_{1}}+67^{y_{1}} \equiv 5^{12 c_{1}+9}+3^{12 c_{2}+9} \equiv 5^{9}+3^{9} \equiv 8(\bmod 16), \\
& 4357^{z_{1}}+67^{y_{1}} \equiv 5^{12 c_{1}+11}+3^{12 c_{2}+11} \equiv 5^{11}+3^{11} \equiv 8(\bmod 16) .
\end{aligned}
$$

It follows that $16 \nmid 4357^{z_{1}}+67^{y_{1}}$, but this contradicts (2.96). Thus

$$
\begin{equation*}
13 \mid 4357^{z_{1}}+67^{y_{1}} . \tag{2.98}
\end{equation*}
$$

Since $8 \mid 4357^{z_{1}}+67^{y_{1}}$ and y_{1} is odd,

$$
4357^{z_{1}}+67^{y_{1}} \equiv 5^{z_{1}}+3^{y_{1}} \equiv 5^{z_{1}}+3(\bmod 8)
$$

Therefore,

$$
\begin{equation*}
z_{1} \equiv 1(\bmod 2) \tag{2.99}
\end{equation*}
$$

From (2.94), (2.96), (2.97), and (2.98), we have

$$
4357^{z_{1}}+67^{y_{1}}=2^{2 x-1} 5^{r(x-z)} 13^{r(x-z)}
$$

and

$$
4357^{z_{1}}-67^{y_{1}}=2\left(3^{x} 11^{x}\right)
$$

Then,

$$
\begin{equation*}
4357^{z_{1}}=2^{2 x-2} 5^{r(x-z)} 13^{r(x-z)}+3^{x} 11^{x} \tag{2.100}
\end{equation*}
$$

and

$$
67^{y_{1}}=2^{2 x-2} 5^{r(x-z)} 13^{r(x-z)}-3^{x} 11^{x} .
$$

Since y and z are even and $y<z<x$, then from (2.100), we obtain

$$
\begin{equation*}
5^{z_{1}} \equiv 33^{x}(\bmod 64) \tag{2.101}
\end{equation*}
$$

If x even, then (2.101) becomes $5^{z_{1}} \equiv 1(\bmod 64)$ and since $\operatorname{ord}_{64} 5=$ 16 , hence z_{1} is even and this contradicts (2.99).
Similarly, if x is odd, we obtain

$$
\begin{equation*}
5^{z_{1}} \equiv 33(\bmod 64) \tag{2.102}
\end{equation*}
$$

By substituting values $z_{1}=16 k+r$, where $0 \leq r<15$ into the congruence(2.102), we find only

$$
z_{1}=16 k+8
$$

satisfies the congruence. So z_{1} is even and this contradicts (2.99).
5. If $k=13^{s} 67^{q} n_{1}$, where $s \geqslant 1, q \geqslant 1, n_{1} \geqslant 1$ and $r=0$ with $\left(4355, n_{1}\right)=$ 1 , then rewrite Equation (2.52) as

$$
\begin{equation*}
\frac{5^{y} 13^{y} 67^{y}}{13^{s(z-y)} 67^{q(z-y)}}=n_{1}^{z-y}\left[4357^{z}-132^{x} 13^{s(x-z)} 67^{q(x-z)} n_{1}^{x-z}\right] \tag{2.103}
\end{equation*}
$$

It follows that $n_{1}=1,13^{y}=13^{s(z-y)}$ and $67^{y}=67^{q(z-y)}$, so $s=q$. Thus, Equation (2.103) becomes

$$
\begin{equation*}
4357^{z}-5^{y}=4^{x} 3^{x} 11^{x} 13^{s(x-z)} 67^{s(x-z)} \tag{2.104}
\end{equation*}
$$

By considering Equation (2.104) modulo 33, we obtain $1 \equiv 5^{y}(\bmod 33)$ and since $\operatorname{ord}_{33} 5=10$, hence, we can write $y=10 \mathrm{~m}=$ $2 y_{1}$, with $y_{1}=5 \mathrm{~m}$. Also, by considering Equation (2.104) modulo 8, we obtain $5^{z} \equiv 5^{2 y_{1}} \equiv 1(\bmod 8)$. So, z must be even. We write $z=2 z_{1}$. Hence, Equation (2.104) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-5^{y_{1}}\right)\left(4357^{z_{1}}+5^{y_{1}}\right)=2^{2 x} 3^{x} 11^{x} 13^{s(x-z)} 67^{s(x-z)} \tag{2.105}
\end{equation*}
$$

Since

$$
\begin{gathered}
4357^{z_{1}}+5^{y_{1}} \equiv 2(\bmod 4), \text { and } 4357^{z_{1}}+5^{y_{1}} \equiv 1+5^{5 m} \equiv 2(\bmod 11), \\
4 \nmid 4357^{z_{1}}+5^{y_{1}} \text { and } 11 \nmid 4357^{z_{1}}+5^{y_{1}} .
\end{gathered}
$$

Since $\left(4357^{z_{1}}-5^{y_{1}}, 4357^{z_{1}}+5^{y_{1}}\right)=2$, from Equation (2.105), we have

$$
\begin{equation*}
2^{2 x-1} 11^{x} \mid 4357^{z_{1}}-5^{y_{1}}, \quad \text { and } \quad 2 \mid 4357^{z_{1}}+5^{y_{1}} \tag{2.106}
\end{equation*}
$$

If y_{1} is even, then $4357^{z_{1}}+5^{y_{1}} \equiv 1+1 \equiv 2(\bmod 3)$. So, from (2.106), we observe that

$$
\begin{equation*}
2^{2 x-1} 3^{x} 11^{x} \mid 4357^{z_{1}}-5^{y_{1}} \tag{2.107}
\end{equation*}
$$

But, from $y<z<x$, we get

$$
\begin{aligned}
2^{2 x-1} 3^{x} 11^{x}=\frac{132^{x}}{2}=\frac{\left(2^{7}+2^{2}\right)^{x}}{2}>2^{7 x-1}+2^{2 x-1}>2^{7 x-1} & >2^{13 z_{1}} \\
& >(4357+5)^{z_{1}} \\
& >4357^{z_{1}}+5^{z_{1}} \\
& >4357^{z_{1}}-5^{y_{1}}
\end{aligned}
$$

and this contradicts (2.107). Otherwise, if y_{1} is odd, then $4357^{z_{1}}+5^{y_{1}} \equiv 1+2 \equiv 0(\bmod 3)$. So, from (2.106), we obtain

$$
\begin{equation*}
2^{2 x-1} 11^{x} \mid 4357^{z_{1}}-5^{y_{1}}, \quad \text { and } \quad 2\left(3^{x}\right) \mid 4357^{z_{1}}+5^{y_{1}} \tag{2.108}
\end{equation*}
$$

Thus, $4357^{z_{1}} \equiv 5^{y_{1}} \equiv 5(\bmod 8)$; that is, $5^{z_{1}} \equiv 5(\bmod 8)$, implies $5^{z_{1}+1} \equiv 1(\bmod 8)$. Therefore, $z_{1}+1$ must be even. Thus z_{1} is odd. Therefore, if $67 \mid 4357^{z_{1}}+5^{y_{1}}$, then

$$
\begin{equation*}
2^{z_{1}} \equiv(-5)^{y_{1}} \equiv 62^{y_{1}}(\bmod 67) \tag{2.109}
\end{equation*}
$$

Since 2 is a primitive root of 67 , the congruence (2.109) becomes $z_{1} \equiv$ $48 y_{1}(\bmod 66)$. Thus z_{1} is even and this contradicts z_{1} is odd. So $67 \nmid$ $4357^{z_{1}}+5^{y_{1}}$ and (2.108) becomes

$$
\begin{equation*}
2^{2 x-1} 11^{x} 67^{s(x-z)} \mid 4357^{z_{1}}-5^{y_{1}}, \quad \text { and } \quad 2\left(3^{x}\right) \mid 4357^{z_{1}}+5^{y_{1}} \tag{2.110}
\end{equation*}
$$

Similarly, if $13 \mid 4357^{z_{1}}-5^{y_{1}}$, then from (2.105) and (2.110), we observe that

$$
4357^{z_{1}}-5^{y_{1}}=2^{2 x-1} 11^{x} 67^{s(x-z)} 13^{s(x-z)}, \quad \text { and } \quad 4357^{z_{1}}+5^{y_{1}}=2\left(3^{x}\right)
$$

Thus

$$
\begin{equation*}
4357^{z_{1}}=3^{x}+2^{2 x-2} 11^{x} 13^{s(x-z)} 67^{s(x-z)} \tag{2.111}
\end{equation*}
$$

and

$$
\begin{equation*}
5^{y_{1}}=3^{x}-2^{2 x-2} 11^{x} 13^{s(x-z)} 67^{s(x-z)} \tag{2.112}
\end{equation*}
$$

From (2.111), we obtain $1 \equiv(-1)^{x}(\bmod 4)$. It follows that x is even. So, from (2.112), where y_{1} is odd, we have $5 \equiv 1(\bmod 8)$, which is impossible. So $13 \mid 4357^{z_{1}}+5^{y_{1}}$. Then, from (2.105) and (2.110), we observe that

$$
4357^{z_{1}}-5^{y_{1}}=2^{2 x-1} 11^{x} 67^{s(x-z)}, \quad \text { and } 4357^{z_{1}}+5^{y_{1}}=2\left(3^{x} 13^{s(x-z)}\right)
$$

So

$$
\begin{equation*}
4357^{z_{1}}=3^{x} 13^{s(x-z)}+2^{2 x-2} 11^{x} 67^{s(x-z)} \tag{2.113}
\end{equation*}
$$

and

$$
\begin{equation*}
5^{y_{1}}=3^{x} 13^{s(x-z)}-2^{2 x-2} 11^{x} 67^{s(x-z)} . \tag{2.114}
\end{equation*}
$$

From (2.113), we obtain $1 \equiv(-1)^{x}(\bmod 4)$. It follows that x is even. From (2.114), where y_{1} is odd and $x-z$ is even, we get $5 \equiv 1(\bmod 8)$, which is impossible.
6. If $k=5^{r} 67^{q} n_{1}$, where $r \geqslant 1, q \geqslant 1, n_{1} \geqslant 1$ and $s=0$ with $\left(4355, n_{1}\right)=$ 1 , then rewrite Equation (2.52) as

$$
\begin{equation*}
\frac{5^{y} 13^{y} 67^{y}}{5^{r(z-y)} 67^{q(z-y)}}=n_{1}^{z-y}\left[4357^{z}-132^{x} 5^{r(x-z)} 67^{q(x-z)} n_{1}^{x-z}\right] . \tag{2.115}
\end{equation*}
$$

Hence $n_{1}=1,5^{y}=5^{r(z-y)}$ and $67^{y}=67^{q(z-y)}$ so $r=q$. Thus, Equation (2.115) becomes

$$
\begin{equation*}
4357^{z}-13^{y}=4^{x} 3^{x} 11^{x} 5^{r(x-z)} 67^{r(x-z)} \tag{2.116}
\end{equation*}
$$

By considering Equation (2.116) modulo 11, we obtain $1 \equiv 2^{y}(\bmod 11)$ and since $\operatorname{ord}_{11} 2=10$, we can write $y=10 m=2 y_{1}$, where $y_{1}=5 \mathrm{~m}$. Also, by considering Equation (2.116) modulo 8, we obtain $5^{z} \equiv 5^{2 y_{1}} \equiv 1(\bmod 8)$.
So z must be even; say $z=2 z_{1}$. Hence, Equation (2.116) becomes

$$
\begin{equation*}
\left(4357^{z_{1}}-13^{y_{1}}\right)\left(4357^{z_{1}}+13^{y_{1}}\right)=2^{2 x} 3^{x} 11^{x} 5^{r(x-z)} 67^{r(x-z)} . \tag{2.117}
\end{equation*}
$$

Since

$$
\begin{gathered}
4357^{z_{1}}+13^{y_{1}} \equiv 2(\bmod 4) \text { and } 4357^{z_{1}}+13^{y_{1}} \equiv 2(\bmod 3), \\
4 \nmid 4357^{z_{1}}+13^{y_{1}}, \text { and } 3 \nmid 4357^{z_{1}}+13^{y_{1}} .
\end{gathered}
$$

Since $\left(4357^{z_{1}}-13^{y_{1}}, 4357^{z_{1}}+13^{y_{1}}\right)=2$, from Equation (2.117), we have

$$
\begin{equation*}
2^{2 x-1} 3^{x} \mid 4357^{z_{1}}-13^{y_{1}}, \quad \text { and } \quad 2 \mid 4357^{z_{1}}+13^{y_{1}} \tag{2.118}
\end{equation*}
$$

If y_{1} is even, then we can write $y_{1}=5 m=10 m_{1}$. Thus, $4357^{z_{1}}+13^{y_{1}} \equiv 1+2^{10 m_{1}} \equiv 2(\bmod 11)$; that is, $11 \nmid 4357^{z_{1}}+13^{y_{1}}$. So, from (2.118), we observe that

$$
\begin{equation*}
2^{2 x-1} 3^{x} 11^{x} \mid 4357^{z_{1}}-13^{y_{1}} \tag{2.119}
\end{equation*}
$$

But, from $y<z<x$, we observe that

$$
\begin{aligned}
2^{2 x-1} 3^{x} 11^{x}=\frac{132^{x}}{2}=\frac{\left(2^{7}+2^{2}\right)^{x}}{2}>2^{7 x-1}+2^{2 x-1}>2^{7 x-1} & >2^{13 z_{1}} \\
& >(4357+13)^{z_{1}} \\
& >4357^{z_{1}}+13^{z_{1}} \\
& >4357^{z_{1}}-13^{y_{1}}
\end{aligned}
$$

and this contradicts (2.119). On the other hand, if y_{1} is odd, then we can write $y_{1}=5 m=10 m_{1}+5$. Thus

$$
4357^{z_{1}}+13^{y_{1}} \equiv 1+2^{10 m_{1}+5} \equiv 1+2^{5} \equiv 1+10 \equiv 0(\bmod 11) ;
$$

that is, $11 \mid 4357^{z_{1}}+13^{y_{1}}$. So, from (2.118), we obtain

$$
\begin{equation*}
2^{2 x-1} 3^{x} \mid 4357^{z_{1}}-13^{y_{1}}, \quad \text { and } \quad 2\left(11^{x}\right) \mid 4357^{z_{1}}+13^{y_{1}} \tag{2.120}
\end{equation*}
$$

Thus, $4357^{z_{1}} \equiv 13^{y_{1}}(\bmod 8)$; that is, $5^{z_{1}} \equiv 5^{y_{1}}(\bmod 8)$, implies that $5^{z_{1}+y_{1}} \equiv 1(\bmod 8)$. It follows that $z_{1}+y_{1}$ is even. But y_{1} is odd. So z_{1} is odd. Now, if $67 \mid 4357^{z_{1}}+13^{y_{1}}$, then

$$
\begin{equation*}
2^{z_{1}} \equiv(-13)^{y_{1}} \equiv 54^{y_{1}}(\bmod 67) \tag{2.121}
\end{equation*}
$$

Since 2 is a primitive root of 67 , the congruence (2.121) becomes $z_{1} \equiv$ $52 y_{1}(\bmod 66)$. Thus z_{1} must be even. This contradicts z_{1} is odd and therefore $67 \nmid 4357^{z_{1}}+13^{y_{1}}$ and (2.120) becomes

$$
\begin{equation*}
2^{2 x-1} 3^{x} 67^{r(x-z)} \mid 4357^{z_{1}}-13^{y_{1}}, \quad \text { and } \quad 2\left(11^{x}\right) \mid 4357^{z_{1}}+13^{y_{1}} \tag{2.122}
\end{equation*}
$$

Similarly, if $5 \mid 4357^{z_{1}}-13^{y_{1}}$, then from (2.117) and (2.122), we observe that

$$
4357^{z_{1}}-13^{y_{1}}=2^{2 x-1} 3^{x} 67^{r(x-z)} 5^{r(x-z)}, \text { and } 4357^{z_{1}}+13^{y_{1}}=2\left(11^{x}\right)
$$

Thus

$$
\begin{equation*}
4357^{z_{1}}=11^{x}+2^{2 x-2} 3^{x} 5^{r(x-z)} 67^{r(x-z)} \tag{2.123}
\end{equation*}
$$

and

$$
\begin{equation*}
13^{y_{1}}=11^{x}-2^{2 x-2} 3^{x} 5^{r(x-z)} 67^{r(x-z)} \tag{2.124}
\end{equation*}
$$

From (2.123), we obtain $1 \equiv(-1)^{x}(\bmod 4)$. It follows that x is even. So, from (2.124), where y_{1} is odd, we get $5 \equiv 1(\bmod 8)$, which is impossible. So $5 \mid 4357^{z_{1}}+13^{y_{1}}$. Then, from (2.117) and (2.122), we observe that

$$
4357^{z_{1}}-13^{y_{1}}=2^{2 x-1} 3^{x} 67^{r(x-z)}, \text { and } 4357^{z_{1}}+13^{y_{1}}=2\left(11^{x} 5^{r(x-z)}\right)
$$

So

$$
\begin{equation*}
4357^{z_{1}}=11^{x} 5^{r(x-z)}+2^{2 x-2} 3^{x} 67^{r(x-z)} \tag{2.125}
\end{equation*}
$$

and

$$
\begin{equation*}
13^{y_{1}}=11^{x} 5^{r(x-z)}-2^{2 x-2} 3^{x} 67^{r(x-z)} \tag{2.126}
\end{equation*}
$$

Thus, from (2.125), we obtain $1 \equiv(-1)^{x}(\bmod 4)$. It follows that x is even. So, from (2.126), where y_{1} is odd and $x-z$ is even, we have $5 \equiv 1(\bmod 8)$, which is impossible.
7. If $k=5^{r} 13^{s} 67^{q} n_{1}$, where $r \geqslant 1, s \geqslant 1, q \geqslant 1$ and $n_{1} \geqslant 1$ with $\left(4355, n_{1}\right)=1$, then rewrite Equation (2.52) as

$$
\begin{equation*}
\frac{5^{y} 13^{y} 67^{y}}{5^{r(z-y)} 13^{s(z-y)} 67^{q(z-y)}}=n_{1}^{z-y}\left[4357^{z}-132^{x} 5^{r(x-z)} 13^{s(x-z)} 67^{q(x-z)} n_{1}^{x-z}\right] \tag{2.127}
\end{equation*}
$$

So, $n_{1}=1,5^{y}=5^{r(z-y)}, 13^{y}=13^{s(z-y)}$ and $67^{y}=67^{q(z-y)}$. Thus $r=s=q$ and Equation (2.127) becomes

$$
\begin{equation*}
4357^{z}-1=4^{x} 3^{x} 11^{x} 5^{r(x-z)} 13^{r(x-z)} 67^{r(x-z)} \tag{2.128}
\end{equation*}
$$

We conclude that $4357^{z}-1 \equiv 2^{z}-1 \equiv 0(\bmod 5)$. Hence $z \equiv 0(\bmod 4)$ and since $4357^{2}-1 \equiv 0(\bmod 2179)$, where 2179 is prime. Thus, $4357^{z}-1 \equiv 0(\bmod 2179)$. Hence, from Equation (2.128), we obtain

$$
4^{x} 3^{x} 11^{x} 5^{r(x-z)} 13^{r(x-z)} 67^{r(x-z)} \equiv 0(\bmod 2179)
$$

which is impossible.

This completes the proof for the second case and consequently completes the proof of theorem (1.1).

3 Conclusion

We have obtained a new Pythagorean triple for Jeśmanowicz's conjecture and proved that the special Diophantine equation $(132 k)^{x}+(4355 k)^{y}=(4357 k)^{z}$ has the only positive integer solution $(x, y, z)=(2,2,2)$ for every positive integer k.

Acknowledgments. This work is supported by the Research University (RU) funding, account number 1001 /PMATHS/ 8011121, Universiti Sains Malaysia.

References

[1] Moujie Deng, G. L. Cohen, On the conjecture of Jeśmanowicz concerning Pythagorean triples, Bulletin of the Australian Mathematical Society, 57, (1998), no. 3, 515-524.
[2] L. Jeśmanowicz, Several remarks on Pythagorean numbers, Wiadom. Mat. (2) 1, (1955/1956), 196-202.
[3] Maohua Le, A note on Jeśmanowicz' conjecture concerning Pythagorean triples, Bulletin of the Australian Mathematical Society, 59, (1999), no. 3, 477-480.
[4] Wen-twan Lu , On the Pythagorean numbers $4 n^{2}-1,4 n$ and $4 n^{2}+1$, Acta Sci. Natur. Univ. Szechuan,(1959), 2: 39-42. (in Chinese)
[5] Mi-Mi Ma, Jian-Dong Wu, On the Diophantine equation $(a n)^{x}+(b n)^{y}=$ $(c n)^{z}$, Bulletin of the Korean Mathematical Society, 52, no. 4, (2015), 1133-1138.
[6] W. Sierpiński, On the equation $3^{x}+4^{y}=5^{z}$, Wiadom. Mat. (2) 1, (1955/1956), 194-195.
[7] Göokhan Soydan, Musa Demirci, Ismail Naci Cangul, Alain Togbé, On the conjecture of Jeśmanowicz, International Journal of Applied Mathematics and Statistics, 56, (2017), no. 6, 46-72.
[8] Cuifang Sun, Zhi Cheng, On Jeśmanowicz' conjecture concerning pythagorean triples, Journal of Mathematical Research with Applications, 35, no. 2, (2015), 143-148.
[9] Min Tang, Jian-Xin Weng, Jeśmanowicz' conjecture with Fermat numbers, Taiwanese J. Math., 18, no. 3, (2014), 925-930.
[10] Min Tang, Zhi-Juan Yang, Jeśmanowicz' conjecture revisited, Bulletin of the Australian Mathematical Society, 88, no. 3, (2013), 486-491.
[11] Zhi-Juan Yang, Min Tang, On the Diophantine equation $(8 n)^{x}+$ $(15 n)^{y}=(17 n)^{z}$, Bulletin of the Australian Mathematical Society, 86, no. 2, (2012), 348-352.
[12] Zhi-Juan Yang, W. Jianxin, On the Diophantine equation $(12 n)^{x}+$ $(35 n)^{y}=(37 n)^{z}$, Pure and App. Math. (Chinese), 28, (2012), 698-704.

