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Abstract

The Jeśmanowicz’s conjecture written in 1956 states that for any
primitive Pythagorean triple (a, b, c) with a2+b2 = c2 and any positive
integer k, the only solution of equation (ak)x+(bk)y = (ck)z in positive
integers is (x, y, z) = (2, 2, 2). In this paper, we show that the special
Diophantine equation (132k)x + (4355k)y = (4357k)z has the only
positive integer solution (x, y, z) = (2, 2, 2) for every positive integer
k.

1 Introduction

In 1956, Sierpiński [6] showed that the only positive integer solution of the
Diophantine Equation

(ak)x + (bk)y = (ck)z (1.1)

is (x, y, z) = (2, 2, 2), for k = 1 and (a, b, c) = (3, 4, 5), and Jeśmanowicz [2]
proved that the conjecture is true when k = 1 and
(a, b, c) ∈ {(5, 12, 13), (7, 24, 25), (9, 40, 41), (11, 60, 61)}. Jeśmanowicz also
conjectured that the Diophantine equation (1.1) has the only positive integer
solution (x, y, z) = (2, 2, 2) for any positive integer k. There are many special
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cases of Jeśmanowicz’s conjecture solved for k = 1. In 2012, Yang and Tang
[11] proved that the only solution of the Diophantine Equation

(8k)x + (15k)y = (17k)z (1.2)

is (x, y, z) = (2, 2, 2), for k > 1. Several authors had shown that Jeśmanowicz’s
conjecture is true for n ∈ {2, 3, 4, 8} where (a, b, c) = (4n, 4n2 − 1, 4n2 + 1),
see [9] and [12]. Yang and Jianxin [12] proved that the only solution of

(12k)x + (35k)y = (37k)z (1.3)

is (x, y, z) = (2, 2, 2) for k > 1. In 2015, Ma and Wu [5] proved that the only
solution of the Diophantine Equation

((4n2 − 1)k)x + (4nk)y = ((4n2 + 1)k)z (1.4)

is (x, y, z) = (2, 2, 2) when P (4n2− 1)|k, where P (m) denotes the product of
distinct primes of m. They showed that if k is a positive integer and P (k) ∤
(4n2 − 1), then the only solution for equation (1.4) is (x, y, z) = (2, 2, 2). In
this case, they considered n = pm, p prime and m > 0 with p ≡ −1(mod
4). In 2017, Soydan, Demirci, Cangul, and Togbé [7] considered(1.1) with
(a, b, c) = (20, 99, 101) and they proved the Diophantine equation

(20k)x + (99k)y = (101k)z (1.5)

has only the solution (x, y, z) = (2, 2, 2). In this paper, we consider the
case n = 33 and (a, b, c) = (4n, 4n2 − 1, 4n2 + 1) for (1.1). For other results,
see for instance [10], [8], [3] and [1]. Our main result is the following theorem.

Theorem 1.1. The only positive integer solution of the Diophantine equa-
tion

(132k)x + (4355k)y = (4357k)z (1.6)

is (x, y, z) = (2, 2, 2), for every positive integer k.

2 Proof Of Theorem 1.1

In this section, we begin with three useful results as follows:

Lemma 2.1. (see [3]) If (x, y, z) is a solution of (1.1) with (x, y, z) 6=
(2, 2, 2), then x, y and z are distinct.
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Lemma 2.2. (see [4]) The only positive integer solution of the Diophantine
equation (4n2 − 1)x + (4n)y = (4n2 + 1)z is (x, y, z) = (2, 2, 2).

Lemma 2.3. (see [1]) If z > max{x, y}, then the Diophantine equation ax+
by = cz, where a, b and c are any positive integers (not necessarily relatively
prime) such that a2 + b2 = c2, has no solution other than x = y = z = 2.

Proof. (Theorem 1.1)

When k = 1, equation (1.6) becomes

(132)x + (4355)y = (4357)z (2.7)

from lemma 2.2, the Diophantine equation (2.7) has the only positive integer
solution (x, y, z) = (2, 2, 2). Suppose that (1.6) has at least another solution
(x, y, z) 6= (2, 2, 2). Then, by lemma 2.3, we have z < max{x, y} and, from
lemma 2.1, x 6= y, y 6= z and x 6= z. Thus, we consider two cases as follows:

Case 1 If x < y, then we consider two subcases z < x < y and x < z < y.

Subcase 1.1 If z < x < y, then rewrite equation (1.6) as

kx−z(132x + 4355yky−x) = 4357z. (2.8)

So if (k, 4357) = 1, then x = z, where k > 2, which is a contradiction. In
addition, if (k, 4357) = 4357, then we can write k = 4357mn1, where m > 1,
n1 > 1 and (4357, n1) = 1. Rewrite equation (2.8) as

4357m(x−z)n1
x−z(132x + 4355y4357m(y−x)n1

y−x) = 4357z. (2.9)

Then nx−z

1

∣

∣ 4357z and so n1 = 1. Therefore (2.9) becomes

132x + 4355y4357m(y−x) = 4357z−m(x−z) (2.10)

which implies that 4357| 132x which is impossible.

Subcase 1.2 If x < z < y, then we rewrite (1.6) as

132x + 4355yky−x = 4357zkz−x (2.11)

So if (k, 132) = 1, then x = z, where k > 2, which is a contradiction. In
addition, if (k, 132) > 1, then we can write k = 2r3s11qn1, where r+s+q > 1,
n1 > 1 and (66, n1) = 1, So rewrite (2.11) as

132x = 2r(z−x)3s(z−x)11q(z−x)n1
z−x

[

4357z − 4355y2r(y−z)3s(y−z)11q(y−z)n1
y−z

]

(2.12)
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Then we get seven cases as follows:

1. If k = 2rn1, where r > 1, n1 > 1, s = q = 0 and (66, n1) = 1, then
(2.12) becomes

132x = 2r(z−x)n1
z−x

[

4357z − 4355y2r(y−z)n1
y−z

]

. (2.13)

Thus 2x = r(z − x) and 33x = n1
z−x

[

4357z − 4355y2r(y−z)n1
y−z

]

.

Hence n1 = 1 and

4357z − 33x = 5y13y67y2r(y−z), (2.14)

where (66, n1) = 1. By considering Equation (2.14) modulo 67, we
obtain

2z − 33x ≡ 0(mod 67). (2.15)

Since 2 is a primitive root of 67, the congruence (2.15) becomes

z ≡ 32x(mod 66). (2.16)

Therefore, z is even. Also, by considering Equation (2.14) modulo 13,
we obtain

2z − 7x ≡ 0(mod 13). (2.17)

Since 2 is a primitive root of 13, the congruence (2.17) becomes

z ≡ 11x(mod 12). (2.18)

Since z − 11x and z are even, x is even. Assume that z = 2z1 and
x = 2x1 with z1 > x1. Therefore, Equation (2.14) becomes

(4357z1 − 33x1)(4357z1 + 33x1) = 5y13y67y2r(y−z). (2.19)

Since
(4357z1 − 33x1, 4357z1 + 33x1) = 2,

based on Equation (2.19), we obtain

67y| 4357z1 − 33x1 or 67y| 4357z1 + 33x1 . (2.20)

But

67y > 67z = 4489z1 > (4357 + 33)z1,

> 4357z1 + 33z1,

> 4357z1 + 33x1,

> 4357z1 − 33x1,



Corrigendum to: On The Diophantine Equation... 1749

and this contradicts (2.20).

2. If k = 3sn1 where s > 1, n1 > 1, r = q = 0 and (66, n1) = 1, then
(2.12) becomes

22x3x11x

3s(z−x)
= nz−x

1

[

4357z − 4355y3s(y−z)n
y−z

1

]

. (2.21)

Thus x = s(z − x) and 44x = nz−x

1

[

4357z − 4355y3s(y−z)n
y−z

1

]

. So
n1 = 1. Accordingly, Equation (2.21) becomes

4357z − 44x = 67y13y5y3s(y−z). (2.22)

By considering Equation (2.22) modulo 3, we get

2x ≡ 1(mod 3).

Thus x ≡ 0( mod 2). Similarly, by taking Equation (2.22) modulo 5, we
obtain

2z ≡ (−1)x ≡ 1(mod 5).

Thus z ≡ 0(mod 4). Therefore, we can write x = 2x1 and z = 2z1 with
z1 > x1. Accordingly, Equation (2.22) becomes

(4357z1 − 44x1)(4357z1 + 44x1) = 67y13y5y3s(y−z). (2.23)

Since
(4357z1 − 44x1, 4357z1 + 44x1) = 1,

based on Equation (2.23), we have

67y| 4357z1 − 44x1 or 67y| 4357z1 + 44x1. (2.24)

However,

67y > 67z = 4489z1 > (4357 + 44)z1,

> 4357z1 + 44z1,

> 4357z1 + 44x1,

> 4357z1 − 44x1,

and this contradicts (2.24).
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3. If k = 11qn1, where q > 1, n1 > 1, r = s = 0 and (66, n1) = 1, then,
from (2.12), we get

22x3x11x

11q(z−x)
= nz−x

1

[

4357z − 4355y11q(y−z)n
y−z

1

]

. (2.25)

Thus, x = q(z − x) and 12x = nz−x

1

[

4357z − 4355y11q(y−z)n
y−z

1

]

. So
n1 = 1. Then Equation (2.25) becomes

4357z − 12x = 67y13y5y11q(y−z). (2.26)

By considering Equation (2.26) modulo 13, we obtain

2z − 12x ≡ 0(mod 13). (2.27)

Since 2 is a primitive root of 13, the congruence (2.27) becomes

z ≡ 6x(mod 12). (2.28)

Thus z must be even. Also, by considering Equation (2.26) modulo 5,
we obtain

2z − 2x ≡ 0(mod 5). (2.29)

Since 2 is a primitive root of 5, the congruence (2.29) becomes

z ≡ x(mod 4), (2.30)

and since z − x and z are even, x is even. Therefore, we can write
x = 2x1 and z = 2z1 with z1 > x1. Accordingly, Equation (2.26)
becomes

(4357z1 − 12x1)(4357z1 + 12x1) = 67y13y5y11q(y−z). (2.31)

We have (4357z1 − 12x1, 4357z1 + 12x1) = 1. Thus, based on Equation
(2.31), we obtain

67y| 4357z1 − 12x1 or 67y| 4357z1 + 12x1 . (2.32)

But, from x < z < y, we have

67y > 67z = 4489z1 > (4357 + 12)z1,

> 4357z1 + 12z1,

> 4357z1 + 12x1,

> 4357z1 − 12x1,

and this contradicts (2.32).
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4. If k = 2r3sn1, where r > 1, s > 1, n1 > 1, q = 0 and
(66, n1) = 1, then, from (2.12), we get the equation

22x3x11x

2r(z−x)3s(z−x)
= nz−x

1

[

4357z − 4355y2r(y−z)3s(y−z)n
y−z

1

]

. (2.33)

Thus,

2x = r(z−x), x = s(z−x) and 11x = nz−x

1

[

4357z − 4355y12s(y−z)n
y−z

1

]

.

So, n1 = 1 and Equation (2.33) becomes

4357z − 11x = 67y13y5y12s(y−z). (2.34)

By considering Equation (2.34) modulo 3, we obtain 2x ≡ 1(mod 3).
Thus x ≡ 0(mod2). Also, by considering Equation (2.34) modulo 5,
we get 2z ≡ 1(mod 5). Hence, z ≡ 0(mod 4). Therefore, we can write
x = 2x1 and z = 2z1 with z1 > x1. Accordingly, Equation (2.34)
becomes

(4357z1 − 11x1)(4357z1 + 11x1) = 67y13y5y12s(y−z). (2.35)

Observe that
(4357z1 − 11x1, 4357z1 + 11x1) = 2.

Thus, based on Equation (2.35), we obtain

67y| 4357z1 − 11x1 or 67y| 4357z1 + 11x1. (2.36)

But

67y > 67z = 4489z1 > (4357 + 11)z1,

> 4357z1 + 11z1,

> 4357z1 + 11x1,

> 4357z1 − 11x1,

and this contradicts (2.36).

5. If k = 2r11qn1, where r > 1, q > 1, n1 > 1, s = 0 and (66, n1) = 1,
then, from (2.12), we get the equation

22x3x11x

2r(z−x)11q(z−x)
= nz−x

1

[

4357z − 4355y2r(y−z)11q(y−z)n
y−z

1

]

. (2.37)
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Thus

2x = r(z−x), x = q(z−x) and 3x = nz−x

1

[

4357z − 4355y44q(y−z)n
y−z

1

]

.

So, n1 = 1 and Equation (2.37) becomes

4357z − 3x = 67y13y5y44q(y−z). (2.38)

By considering Equation (2.38) modulo 4, we obtain

1 ≡ (−1)x(mod 4).

Thus xmust be even. Similarly, by considering Equation (2.38) modulo
5, we obtain

2z ≡ 3x(mod 5). (2.39)

Since 2 is a primitive root of 5, the congruence (2.39) becomes z ≡
3x(mod 4). Since z−3x and x are even, z must be even. Therefore, we
can write x = 2x1 and z = 2z1 with z1 > x1. Hence, Equation (2.38)
becomes

(4357z1 − 3x1)(4357z1 + 3x1) = 67y13y5y44q(y−z). (2.40)

Since (4357z1 − 3x1, 4357z1 + 3x1) = 2,

67y| 4357z1 − 3x1 or 67y| 4357z1 + 3x1 . (2.41)

But

67y > 67z = 4489z1 > (4357 + 3)z1,

> 4357z1 + 3z1 ,

> 4357z1 + 3x1 ,

> 4357z1 − 3x1,

and this contradicts (2.41).

6. If k = 3s11qn1, where s > 1, q > 1, n1 > 1, r = 0 and (66, n1) = 1,
then, from (2.12), we get

22x3x11x

3s(z−x)11q(z−x)
= nz−x

1

[

4357z − 4355y3s(y−z)11q(y−z)n
y−z

1

]

. (2.42)



Corrigendum to: On The Diophantine Equation... 1753

So

x = s(z − x) = q(z − x) and 22x = nz−x

1

[

4357z − 4355y33s(y−z)n
y−z

1

]

.

Thus n1 = 1 and Equation (2.42) becomes

4357z − 22x = 67y13y5y33s(y−z). (2.43)

By considering Equation (2.43) modulo 5, we obtain

2z − 22x ≡ 0(mod 5). (2.44)

Since 2 is a primitive root of 5, the congruence (2.44) becomes

z ≡ 2x(mod 4), (2.45)

and since z−2x is even, z is even. Put z = 2z1. Hence Equation (2.43)
becomes

(4357z1 − 2x)(4357z1 + 2x) = 67y13y5y33s(y−z). (2.46)

Since
(4357z1 − 2x, 4357z1 + 2x) = 1,

67y| 4357z1 − 2x or 67y| 4357z1 + 2x. (2.47)

But

67y > 67z = 4489z1 > (4357 + 22)z1,

> 4357z1 + 2x,

> 4357z1 − 2x,

and this contradicts (2.47).

7. If k = 2r3s11qn1, where r > 1, s > 1, q > 1, n1 > 1, and (66, n1) = 1,
then, from (2.12), we get the equation

n1
z−x

[

4357z − 4355y2r(y−z)11q(y−z)3s(y−z)n1
y−z

]

= 1 (2.48)

Since x 6= z, n1 = 1. Therefore,

4357z − 1 = 4355y2r(y−z)11q(y−z)3s(y−z) (2.49)
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Since 4357z − 1 ≡ 2z − 1(mod 5), z ≡ 0(mod 4).
But

43572 ≡ 1(mod 2179).

Thus
4357z − 1 ≡ 0(mod 2179).

From (2.49), we obtain

4355y2r(y−z)11q(y−z)3s(y−z) ≡ 0(mod 2179),

which is impossible. This completes the proof for the first case.

Case 2 If x > y, then we obtain two subcases z < y < x and y < z < x.
Subcase 2.1 If z < y < x, then, rewrite Equation (1.6) as

ky−z(132xkx−y + 4355y) = 4357z. (2.50)

If (k, 4357) = 1, then y = z, where k > 2, which is a contradiction. In
addition, if (k, 4357) = 4357, then we can write k = 4357mn1, where m >

1, n1 > 1 and (4357, n1) = 1. Rewrite Equation (2.50) as

4357m(y−z)n1
y−z(132x4357m(x−y)n1

x−y + 4355y) = 4357z (2.51)

Since
(n1, 4357) = (132x4357m(x−y)n1

x−y + 4355y, 4357) = 1,

n1
y−z(132x4357m(x−y)n1

x−y + 4355y) = 1

which is impossible.
Subcase 2.2 If y < z < x, then, rewriting (1.6) as

kz−y(4357z − 132xkx−z) = 4355y, (2.52)

we have if (k, 4355) = 1, then y = z, where k > 2, which is a contradic-
tion. In addition, if (k, 4355) > 1, then we can write k = 5r13s67qn1, where
r + s+ q > 1, n1 > 1 and (4355, n1) = 1.

Then we get seven cases as follows:

1. If k = 5rn1, where r > 1, n1 > 1 and s = q = 0 with (4355, n1) = 1,
then rewrite Equation (2.52) as

4355y

5r(z−y)
=

5y13y67y

5r(z−y)
= n

z−y

1

[

4357z − 132x5r(x−z)nx−z

1

]

. (2.53)
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So, 5y = 5r(z−y) and n1 = 1. Thus, Equation (2.53) becomes

4357z − 871y = 4x3x11x5r(x−z), (2.54)

By considering Equation (2.54) modulo 33, we obtain

1 ≡ 13y(mod 33). (2.55)

Hence, we can write y = 10m. Similarly, by considering Equation (2.54)
modulo 5, we obtain

2z ≡ 1(mod 5). (2.56)

So, write z = 4c. Thus, assume

z = 2z1 and y = 2y1 with z1 > y1, where z1 = 2c and y1 = 5m.

(2.57)
Hence, Equation (2.54) becomes

(4357z1 − 871y1)(4357z1 + 871y1) = 22x3x11x5r(x−z). (2.58)

Since
4357z1 + 871y1 ≡ 1 + 1 ≡ 2(mod 3). (2.59)

Hence, from (2.59), we get 3 ∤ 4357z1 + 871y1 and since

(4357z1 − 871y1, 4357z1 + 871y1) = 2,

based on Equation (2.58), we have two possibilities:

22x−13x | 4357z1 − 871y1 and 2 | 4357z1 + 871y1, (2.60)

or

2(3x) | 4357z1 − 871y1 and 22x−1 | 4357z1 + 871y1. (2.61)

Taking (2.60), we observe that 4357z1 ≡ 871y1(mod 4),
1 ≡ 3y1(mod 4). Thus y1 is even. From (2.57), we assume that
y1 = 5m = 10m1. Therefore

4357z1 + 871y1 ≡ 1 + 2y1 ≡ 1 + 210m1 ≡ 1 + 1 ≡ 2(mod 11).

Hence, 11 ∤ 4357z1 + 871y1. Consequently

22x−13x11x | 4357z1 − 871y1. (2.62)
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But

22x−13x11x =
132x

2
=

(27 + 22)
x

2
> 27x−1 + 22x−1 > 27x−1 > 213z1

> (4357 + 871)z1

> 4357z1 + 871z1,

> 4357z1 + 871y1,

> 4357z1 − 871y1,

and this contradicts (2.62). On the other hand, if we take (2.61), we
observe that 4357z1 + 871y1 ≡ 0(mod4) and so 1 + 3y1 ≡ 0(mod4).
Therefore, y1 is odd. From (2.57), we write y1 = 5m = 10m1 + 5.
Similarly,

4357z1 + 871y1 ≡ 0(mod 16),

thus
5z1 + 710m1+5 ≡ 5z1 + 7 ≡ 0(mod 16).

Since ord165 = 4, z1 = 4s+ 2. Therefore,

4357z1 − 871y1 ≡ 1− 2y1 ≡ 1− 210m1+5 ≡ 1− 10 ≡ 2(mod 11),

and
4357z1 − 871y1 ≡ 2z1 − 1 ≡ 24s+2 − 1 ≡ 3(mod 5).

Hence 11 ∤ 4357z1 − 871y1 and 5 ∤ 4357z1 − 871y1. So, from (2.61), we
have

2(3x) | 4357z1 − 871y1 and 22x−111x5r(x−z) | 4357z1 + 871y1. (2.63)

Then, from Equations (2.58) and (2.63), we obtain

4357z1 − 871y1 = 2(3x). (2.64)

Thus, by considering Equation (2.64) modulo 13, we obtain

2z1 ≡ 2(3x)(mod 13). (2.65)

Since 2 is a primitive root of 13, the congruence (2.65) becomes

z1 ≡ 1 + 4x(mod 12). (2.66)

Thus z1 is odd and this contradicts (2.57).
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2. If k = 13sn1, where s > 1, n1 > 1 and r = q = 0 with (4355, n1) = 1,
then rewrite Equation (2.52) as

4355y

13s(z−y)
=

5y13y67y

13s(z−y)
= n

z−y

1

[

4357z − 132x13s(x−z)nx−z

1

]

. (2.67)

It follows that 13y = 13s(z−y) and n1 = 1. Therefore Equation (2.67)
becomes

4357z − 335y = 4x3x11x13s(x−z). (2.68)

By considering Equation (2.68) modulo 99, we obtain

1 ≡ 38y(mod 99). (2.69)

Thus, we can write y = 30m. Similarly, by considering Equation (2.68)
modulo 16, we obtain

5z ≡ 15y ≡ 1530m ≡ 1(mod 16). (2.70)

So, write z = 4c. Suppose

z = 2z1 and y = 2y1 with z1 > y1, where z1 = 2c and y1 = 15m.

(2.71)
Hence Equation (2.68) becomes

(4357z1 − 335y1)(4357z1 + 335y1) = 22x3x11x13s(x−z). (2.72)

Since

4357z1 + 335y1 ≡ 1 + 515m ≡ 1 + 1 ≡ 2(mod 11), (2.73)

from (2.73), we get 11 ∤ 4357z1 + 335y1. Since

(4357z1 − 335y1, 4357z1 + 335y1) = 2,

based on Equation (2.72), we have two possibilities:

22x−111x | 4357z1 − 335y1 and 2 | 4357z1 + 335y1, (2.74)

or

2(11x) | 4357z1 − 335y1 and 22x−1 | 4357z1 + 335y1. (2.75)
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Considering (2.74), observe that 4357z1 ≡ 335y1( mod 4). So 1 ≡ 3y1( mod
4). Thus y1 is even. Based on (2.71), we can write y1 = 15m = 30m1.

Therefore

4357z1 + 335y1 ≡ 1 + 2y1 ≡ 1 + 230m1 ≡ 1 + 1 ≡ 2(mod 3).

Hence 3 ∤ 4357z1 + 335y1. Consequently,

22x−13x11x | 4357z1 − 335y1. (2.76)

However, we have y < z < x. Thus

22x−13x11x =
132x

2
=

(27 + 22)
x

2
> 27x−1 + 22x−1 > 27x−1 > 213z1 ,

> (4357 + 335)z1,

> 4357z1 + 335z1,

> 4357z1 + 335y1,

> 4357z1 − 335y1,

and this contradicts (2.76). On the other hand, if we consider (2.75),
we see that 4357z1 + 335y1 ≡ 0(mod 4). Thus,

1 + 3y1 ≡ 0(mod 4).

So, y1 is odd. Based on (2.71), we can write
y1 = 15m = 30m1 + 15. Therefore,

4357z1 − 335y1 ≡ 1− 2y1 ≡ 1− 230m1+15 ≡ 1− 2 ≡ 2(mod 3).

Hence,
3 ∤ 4357z1 − 335y1. (2.77)

Also, if 13 | 4357z1 − 335y1, then

2z1 ≡ 33530m1+15 ≡ 1015 ≡ 12(mod 13),

and since 2 is a primitive root of 13, we obtain
z1 ≡ 6(mod 12). Thus z1 = 12c+ 6. It follows that

435712c+6 + 33530m1+15 ≡ 9 + 15 ≡ 24 ≡ 8(mod 16);

that is, 16 ∤ 4357z1 + 335y1 but this contradicts (2.75). Thus

13 ∤ 4357z1 − 335y1. (2.78)
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Based on (2.68), (2.75), (2.77), and (2.78), we have

4357z1 − 335y1 = 2(11)x.

Therefore, 2z1 ≡ 2(mod 5). Consequently, z1 = 4q + 1; i.e., z1 is odd
and this contradicts (2.71).

3. If k = 67qn1, where q > 1, n1 > 1 and r = s = 0 with (4355, n1) = 1,
then rewrite Equation (2.52) as

4355y

67q(z−y)
=

5y13y67y

67q(z−y)
= n

z−y

1

[

4357z − 132x67q(x−z)nx−z

1

]

. (2.79)

So, 67y = 67q(z−y) and n1 = 1. Thus Equation (2.79) becomes

4357z − 65y = 4x3x11x67q(x−z). (2.80)

By considering Equation (2.80) modulo 3 and modulo 16, we obtain

1 ≡ 2y(mod 3), and 1 ≡ 5z(mod 16).

Since ord32 = 2 and ord165 = 4, we can write

z = 4c = 2z1 and y = 2y1 with z1 > y1, where z1 = 2c. (2.81)

Hence Equation (2.80) becomes

(4357z1 − 65y1)(4357z1 + 65y1) = 22x3x11x67q(x−z). (2.82)

Since 4357z1 + 65y1 ≡ 2(mod 4), 4 ∤ 4357z1 + 65y1 and since (4357z1 −
65y1, 4357z1 + 65y1) = 2, from Equation (2.82), we get

22x−1 | 4357z1 − 65y1, and 2 | 4357z1 + 65y1. (2.83)

If y1 = 2m, then

4357z1 + 652m ≡ 1 + 1(mod 3), and 4357z1 + 652m ≡ 1 + 1(mod 11).

Hence 3 ∤ 4357z1 + 65y1 and 11 ∤ 4357z1 + 65y1. Thus, from (2.83), we
have

22x−13x11x | 4357z1 − 65y1. (2.84)
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By y < z < x, we obtain

22x−13x11x =
132x

2
=

(27 + 22)
x

2
> 27x−1 + 22x−1 > 27x−1 > 213z1 ,

> (4357 + 65)z1,

> 4357z1 + 65z1,

> 4357z1 + 65y1,

> 4357z1 − 65y1,

and this contradicts (2.84). Otherwise, if y1 = 2m+ 1, then

4357z1+652m+1 ≡ 1+2 ≡ 0( mod 3) and 4357z1+652m+1 ≡ 1+10 ≡ 0( mod 11).

Thus, (2.83) becomes

22x−1 | 4357z1 − 65y1 and 2(3x11x) | 4357z1 + 65y1. (2.85)

So, we have two cases. The first case: if 67 | 4357z1 − 65y1, then from
Equation (2.82)and (2.85), where

(4357z1 − 65y1, 4357z1 + 65y1) = 2,

we get

4357z1 − 65y1 = 22x−167q(x−z),

and

4357z1 + 65y1 = 2(3x11x). (2.86)

Then

4357z1 = 3x11x + 22x−267q(x−z),

and

65y1 = 3x11x − 22x−267q(x−z). (2.87)

From Equation (2.87), we have 1 ≡ 33x(mod 64), since
ord6433 = 2, hence x is even, and from (2.86), we have

2z1 ≡ 2(3x)(mod 5). (2.88)

Since 2 is a primitive root of 5, the congruence (2.88) becomes

z1 ≡ 1 + 3x(mod 4). (2.89)
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Since z1 − 1− 3x and x are even, z1 is odd and this contradicts (2.81).
The second case: if 67 | 4357z1 + 65y1, then from Equation (2.82) and
(2.85), where (4357z1 − 65y1, 4357z1 + 65y1) = 2, we have

4357z1 − 65y1 = 22x−1.

Therefore,
2z1 ≡ 22x−1(mod 5), (2.90)

and since 2 is a primitive root of 5, the congruence (2.90) becomes

z1 ≡ 2x− 1(mod 4). (2.91)

Thus z1 is odd and this contradicts (2.81).

4. If k = 5r13sn1, where r > 1, s > 1, n1 > 1 and q = 0 with (4355, n1) =
1, then rewrite Equation (2.52) as

5y13y67y

5r(z−y)13s(z−y)
= n

z−y

1

[

4357z − 132x5r(x−z)13s(x−z)nx−z

1

]

. (2.92)

Hence n1 = 1, 5y = 5r(z−y) and 13y = 13s(z−y) and so r = s. Thus,
Equation (2.92) becomes

4357z − 67y = 4x3x11x65r(x−z). (2.93)

By considering Equation (2.93) modulo 4, we obtain
1 ≡ 3y(mod 4). Hence y is even and we can write y = 2y1. Also, by
considering Equation (2.93) modulo 8, we obtain
5z ≡ 32y1 ≡ 1( mod 8). So z is even; say z = 2z1. Hence Equation (2.93)
becomes

(4357z1 − 67y1)(4357z1 + 67y1) = 22x3x11x65r(x−z). (2.94)

Since

4357z1 + 67y1 ≡ 2(mod 3), and 4357z1 + 67y1 ≡ 2(mod 11),

it follows that 3 ∤ 4357z1 + 67y1 and 11 ∤ 4357z1 + 67y1. Since

(4357z1 − 67y1, 4357z1 + 67y1) = 2.
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Thus, from Equation (2.94), we obtain

22x−13x11x | 4357z1 − 67y1 and 2 | 4357z1 + 67y1, (2.95)

or

2(3x11x) | 4357z1 − 67y1 and 22x−1 | 4357z1 + 67y1. (2.96)

Considering (2.95), observe that 22x−13x11x | 4357z1 − 67y1. But y <

z < x. So

22x−13x11x =
132x

2
=

(27 + 22)
x

2
> 27x−1 + 22x−1 > 27x−1 > 213z1 ,

> (4357 + 67)z1,

> 4357z1 + 67y1,

> 4357z1 − 67y1,

and this contradicts (2.95). On the other hand, if we consider (2.96),
we observe that

4357z1 + 67y1 ≡ 1 + 3y1 ≡ 0(mod 4).

Thus y1 is odd. So, if 5 | 4357z1 − 67y1, then

2z1 ≡ 2y1(mod 5).

Since y1 is odd,

(z1, y1) ∈ {(4c1 + 1, 4c2 + 1) , (4c1 + 3, 4c2 + 3)} .

Hence
4357z1 + 67y1 ≡ 54c1+1 + 34c2+1 ≡ 8(mod 16),

and
4357z1 + 67y1 ≡ 54c1+3 + 34c2+3 ≡ 8(mod 16).

We conclude that 16 ∤ 4357z1 + 67y1 but this contradicts (2.96). Thus

5 | 4357z1 + 67y1. (2.97)

Similarly, if 13 | 4357z1 − 67y1, then 2z1 ≡ 2y1(mod 13) and since y1 is
odd and ord132 = 12,

(z1, y1) ∈

{

(12c1 + 1, 12c2 + 1) , (12c1 + 3, 12c2 + 3) , (12c1 + 5, 12c2 + 5) ,
(12c1 + 7, 12c2 + 7) , (12c1 + 9, 12c2 + 9) , (12c1 + 11, 12c2 + 11)

}

.
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Hence,

4357z1 + 67y1 ≡ 512c1+1 + 312c2+1 ≡ 5 + 3 ≡ 8(mod 16),
4357z1 + 67y1 ≡ 512c1+3 + 312c2+3 ≡ 53 + 33 ≡ 8(mod 16),
4357z1 + 67y1 ≡ 512c1+5 + 312c2+5 ≡ 55 + 35 ≡ 8(mod 16),
4357z1 + 67y1 ≡ 512c1+7 + 312c2+7 ≡ 57 + 37 ≡ 8(mod 16),
4357z1 + 67y1 ≡ 512c1+9 + 312c2+9 ≡ 59 + 39 ≡ 8(mod 16),
4357z1 + 67y1 ≡ 512c1+11 + 312c2+11 ≡ 511 + 311 ≡ 8(mod 16).

It follows that 16 ∤ 4357z1 + 67y1, but this contradicts (2.96). Thus

13 | 4357z1 + 67y1. (2.98)

Since 8 | 4357z1 + 67y1 and y1 is odd,

4357z1 + 67y1 ≡ 5z1 + 3y1 ≡ 5z1 + 3(mod 8).

Therefore,
z1 ≡ 1(mod 2). (2.99)

From (2.94), (2.96), (2.97), and (2.98), we have

4357z1 + 67y1 = 22x−15r(x−z)13r(x−z),

and
4357z1 − 67y1 = 2(3x11x).

Then,
4357z1 = 22x−25r(x−z)13r(x−z) + 3x11x, (2.100)

and
67y1 = 22x−25r(x−z)13r(x−z) − 3x11x.

Since y and z are even and y < z < x, then from (2.100), we obtain

5z1 ≡ 33x(mod 64). (2.101)

If x even, then (2.101) becomes 5z1 ≡ 1(mod 64) and since ord645 =
16, hence z1 is even and this contradicts (2.99).
Similarly, if x is odd, we obtain

5z1 ≡ 33(mod 64). (2.102)

By substituting values z1 = 16k + r, where 0 ≤ r < 15 into the con-
gruence(2.102), we find only

z1 = 16k + 8,
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satisfies the congruence. So z1 is even and this contradicts (2.99).

5. If k = 13s67qn1, where s > 1, q > 1, n1 > 1 and r = 0 with (4355, n1) =
1, then rewrite Equation (2.52) as

5y13y67y

13s(z−y)67q(z−y)
= n

z−y

1

[

4357z − 132x13s(x−z)67q(x−z)nx−z

1

]

. (2.103)

It follows that n1 = 1, 13y = 13s(z−y) and 67y = 67q(z−y), so s = q.

Thus, Equation (2.103) becomes

4357z − 5y = 4x3x11x13s(x−z)67s(x−z). (2.104)

By considering Equation (2.104) modulo 33, we obtain
1 ≡ 5y(mod 33) and since ord335 = 10, hence, we can write y = 10m =
2y1, with y1 = 5m. Also, by considering Equation (2.104) modulo 8, we
obtain 5z ≡ 52y1 ≡ 1(mod 8). So, z must be even. We write z = 2z1.
Hence, Equation (2.104) becomes

(4357z1 − 5y1)(4357z1 + 5y1) = 22x3x11x13s(x−z)67s(x−z). (2.105)

Since

4357z1 + 5y1 ≡ 2(mod 4), and 4357z1 + 5y1 ≡ 1 + 55m ≡ 2(mod 11),

4 ∤ 4357z1 + 5y1 and 11 ∤ 4357z1 + 5y1.

Since (4357z1 − 5y1, 4357z1 + 5y1) = 2, from Equation (2.105), we have

22x−111x | 4357z1 − 5y1, and 2 | 4357z1 + 5y1. (2.106)

If y1 is even, then 4357z1 + 5y1 ≡ 1 + 1 ≡ 2(mod 3). So, from (2.106),
we observe that

22x−13x11x | 4357z1 − 5y1. (2.107)

But, from y < z < x, we get

22x−13x11x =
132x

2
=

(27 + 22)
x

2
> 27x−1 + 22x−1 > 27x−1 > 213z1 ,

> (4357 + 5)z1,

> 4357z1 + 5z1,

> 4357z1 − 5y1 ,
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and this contradicts (2.107). Otherwise, if y1 is odd, then
4357z1 + 5y1 ≡ 1 + 2 ≡ 0(mod 3). So, from (2.106), we obtain

22x−111x | 4357z1 − 5y1, and 2(3x) | 4357z1 + 5y1 . (2.108)

Thus, 4357z1 ≡ 5y1 ≡ 5(mod 8); that is, 5z1 ≡ 5(mod 8),
implies 5z1+1 ≡ 1(mod 8). Therefore, z1 + 1 must be even. Thus z1 is
odd. Therefore, if 67 | 4357z1 + 5y1, then

2z1 ≡ (−5)y1 ≡ 62y1(mod 67). (2.109)

Since 2 is a primitive root of 67, the congruence (2.109) becomes z1 ≡
48y1(mod 66). Thus z1 is even and this contradicts z1 is odd. So 67 ∤
4357z1 + 5y1 and (2.108) becomes

22x−111x67s(x−z) | 4357z1 − 5y1, and 2(3x) | 4357z1 + 5y1 . (2.110)

Similarly, if 13 | 4357z1−5y1 , then from (2.105) and (2.110), we observe
that

4357z1 − 5y1 = 22x−111x67s(x−z)13s(x−z), and 4357z1 + 5y1 = 2(3x).

Thus
4357z1 = 3x + 22x−211x13s(x−z)67s(x−z), (2.111)

and
5y1 = 3x − 22x−211x13s(x−z)67s(x−z). (2.112)

From (2.111), we obtain 1 ≡ (−1)x(mod 4). It follows that x is even.
So, from (2.112), where y1 is odd, we have 5 ≡ 1(mod8), which is
impossible. So 13 | 4357z1 + 5y1 . Then, from (2.105) and (2.110), we
observe that

4357z1 − 5y1 = 22x−111x67s(x−z), and 4357z1 + 5y1 = 2(3x13s(x−z)).

So
4357z1 = 3x13s(x−z) + 22x−211x67s(x−z), (2.113)

and
5y1 = 3x13s(x−z) − 22x−211x67s(x−z). (2.114)

From (2.113), we obtain 1 ≡ (−1)x(mod 4). It follows that x is even.
From (2.114), where y1 is odd and x− z is even, we get 5 ≡ 1(mod 8),
which is impossible.
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6. If k = 5r67qn1, where r > 1, q > 1, n1 > 1 and s = 0 with (4355, n1) =
1, then rewrite Equation (2.52) as

5y13y67y

5r(z−y)67q(z−y)
= n

z−y

1

[

4357z − 132x5r(x−z)67q(x−z)nx−z

1

]

. (2.115)

Hence n1 = 1, 5y = 5r(z−y) and 67y = 67q(z−y) so r = q. Thus, Equation
(2.115) becomes

4357z − 13y = 4x3x11x5r(x−z)67r(x−z). (2.116)

By considering Equation (2.116) modulo 11, we obtain
1 ≡ 2y(mod 11) and since ord112 = 10, we can write y = 10m = 2y1,
where y1 = 5m. Also, by considering Equation (2.116) modulo 8, we
obtain 5z ≡ 52y1 ≡ 1(mod 8).
So z must be even; say z = 2z1. Hence, Equation (2.116) becomes

(4357z1 − 13y1)(4357z1 + 13y1) = 22x3x11x5r(x−z)67r(x−z). (2.117)

Since

4357z1 + 13y1 ≡ 2(mod 4) and 4357z1 + 13y1 ≡ 2(mod 3),

4 ∤ 4357z1 + 13y1 , and 3 ∤ 4357z1 + 13y1.

Since (4357z1−13y1 , 4357z1+13y1) = 2, from Equation (2.117), we have

22x−13x | 4357z1 − 13y1, and 2 | 4357z1 + 13y1 . (2.118)

If y1 is even, then we can write y1 = 5m = 10m1. Thus,
4357z1 + 13y1 ≡ 1 + 210m1 ≡ 2(mod 11); that is,
11 ∤ 4357z1 + 13y1. So, from (2.118), we observe that

22x−13x11x | 4357z1 − 13y1. (2.119)

But, from y < z < x, we observe that

22x−13x11x =
132x

2
=

(27 + 22)
x

2
> 27x−1 + 22x−1 > 27x−1 > 213z1 ,

> (4357 + 13)z1,

> 4357z1 + 13z1,

> 4357z1 − 13y1,
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and this contradicts (2.119). On the other hand, if y1 is odd, then we
can write y1 = 5m = 10m1 + 5. Thus

4357z1 + 13y1 ≡ 1 + 210m1+5 ≡ 1 + 25 ≡ 1 + 10 ≡ 0(mod 11);

that is, 11 | 4357z1 + 13y1. So, from (2.118), we obtain

22x−13x | 4357z1 − 13y1 , and 2(11x) | 4357z1 + 13y1 . (2.120)

Thus, 4357z1 ≡ 13y1(mod 8); that is, 5z1 ≡ 5y1(mod 8),
implies that 5z1+y1 ≡ 1(mod 8). It follows that z1 + y1 is even. But y1
is odd. So z1 is odd. Now, if 67 | 4357z1 + 13y1, then

2z1 ≡ (−13)y1 ≡ 54y1(mod 67). (2.121)

Since 2 is a primitive root of 67, the congruence (2.121) becomes z1 ≡
52y1(mod 66). Thus z1 must be even. This contradicts z1 is odd and
therefore 67 ∤ 4357z1 + 13y1 and (2.120) becomes

22x−13x67r(x−z) | 4357z1 − 13y1 , and 2(11x) | 4357z1 + 13y1. (2.122)

Similarly, if 5 | 4357z1−13y1 , then from (2.117) and (2.122), we observe
that

4357z1 − 13y1 = 22x−13x67r(x−z)5r(x−z), and 4357z1 + 13y1 = 2(11x).

Thus
4357z1 = 11x + 22x−23x5r(x−z)67r(x−z), (2.123)

and
13y1 = 11x − 22x−23x5r(x−z)67r(x−z). (2.124)

From (2.123), we obtain 1 ≡ (−1)x(mod 4). It follows that x is even.
So, from (2.124), where y1 is odd, we get 5 ≡ 1(mod 8), which is im-
possible. So 5 | 4357z1 + 13y1. Then, from (2.117) and (2.122), we
observe that

4357z1 − 13y1 = 22x−13x67r(x−z), and 4357z1 + 13y1 = 2(11x5r(x−z)).

So
4357z1 = 11x5r(x−z) + 22x−23x67r(x−z), (2.125)

and
13y1 = 11x5r(x−z) − 22x−23x67r(x−z). (2.126)
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Thus, from (2.125), we obtain 1 ≡ (−1)x(mod 4). It follows that x is
even. So, from (2.126), where y1 is odd and x − z is even, we have
5 ≡ 1(mod 8), which is impossible.

7. If k = 5r13s67qn1, where r > 1, s > 1, q > 1 and n1 > 1 with
(4355, n1) = 1, then rewrite Equation (2.52) as

5y13y67y

5r(z−y)13s(z−y)67q(z−y)
= n

z−y

1

[

4357z − 132x5r(x−z)13s(x−z)67q(x−z)nx−z

1

]

.

(2.127)
So, n1 = 1, 5y = 5r(z−y), 13y = 13s(z−y) and 67y = 67q(z−y). Thus
r = s = q and Equation (2.127) becomes

4357z − 1 = 4x3x11x5r(x−z)13r(x−z)67r(x−z). (2.128)

We conclude that 4357z − 1 ≡ 2z − 1 ≡ 0(mod 5). Hence
z ≡ 0( mod 4) and since 43572−1 ≡ 0( mod 2179),where 2179 is prime.
Thus, 4357z − 1 ≡ 0(mod 2179). Hence, from Equation (2.128), we ob-
tain

4x3x11x5r(x−z)13r(x−z)67r(x−z) ≡ 0(mod 2179),

which is impossible.

This completes the proof for the second case and consequently completes the
proof of theorem (1.1).

3 Conclusion

We have obtained a new Pythagorean triple for Jeśmanowicz’s conjecture and
proved that the special Diophantine equation (132k)x+(4355k)y = (4357k)z

has the only positive integer solution (x, y, z) = (2, 2, 2) for every positive
integer k.
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