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Abstract

In this article, we define a four parameter bivariate distribution
whose marginal distributions are inverted beta and gamma. For this
distribution, we derive results such as product moments, correlation
coefficient, marginal and conditional distributions, distributions of
sum, product and quotient, information matrix, and entropies. We
also deal with the problem of estimation of parameters.

1 Introduction

Bivariate distributions have attracted useful applications in several areas.
They have been used for representing joint probabilistic properties of multi-
variate hydrological events such as floods and storms or in the modeling of
rainfall at two nearby rain gauges, data obtained from rainmaking experi-
ments, the dependence between annual stream flow and aerial precipitation,
wind gust modeling, and the dependence between rainfall and runoff, relia-
bility (see [4], [6], [12], [16], [10, 11] and references therein).

Several bivariate distributions have been proposed in the statistical liter-
ature. Variuos techniques to generate bivariate distributions have also been
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proposed in the scientific literature (e.g., see [3], [4], [9], [24]). The bivariate
Rayleigh, Nakagami, Weibull, and lognormal distributions have been thor-
oughly studied in [2], [20], [21]. Nadarajah [10] defined gamma-exponential
distribution whose margins have the gamma and the exponential distribu-
tions. By using two independent gamma variables, Nadarajah [11], con-
structed a bivariate distribution which has gamma and beta distributions
as its marginals. By using the conditional approach (see Section 5.6 of [4]),
Nagar, Nadarajah and Okorie [14] and Nagar, Zarrazola and Sánchez [15]
have constructed bivariate distributions whose marginal laws are gamma and
Macdonald/extended beta.

In this article, we will use conditional approach to construct a four param-
eter bivariate distribution which has inverted beta and gamma distributions
as its marginals.

The gamma distribution has been defined by the probability density func-
tion (p.d.f.)

va−1 exp(−v/σ)
σaΓ(a)

, a > 0, σ > 0, v > 0. (1)

We will write V ∼ G(a, σ) if the density of V is given by (1). Here, a
and σ determine the shape and scale of the distribution. The beta (type 1)
distribution is defined by the density

uα−1(1− u)β−1

B(α, β)
, 0 < u < 1, a > 0, b > 0, (2)

where B(a, b) is the usual beta function. A notation to designate that U has
the beta distribution defined by the density (2) is U ∼ B(α, β). The random
variable W is said to have a beta type 2 or inverted beta distribution with
parameters α, β and σ, denoted as X ∼ IB(α, β; σ) if its p.d.f is given by

fIB(w;α, β; σ) =
wα−1(σ + w)−(α+β)

σ−βB(α, β)
, w > 0, a > 0, b > 0. (3)

The inverted beta is the most familiar statistical distribution in finance,
economics and related areas. Moreover, by using the transformation U =
W/(σ + W ) with the Jacobian J(u → w) = σ(σ + w)−2, the p.d.f of the
inverted beta distribution can be derived.

Now, consider two random variables X and Y such that the conditional
distribution of X given y is gamma with the shape parameter α and the scale
parameter σ1/y and the marginal distribution of Y is gamma with the shape
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parameter β and scale parameter σ2. That is,

f(x|y) = xα−1 exp(−xy/σ1)
σα
1Γ(α)y

−α
, x > 0, α > 0, σ1 > 0

and

g(y) =
yβ−1 exp(−y/σ2)

σβ
2Γ(β)

, y > 0, β > 0, σ2 > 0.

Then one can write

fIB(x, α, β; σ1/σ2) =

∫

∞

0

f(x|y)g(y) dy.

Thus, the product f(x|y)g(y) can be used to create a bivariate density with
inverted beta and gamma as marginal densities of X and Y , respectively.
We, therefore, define the bivariate density of X and Y as

f(x, y;α, β, σ1, σ2) =
xα−1yα+β−1 exp (−xy/σ1−y/σ2)

σα
1 σ

β
2Γ(α)Γ(β)

, x > 0, y > 0, (4)

where α > 0, β > 0, σ1 > 0 and σ2 > 0. The bivariate distribution defined by
the above density has many interesting features. For example, the marginal
and the conditional distributions of X are inverted beta and gamma, re-
spectively, the marginal distribution of Y is gamma, and the conditional
distribution of Y given x is also gamma with scale parameter α + β and
shape parameter (x/σ1 + 1/σ2)

−1. The gamma distribution has been used
to model amounts of daily rainfall (Aksoy [1]). In neuroscience, the gamma
distribution is often used to describe the distribution of inter-spike intervals
(Robson and Troy [18]). The gamma distribution is widely used as a conju-
gate prior in Bayesian statistics. It is the conjugate prior for the precision
(i.e. inverse of the variance) of a normal distribution. The inverted beta
distribution is used in the analysis of carcinogenesis data, in the study of
system availability or in measuring information in predictive distributions.
Furthermore, the fact that marginal distributions are gamma and inverted
beta makes this bivariate distribution a potential candidate for many real
life problems.

In this article, we study distributions defined by the density (4), de-
rive properties such as marginal and conditional distributions, moments, en-
tropies and information matrix. We also deal with the problem of estimation
of parameters.
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2 Properties

First, we briefly discuss the shape of (4). The first order derivatives of
ln f(x, y;α, β, σ1, σ2) with respect to x and y are

fx(x, y) =
∂ ln f(x, y;α, β, σ1, σ2)

∂x
=
α− 1

x
− y

σ1
(5)

and

fy(x, y) =
∂ ln f(x, y;α, β, σ1, σ2)

∂y
=
α + β − 1

y
− x

σ1
− 1

σ2
(6)

respectively. Setting (5) and (6) to zero, we note that (a, b), a = σ1(α −
1)/σ2β, b = σ2β is a stationary point of (4). Computing second order deriva-
tives of ln f(x, y;α, β, σ1, σ2), from (5) and (6), we get

fxx(x, y) =
∂2 ln f(x, y;α, β, σ1, σ2)

∂x2
= −α− 1

x2
, (7)

fxy(x, y) =
∂2 ln f(x, y;α, β, σ1, σ2)

∂x∂y
= − 1

σ1
, (8)

and

fyy(x, y) =
∂2 ln f(x, y;α, β, σ1, σ2)

∂y2
= −α + β − 1

y2
. (9)

In addition, from (7), (8) and (9), we get

fxx(a, b) = − σ2
2β

2

σ2
1(α− 1)

, fyy(a, b) = −(α + β − 1)

σ2
2β

2

and

fxx(a, b)fyy(a, b)− [fxy(a, b)]
2 =

β

σ2
1(α− 1)

.

Now, observe that

• If α > 1, then fxx(a, b)fyy(a, b) − [fxy(a, b)]
2 > 0, fxx(a, b) < 0 and

fyy(a, b) < 0, and therefore (a, b) is a maximum point.
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Figure 1: Graphs of the bivariate density (4)
Graph 1 Graph 2

α = 3, β = 2, σ1 = 8, σ2 = 4 α = 4, β = 6, σ1 = 1.5, σ2 = 5

Graph 3 Graph 4

α = 6, β = 4, σ1 = 3.5, σ2 = 0.5 α = 6, β = 4, σ2 = 0.25, σ2 = 4

Graph 5 Graph 6

α = 4, β = 0.5, σ1 = 0.5, σ2 = 6 α = 4, β = 0.5, σ2 = 0.5, σ2 = 0.5



1136 D. K. Nagar, E. Zarrazola, A. Roldán-Correa

• If α < 1, then fxx(a, b)fyy(a, b)− [fxy(a, b)]
2 < 0, and therefore (a, b) is

a saddle point.

Figure 1 illustrates the shape of the p.d.f (4) for selected values of α, β, σ1
and σ2. Here one can appreciate the wide range of forms that result from
the bivariate density defined by the density (4).

A distribution is said to be negatively likelihood ratio dependent (NLRD)
if the density f(x, y) satisfies

f(x1, y1)f(x2, y2) ≤ f(x1, y2)f(x2, y1) (10)

for all x1 > x2 and y1 > y2 (Lehmann [7], Tong [23]). In the present case,
(10) is equivalent to

y1x2 + x1y2 ≤ x1y1 + x2y2

which clearly holds. Thus the bivariate distribution defined by the density
(4) is NLRD.

3 Expected Values

By definition, the product moments of X and Y associated with (4) are given
by

E(XrY s) =

∫

∞

0

∫

∞

0

xα+r−1yα+β+s−1 exp (−xy/σ1 − y/σ2)

σα
1 σ

β
2Γ(α)Γ(β)

dx dy

=
σr
1Γ(α + r)

σβ
2Γ(α)Γ(β)

∫

∞

0

yβ+s−r−1 exp

(

− y

σ2

)

dy

=
σr
1σ

s−r
2 Γ(α + r)Γ(β + s− r)

Γ(α)Γ(β)
, α + r > 0, β + s− r > 0, (11)

where both the lines have been derived by using the definition of gamma
function.

Substituting appropriately in (11), the means of X and Y , denoted by
µX and µY , are computed as

µX = E(X) =
σ1α

σ2(β − 1)
, β > 1, µY = E(Y ) = σ2β.

By using the definition of (i, j)-th central joint moment of (X, Y ), namely,

µij = E[(X − µX)
i(Y − µY )

j ],
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expressions for µij, for different values of i and j, are computed as

µ11 = cov(X, Y ) = − σ1α

β − 1
, β > 1,

µ20 = var(X) =
σ2
1α(α + β − 1)

σ2
2(β − 1)2(β − 2)

, β > 2,

µ02 = var(Y ) = σ2
2β,

µ30 =
2σ3

1α(α+ β − 1)(2α+ β − 1)

σ3
2(β − 1)3(β − 2)(β − 3)

, β > 3,

µ21 = − 2α(α+ β − 1)σ2
1

(β − 1)2(β − 2)σ2
, β > 2,

µ12 = 0,

µ03 = 2βσ3
2,

µ40 =
3α(α + β − 1)[α(β + 5)(α + β − 1) + 2(β − 1)2]σ4

1

(β − 1)4(β − 2)(β − 3)(β − 4)σ4
2

, β > 4,

µ31 = −3α(α + β − 1)(αβ + α + 2β − 2)σ3
1

(β − 1)3(β − 2)(β − 3)σ2
2

, β > 3,

µ22 =
α(β2 + 3αβ + β − 2α− 2)σ2

1

(β − 1)2(β − 2)
, β > 2,

µ13 = −3αβσ1σ
2
2

(β − 1)
, β > 1,

µ04 = 3β(β + 2)σ4
2.

Moreover, using the above expressions, the correlation coefficient between X
and Y is given by

ρX,Y = −
√

α(β − 2)

β(α+ β − 1)
, β > 2.
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4 Distributional Results

From the construction of the bivariate density (4), it is cleat that X ∼
IB(α, β, σ1/σ2), Y ∼ G(β, σ2), Y |x ∼ G(α + β, σ1/(σ1/σ2 + x)) and X|y ∼
G(α, σ1/y). By using transformation of variables, it is easy to see that XY
and Y are independently distributed with XY ∼ G(α, σ1).

For s = r, the expression (11) reduces to

E(XrY r) =
σr
1Γ(α+ r)

Γ(α)
,

which also shows that XY has a gamma distribution with shape parameter α
and scale parameter σ1. For s = 2r, from (11), the r-th moment ofXY 2/σ1σ2
is derived as

E

[(

XY 2

σ1σ2

)r]

=
Γ(α + r)Γ(β + r)

Γ(α)Γ(β)
.

From the above expression, it is clear that XY 2/σ1σ2 is distributed as the
product of two independent standard gamma variables with shape parameters
α and β. For β = α + 1/2, one can write

E

[

(

4XY 2

σ1σ2

)r/2
]

=
Γ(2α + r)

Γ(2α)

which shows that 2Y
√

X/σ1σ2 has a gamma distribution with shape pa-

rameter 2α. Similarly, for β = α − 1/2, we have 2Y
√

X/σ1σ2 ∼ G(2β).
Furthermore, for arbitrary values of α and β, the density of V = XY 2/σ1σ2
is given as

fV (v) =
2

Γ(α)Γ(β)
v(α+β)/2−1Kα−β(2

√
v), v > 0,

where Kν is the modified Bessel function of the second kind defined by the
integral (Gradshteyn and Ryzhik [5, Eq. 3.471.9]),

∫

∞

0

exp

(

−az − b

z

)

zν−1 dz = 2

(

b

a

)ν/2

Kν(2
√
ab), a > 0. b > 0.

Making the transformation S = X + Y and R = X/(X + Y ) with the
Jacobian J(x, y → r, s) = s in (4), the joint density of R and S is given by

fR,S(r, s) =
rα−1(1− r)α+β−1s2α+β−1 exp [−s(1− r)/σ2 − s2r(1− r)/σ1]

σα
1 σ

β
2Γ(α)Γ(β)

,
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where 0 < r < 1 and s > 0. By integrating r, the marginal density of S is
derived as

fS(s) =
s2α+β−1 exp (−s/σ2)

σα
1 σ

β
2Γ(α)Γ(β)

∞
∑

j=0

s2j

σj
1 j!

×
∫ 1

0

rα+2j−1(1− r)α+β−1 exp

[(

s

σ2
− s2

σ1

)

r

]

dr.

Moreover, evaluating the above integral by using the definition of the con-
fluent hypergeometric function (Luke [8, p. 115, Eq. (1)]), we get

fS(s) =
s2α+β−1 exp (−s/σ2)

σα
1 σ

β
2Γ(α)Γ(β)

∞
∑

j=0

s2j

σj
1 j!

Γ(α + 2j)Γ(α+ β)

Γ(2α + β + 2j)

× 1F1

(

α + 2j; 2α+ β + 2j;
s

σ2
− s2

σ1

)

, s > 0.

Furthermore, integrating s, the marginal density of R is derived as

fR(r) =
σ
β/2
1 Γ(2α+ β)

2α+β/2σβ
2Γ(α)Γ(β)

(1− r)β/2−1 exp [σ1(1− r)/8σ2
2r]

rβ/2+1

× U

(

2α + β − 1

2
,

√

σ1(1− r)

2σ2
2r

)

, 0 < r < 1,

where the parabolic cylinder function U(a, z) is defined by [22],

U(a, z) =
exp(−z2/4)
Γ(a+ 1/2)

∫

∞

0

exp

(

−1

2
t2 − zt

)

ta−1/2 dt.

Further, one can also write

Dν(z) ≡ U

(

−ν − 1

2
, z

)

= 2(ν−1)/2 exp

(

−z
2

4

)

Ψ

(

1− ν

2
,
3

2
;
z2

2

)

,

where Ψ (a, b;w) is the confluent hypergeometric function.

5 Entropies

In this section, exact forms of Rényi and Shannon entropies are determined
for the bivariate distribution defined in Section 1.
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Let (X ,B,P) be a probability space. Consider a p.d.f. f associated
with P, dominated by σ−finite measure µ on X . Denote by HSH(f) the
well-known Shannon entropy introduced in Shannon [19] and defined by

HSH(f) = −
∫

X

f(x) ln f(x) dµ. (12)

One of the main extensions of the Shannon entropy was defined by Rényi [17].
This generalized entropy measure is given by

HR(γ, f) =
lnG(γ)

1− γ
(for γ > 0 and γ 6= 1), (13)

where

G(γ) =

∫

X

f γdµ.

The additional parameter γ is used to describe complex behavior in prob-
ability models and the associated process under study. Rényi entropy is
monotonically decreasing in γ, while Shannon entropy (12) is obtained from
(13) for γ ↑ 1. For details see [13], [26] and [25].

Now, we derive the Rényi and the Shannon entropies for the bivariate
density defined in (4).

Theorem 5.1. For the bivariate distribution defined by the p.d.f. (4), the
Rényi and the Shannon entropies are given by

HR(γ, f) =
1

1− γ
[(1− γ) lnσ1 + lnΓ[γ(α− 1) + 1] + ln Γ(γβ)

− [γ(α + β − 1) + 1] ln γ − γ ln Γ(α)− γ ln Γ(β)] (14)

and

HSH(f) = ln σ1 − (α− 1)ψ(α)− βψ(β) + (α+ β) + ln Γ(α) + ln Γ(β), (15)

where ψ(z) = d
dz
ln Γ(z) = 1

Γ(z)
d
dz
Γ(z) is the digamma function.
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Proof. For γ > 0 and γ 6= 1, using the p.d.f. of (X, Y ) given by (4), we have

G(γ) =

∫

∞

0

∫

∞

0

[f(x, y;α, β, σ1, σ2)]
γ dx dy

=
1

[

σα
1 σ

β
2Γ(α)Γ(β)

]γ

∫

∞

0

∫

∞

0

xγ(α−1)yγ(α+β−1) exp

(

−γy
σ2

− γxy

σ1

)

dx dy

=
σ−γ+1
1

[

σβ
2Γ(α)Γ(β)

]γ

Γ[γ(α− 1) + 1]

γγ(α−1)+1

∫

∞

0

yγβ−1 exp

(

−γy
σ2

)

dy

=
σ−γ+1
1 Γ[γ(α− 1) + 1]Γ(γβ)

γγ(α+β−1)+1[Γ(α)Γ(β)]γ
,

where, to evaluate above integrals, we have used the definition of gamma
function. Now, taking the logarithm of G(γ) and using (13), we get (14).
The Shannon entropy (15) is obtained from (14) by taking γ ↑ 1 and using
L’Hopital’s rule.

6 Fisher Information Matrix

In this section, we calculate the Fisher information matrix for the bivariate
distribution defined by the density (4). The information matrix plays a sig-
nificant role in statistical inference in connection with estimation, sufficiency
and properties of variances of estimators. For a given observation vector
(x, y), the Fisher information matrix for the bivariate distribution defined by
the density (4) is defined as

−























E
(

∂2l(α,β,σ1,σ2)
∂α2

)

E
(

∂2l(α,β,σ1,σ2)
∂ β∂α

)

E
(

∂2l(α,β,σ1,σ2)
∂σ1 ∂α

)

E
(

∂2l(α,β,σ1,σ2)
∂σ2 ∂α

)

E
(

∂2l(α,β,σ1,σ2)
∂β ∂α

)

E
(

∂2l(α,β,σ1,σ2)
∂β2

)

E
(

∂2l(α,β,σ1,σ2)
∂β ∂σ1

)

E
(

∂2l(α,β,σ1,σ2)
∂β ∂σ2

)

E
(

∂2l(α,β,σ1,σ2)
∂σ1 ∂α

)

E
(

∂2l(α,β,σ1,σ2)
∂σ1∂ β

)

E
(

∂2l(α,β,σ1,σ2)
∂σ2

1

)

E
(

∂2l(α,β,σ1,σ2)
∂σ1∂σ2

)

E
(

∂2l(α,β,σ1,σ2)
∂σ2 ∂α

)

E
(

∂2l(α,β,σ1,σ2)
∂σ2∂ β

)

E
(

∂2l(α,β,σ1,σ2)
∂σ1∂σ2

)

E
(

∂2l(α,β,σ1,σ2)
∂σ2

2

)























,

where l(α, β, σ1, σ2) = lnL(α, β, σ1, σ2) = ln f(x, y;α, β, σ1, σ2). From (4),
the natural logarithm of L(α, β, σ1, σ2) is obtained as

l(α, β, σ1, σ2) = −α ln σ1 − β ln σ2 − ln Γ(α)− ln Γ(β) + (α− 1) lnx

+ (α + β − 1) ln y − y

σ2
− yx

σ1
,
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where x > 0 and y > 0. The second order partial derivatives of l(α, β, σ1, σ2)
are given by

∂2l(α, β, σ1, σ2)

∂α2
= −ψ1(α),

∂2l(α, β, σ1, σ2)

∂β2
= −ψ1(β),

∂2l(α, β, σ1, σ2)

∂σ2
1

=
α

σ2
1

− 2xy

σ3
1

,

∂2l(α, β, σ1, σ2)

∂σ2
2

=
β

σ2
2

− 2y

σ3
2

,

∂2l(α, β, σ1, σ2)

∂α ∂β
= 0,

∂2l(α, β, σ1, σ2)

∂α ∂σ1
= − 1

σ1
,

∂2l(α, β, σ1, σ2)

∂α ∂σ2
= 0,

∂2l(α, β, σ1, σ2)

∂β ∂σ1
= 0,

∂2l(α, β, σ1, σ2)

∂β ∂σ2
= − 1

σ2
,

∂2l(α, β, σ1, σ2)

∂σ1 ∂σ2
= 0,

where ψ1(z) is the trigamma function defined as derivative of the digamma
function, ψ1(z) =

d
dz
ψ(z).

Now, noting that E(Y ) = σ2β, E(XY ) = σ1α, and the expected value of
a constant is the constant itself, we obtain the Fisher information matrix as















ψ1(α) 0 1
σ1

0

0 ψ1(β) 0 1
σ2

1
σ1

0 α
σ2

1

0

0 1
σ2

0 β
σ2

2















.
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7 Estimation

The density given by (4) is parameterized by (α, β, σ1, σ2). Here, we consider
estimation of these four parameters by the method of maximum likelihood.

Suppose (x1, y1), . . . , (xn, yn) is a random sample from (4). The log-
likelihood can be expressed as:

l(α, β, σ1, σ2) = −nα ln σ1 − nβ lnσ2 − n ln Γ(α)− n ln Γ(β)

+ (α− 1)

n
∑

i=1

ln xi + (α + β − 1)

n
∑

i=1

ln yi −
n
∑

i=1

yi
σ2

−
n
∑

i=1

xiyi
σ1

,

The first-order derivatives of this with respect to the four parameters are:

∂l(α, β, σ1, σ2)

∂α
= −n ln σ1 − nψ(α) +

n
∑

i=1

(ln xi + ln yi),

∂l(α, β, σ1, σ2)

∂β
= −n ln σ2 − nψ(β) +

n
∑

i=1

ln yi,

∂l(α, β, σ1, σ2)

∂σ1
= −nα

σ1
+

1

σ2
1

n
∑

i=1

xiyi

and
∂l(α, β, σ1, σ2)

∂σ2
= −nβ

σ2
+

1

σ2
2

n
∑

i=1

yi.

The maximum likelihood estimators of (α, β, σ1, σ2), say (α̂, β̂, σ̂1, σ̂2), are
the simultaneous solutions of the above four equations. It is straightforward
to see that

σ̂1α̂ =
1

n

n
∑

i=1

xiyi, ln σ̂1 + ψ(α̂) =
1

n

n
∑

i=1

(ln xi + ln yi),

σ̂2β̂ =
1

n

n
∑

i=1

yi, ln σ̂2 + ψ(β̂) =
1

n

n
∑

i=1

ln yi.

Thus, α̂ and β̂ can be calculated by solving numerically the equations

ψ(α̂)− ln α̂ =
1

n

n
∑

i=1

(ln xi + ln yi)− ln

(

1

n

n
∑

i=1

xiyi

)

= ln(x̃ỹ)− ln xy
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and

ψ(β̂)− ln β̂ =
1

n

n
∑

i=1

ln yi − ln

(

1

n

n
∑

i=1

yi

)

= ln ỹ − ln ȳ,

where x̃ = (
∏n

i=1 xi)
1/n

, ỹ = (
∏n

i=1 yi)
1/n

, ȳ =
∑n

i=1 yi/n, xy =
∑n

i=1(xiyi)/n.

Finally, for α̂ and β̂ so obtained, σ̂1 and σ̂2 can be computed by using the
equations

σ̂1 =
xy

α̂
, σ̂2 =

ȳ

β̂
.
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