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Abstract

In this paper, boundary fourth order semilinear elliptic problems

involving nonnegative weight functions are investigated with indefinite

asymptotically linear nonlinearities. Using the variational method, we

prove the existence of nontrivial solutions without use of the Ambrosetti-

Rabionovitz condition or any one of its replacements. When the non-

linearities are superlinear at infinity, a suitable condition is added in

order to use the same techniques to prove the existence of solutions.

1 Introduction and main results

Let Ω be a regular bounded open domain in R
N , N ≥ 2. In this paper, we

study the solvability of the following nonlinear elliptic equation
{

∆2v − div(σ(y)∇v) = h(y, v) in Ω,
v = ∆v = 0 on ∂Ω,

(1.1)

where ∆2 = ∆(∆) is the bi-Laplace operator, σ(y) is a nonnegative weight
function and h(y, t) is an indefinite nonlinearity that is a sign-changing func-
tion.
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This equation appears in physics as in describing the traveling waves in sus-
pension bridge [16] as well as the static deflection of an elastic plate in fluid
[5].
Weighted fourth partial differential equations arise also in micro-electro-
mechanical systems, thin film theory, surface diffusion on solids, interface
dynamics, flow in Hele-Shaw cells, among others (see for example [3, 8, 10,
14, 20]).

We suppose that the function h(y, t) is asymptotically linear at infinity; that
is,

lim
|t|→∞

h(y, t)

t
= α ∈ (0,∞). (1.2)

Second order partial differential equations with positive asymptotically linear
nonlinearities have been extensively studied. In [1, 11, 13, 15, 18, 19, 21], the
nonlinearities were of the form h(y, v) = λg(v) with g(v) positive, increasing
and convex smooth functions satisfying

lim
v→∞

g(v)

v
= a <∞.

With the same type of nonlinearities and fourth order elliptic differential
equations, we refer the reader to [1, 2, 6, 7, 22]. In [25], different condi-
tions were assumed for the asymptotically nonlinearities and different type
of results were proven under the assumptions:

(F1) h(y, t) is continuous on Ω × R, non-negative and h(y, t) ≡ 0 for t ≤ 0
and x ∈ Ω.

(F2) lim
t→0

h(y, t)

t
= p(y) and lim

t→∞

h(y, t)

t
= ℓ <∞ uniformly in y such that

0 ≤ p(y) ∈ L∞(Ω), ‖p(y)‖∞ < λ1, where λ1 > 0 denotes the first
eigenvalue of (−∆, H1

0 (Ω)).

(F3)
h(y, t)

t
is a nondecreasing function on t > 0.

Later, in [23, 24], biharmonic problems have been investigated with these
second type of conditions. In this paper, we extend these results to a weighted
problem, where the weight is not positive. As a result, the norms will not be
equivalent to those in [24]. In addition, the asymptotic linear nonlinearities
change sign.
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We suppose that:

(V1) h(y, t) is in C(Ω×R), h(y, t)t ≥ 0 for all (y, t) ∈ Ω×R and h(y, 0) = 0.

(V2) lim
t→0

h(y, t)

t
< ν1, uniformly for y ∈ Ω, where ν1 is the first eigenvalue

associated to operator ∆2 − div(σ(y)∇) with Navier boundary condi-
tion.

(V3) lim
|t|→∞

h(y, t)

t
= α, uniformly for y ∈ Ω and 0 < α ≤ ∞.

(V4) lim
t→∞

h(y, t)

tq−1
= 0, uniformly in y ∈ Ω for some q ∈ (2, 2∗), here and

thereafter

2∗ =

{

2N
N−4

if N > 4

∞ if N ≤ 4.

(V5) The function
h(y, t)

t
is nondecreasing with respect to t in (0,∞), for

a.e. y ∈ Ω.

(V6) The function
h(y, t)

t
is nonincreasing with respect to t in (−∞, 0), for

a.e. y ∈ Ω.

We shall prove the following two theorems:

Theorem 1.1. Assume that (V 1), (V 2) and (V 3) are satisfied and α ∈
(0,∞). Then,

(i) If 0 < α < ν1 and the condition (V 5) (resp. (V 6)) holds, then problem
(1.1) does not have positive (resp. negative) solution.

(ii) If α > ν1, then problem (1.1) has a nontrivial solution.

(iii) If α = ν1 and (V 5) holds (resp. (V 6) holds), then problem (1.1) has a
positive (resp. negative) solution v if and only if there exists a constant
c0 > 0 (resp. c0 < 0) such that v = c0υ1 and h(y, v) = ν1v, where υ1 a
positive eigenfunction associated to ν1.

Theorem 1.2. Suppose that (V 1), (V 2), (V 3) and (V 4) are satisfied and
α = ∞. Then problem (1.1) has a positive solution (resp. negative solution)
if (V 5) (resp. (V 6)) holds.

In the sequel, C is throughout used as a positive constant.
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2 Variational Preliminaries

Let Ω be a regular bounded open domain in R
N , N ≥ 2. When 1 ≤ p < ∞

and v ∈ Lp(Ω), the Lp-norm of v is

‖v‖p =
(

∫

Ω

|v|p dy
)

1

p

.

Let σ(y) ∈ L1(Ω) be a nonnegative function and set

χ = {u ∈ H2(Ω) ∩H1
0(Ω);

∫

Ω

[∆2u+ σ(y)|∇u|2] dy <∞}. (2.3)

On the space χ, we have the inner product

< u, v >=

∫

Ω

[∆u∆v + σ(y)∇u.∇v] dy.

The norm induced by the above inner product is

‖u‖ =
(

∫

Ω

[∆2u+ σ(y)|∇u|2] dy
)

1

2

Let ψ : χ→ R be the C1 functional given by

ψ(v) =
1

2

∫

Ω

[∆2v + σ(y)|∇v|2] dy −

∫

Ω

H(y, v)dy, (2.4)

where

H(y, t) =

∫ t

0

h(y, s)ds.

We consider the following definition of a solution of problem (1.1).

Definition 2.1. A function v ∈ χ is called a solution of the equation (1.1)
if

∫

Ω

[∆v∆φ+ σ(y)∇v∇φ] dy =

∫

Ω

h(y, v)φdy, ∀φ ∈ χ. (2.5)

So, in order to prove that problem (1.1) has a nontrivial solution, we will
prove that the functional ψ has a nontrivial critical point.
To do this, we are going to use the Mountain Pass Theorem introduced by
Ambrosetti and Rabionowitz in [4].
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Definition 2.2. Let χ be a real Banach space and ψ ∈ C1(χ,R). We say
that ψ satisfies the Palais-Smale (PS)d condition at level d, d ∈ R, if any
sequence {vn} ⊂ X satisfying

ψ(vn) → d in R,

and

ψ′(vn) → in χ′,

where χ′ is the dual space of χ, the sequence {vn} has a convergent subse-
quence.

Theorem 2.3. (Mountain Pass Theorem [4]) Let χ be a Banach space and
ψ ∈ C1(χ,R) be a functional such that ψ(0) = 0 and satisfies the following
conditions:

(i) There exist δ, τ > 0 such that ψ(w) ≥ τ , for all w ∈ ∂B(0, δ);

(ii) There exists w1 ∈ χ such that ‖w1‖ > δ and ψ(w1) < 0;

(iii) ψ satisfies the (PS)d condition, at any level d ∈ R.

Then the functional ψ has a critical point v ∈ χ such that ψ(v) ≥ τ > 0.

In the proof of the second geometric property for the functional ψ intro-
duced by (2.4), we will use the function υ1, where υ1 denotes a normalised
positive eigenfunction associated to the first eigenvalue ν1; that is,







∆2υ1 − div(σ(y)∇υ1) = ν1υ1 in Ω
υ1 = ∆υ1 = 0 on ∂Ω

‖υ1‖2 = 1.
(2.6)

At the end of this section, let us recall that weighted Sobolev spaces have
been developed and an embedding theory has been studied in [9, 12].
For the space χ, the the embedding χ →֒ H2(Ω) is continuous; i.e., there
exists a constant C such that ‖w‖H2 ≤ ‖w‖ for all w ∈ χ, where ‖w‖H2 is
the standard norm on H2(Ω). Also, the embedding

χ →֒ Lq(Ω)

is continuous for q ∈ [2, 2∗] and compact if q ∈ [2, 2∗). Finally, the space
(χ, ‖.‖) is a Hilbert space.
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3 Proof of Theorem 1.1

To prove Theorem 1.1, we begin with some elementary results.

Lemma 3.1. Assume that (V 1)-(V 3) hold and α ∈ (0,∞). Then there exist
τ, δ > 0 such that

ψ(v) > τ, ∀v ∈ ∂B(0, δ).

Proof. From (V 2), there exist ǫ0 ∈ (0, 1) and ρ0 such that

H(y, t) ≤
1

2
ν1(1− ǫ0)t

2, ∀ |t| ≤ ρ0 (3.7)

From (V 3), for any 1 ≤ q ≤ N+4
N−4

, there exists a constant C > 0 such that

H(y, t) ≤ C|t|q+1, ∀ |t| ≥ ρ0. (3.8)

Then

H(y, t) ≤
1

2
ν1(1− ǫ0)t

2 + C|t|q+1, ∀ t ∈ R.

Therefore

ψ(v) ≤
1

2
‖v‖2 −

1

2
ν1(1− ǫ0)‖v‖

2
2 − C‖v‖q+1

q+1.

As ν1‖v‖
2
2 ≤ ‖v‖2 and by using the continuous embedding result, we get

ψ(v) ≥
1

2
ǫ0‖v‖

2 − C1‖v‖
q+1. (3.9)

Now, we have to choose ‖v‖ = δ > 0 and small enough in order to get
ψ(v) ≥ τ > 0, since 2 < q + 1. �

Next, we prove the second geometry property for the energy ψ.

Lemma 3.2. Assume (V 1) and (V 3) and suppose that ν1 < α < ∞. Then
there exists w1 ∈ χ such that ‖w1‖ > δ and ψ(w1) < 0.

Proof. Let t > 0 and consider

ψ(tυ1) =
t2

2

∫

Ω

[∆2υ1 + σ(y)|∇υ1|
2] dy −

∫

Ω

H(x, tυ1) dy.
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From (2.6), we have

ψ(tυ1)

t2
=
λ1

2
‖υ1‖

2
2 −

∫

Ω

H(y, tυ1)

t2
dy.

By (V 1), the function H(y, t) ≥ 0 and from Fatou’s Lemma and (2.6), we
obtain

lim
t→∞

ψ(tυ1)

t2
≤
ν1

2
−

∫

Ω

lim
t→∞

H(y, tυ1)

(tυ1)2
υ21 dy. (3.10)

So, from (V 3), we get

lim
t→∞

ψ(tυ1)

t2
≤
ν1

2
−
α

2

∫

Ω

υ21 dy;

that is,

lim
t→∞

ψ(tυ1)

t2
≤
ν1

2
−
α

2
< 0.

The proof of the lemma is complete. �

Proof of Theorem 1.1 (i) Assume that (V 5) holds, 0 < α < ν1 and
problem (1.1) has a positive solution v ∈ χ. By taking v as a test function
in (2.5) and from conditions (V 1), (V 3) and (V 5), we get

∫

Ω

σ(y)|∇v|2dy =

∫

Ω

h(y, v)v dy ≤

∫

Ω

αv2dy, (3.11)

and so ν1 ≤ α. This gives a contradiction.
If we suppose that condition (V 6) holds and v ∈ χ is a negative solution of
problem (1.1), we get the same formula (3.11) and the same contradiction.

(ii) In this part, we suppose that ν1 < α. By using Theorem 2.3 and Lemmas
3.1 and 3.2, we have only to prove the compactness condition. Let {vn} be
a (PS)d sequence of ψ, d ∈ R. We have

ψ(vn) =
1

2
‖vn‖

2 −

∫

Ω

H(y, vn) dy → d, (3.12)

for some d ∈ R and
‖ψ′(vn)‖∗ → 0 in χ′. (3.13)

In order to prove that {vn} is relatively compact, we prove that {vn} is
bounded in χ and then it has a convergent subsequence. We begin by the
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second part in order to use some elementary results of the proof later.

Step 1. Suppose that {vn} is bounded in χ. By the compact embedding
result, there exists v ∈ χ such that, up to subsequence,

vn ⇀ v, weakly in χ,

vn → v, in L2(Ω)

and

vn(y) → v(y), a.e in Ω.

From (3.13), it follows that

< ψ′(vn), vn >= ‖vn‖
2 −

∫

Ω

h(y, vn)undy → 0 (3.14)

and, more generally,
∫

Ω

σ(y) ∇vn.∇φ dy −

∫

Ω

h(y, vn)φdy → 0, ∀φ ∈ χ. (3.15)

So
∆2vn − div(σ(y)∇vn)− h(y, vn) → 0 in χ′, (3.16)

By exploiting (V 1), (V 2) and (V 3), we get h(y, vn) → h(y, v) in L2(Ω). The
dual space of L2(Ω) is itself and we have L2(Ω) →֒ χ′. Then

∆2vn − div(σ(y)∇vn) → h(y, v) in χ′. (3.17)

As in [17], we prove that the operator L = ∆2−div(σ(y)∇) is an isomorphism
from χ, with the condition v = ∆v = 0 on ∂Ω, into the space χ′ and so

vn → L−1(h(y, v)) in χ. (3.18)

Step 2. Here we prove that the sequence {vn} is bounded in χ.
We argue by contradiction. Suppose that the sequence {vn} is not bounded.
Then, up to subsequence,

‖vn‖ → ∞ as n→ ∞.

Without loss of generality, we suppose that vn 6= 0 a.e. in Ω. Let

zn =
vn

‖vn‖
, κn = ‖vn‖. (3.19)
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Since the sequence {zn} is bounded in the Banach space χ, there exist a
function z ∈ χ and a subsequence, which we still denote by {zn}, such that
zn ⇀ z in χ,

zn → z in L2(Ω)

and zn(y) → z(y), for y a.e in Ω.
By using conditions (V 2) and (V 3), we get a constant C > 0 such that

h(y, t)

t
≤ C, ∀(y, t) ∈ Ω× R

⋆ (3.20)

and then we get

∫

Ω

h(y, vn)

‖vn‖2
vndy =

∫

Ω

h(y, vn)

vn
z2ndy ≤ C

∫

Ω

z2ndy. (3.21)

From (3.14) and (3.21), we obtain

z 6≡ 0.

By formula (3.15), we get

∫

Ω

[∆2vn + σ(y)∇zn.∇φ] dy −

∫

Ω

h(y, vn)

vn
znφdy → 0, ∀φ ∈ χ. (3.22)

Referring to step 1, we have

∫

Ω

[∆2vn + σ(y)∇zn.∇φ] dy →

∫

Ω

σ(y)∇z.∇φ dy, ∀φ ∈ χ. (3.23)

Since t vn(y) = ‖vn‖zn(y), limn→∞ vn(y) = ±∞, whenever z(y) 6= 0. Set

hn(y) =

{

h(y,vn(y))
vn(y)

if vn(y) 6= 0

0 if vn(y) = 0.

From (3.20), it follows that the sequence {hn} is bounded on Ω and so, up
to subsequence, it is weakly star convergent in L∞(Ω) to a function h.
The function h(y) = α a.e in Ω since we have vn(y) 6= 0 a.e. in Ω and by
using (V 3). Then

∫

Ω

h(y, vn)

vn
znφdy =

∫

Ω

hn(y)znφdy;
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that is,
∫

Ω

h(y, vn)

vn
znφdy → α

∫

Ω

zφdy ∀φ ∈ χ. (3.24)

By using (3.22), (3.23) and (3.24), we get
{

−div(σ(y)∇z) = αz in Ω
z = 0 on ∂Ω,

(3.25)

and so z = cυ1 and α = ν1 which a contradiction. The sequence {vn} is
bounded in χ and so, by step 1, it is relatively compact.

(iii) In this case, α = ν1. Suppose that (V 5) holds and v ∈ χ is a posi-
tive solution of problem (1.1). Considering υ1 as a test function in (1.2), we
get

∫

Ω

σ(y)[∆v∆υ1 + σ(y)∇v.∇υ1] dy =

∫

Ω

h(y, v)φ1dy. (3.26)

If we take v as a test function for the equation (2.6), then
∫

Ω

[∆v∆υ1 + σ(y)∇v.∇υ1] dy = α

∫

Ω

vυ1dy. (3.27)

From (3.26) and (3.27), it follows that
∫

Ω

(h(y, v)− αv)υ1dy = 0.

From (V 3) and (V 5) and since υ1 > 0, we get h(y, v) = αv a.e. in Ω. That is,
h(y, v) = ν1v and then v is an eigenfunction associated to the simple eigen-
value ν1. Conversely, suppose that α = ν1 and v = c0υ1 for some constant
c0 6= 0 and the function h(y, t) satisfies h(y, v) = ν1v. Then v is a solution
of problem (2.6) and then of (1.1) in this particular case.
We can construct a similar proof when we assume condition (V 6) and v ∈ χ

is a negative solution for problem (1.1). �

4 Proof of Theorem 1.2

First, we prove the geometric properties for the functional ψ.

Lemma 4.1. Suppose that (V 1), (V 2), (V 3), (V 4) hold and α = ∞. Then
there exist δ, τ > 0 such that

ψ(v) > τ, ∀v ∈ ∂B(0, δ).
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Proof. From (V 1) and (V 4), there exist C > 0 and t0 ≥ 1 such that

|h(y, t)| ≤ C|t|q−1, ∀|t| ≥ t0.

By using (V 1) and (V 2), there exist ǫ0 ∈ (0, 1) and t1 > 0 such that

|h(y, t)| ≤ ν1(1− ǫ0)t, ∀|t| ≤ t1.

Since the function h(y, t) is continuous, there exists a constant C1 > 0 such
that

|h(y, t)| ≤ ν1(1− ǫ0)t+ C1|t|
q−1, ∀t ∈ R.

So

H(y, t) ≤
1

2
ν1(1− ǫ0)t

2 + C1|t|
r, ∀(y, t) ∈ Ω× R. (4.28)

We have

ψ(v) ≥
1

2
‖v‖2 −

1

2
ν1(1− ǫ0)‖v‖

2
2 − C1‖v‖

q
q.

By the continuous embedding result and the equation (2.6), we get

ψ(v) ≥
1

2
‖v‖2 −

1

2
(1− ǫ0)‖v‖

2 − C‖v‖r,

for some positive constant C.
We then have

ψ(v) ≥
1

2
ǫ0‖v‖

2 − C‖v‖r, (4.29)

and so we can choose ‖v‖ = δ > 0 small enough and get ψ(v) ≥ τ for some
τ > 0 since 2 < r. �

In the next lemma, we prove the second geometric property for the func-
tional ψ.

Lemma 4.2. Suppose that (V 1), (V 3), (V 4) and (V 5) hold and α = ∞.
Then, ψ(tυ1) → −∞ as t→ ∞.

Proof. Let t > 0. From (2.6) and the regularity of the function υ1, we
have

ψ(tυ1) =
t2

2
‖υ1‖

2 −

∫

Ω

H(y, tυ1) dy,

and so

ψ(tυ1) =
t2

2
ν1 −

∫

Ω

H(y, tυ1) dy. (4.30)
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From (V 5), we have

0 ≤ 2H(y, t) ≤ th(y, t), ∀(y, t) ∈ Ω× R
+. (4.31)

Then, the function
H(y, t)

t2
is nondecreasing with respect to t > 0 and it

follows from (V 3) that

lim
t→∞

H(y, t)

t2
= ∞.

As a consequence, there exist two constants C1 > λ1 and C2 > 0 such that

H(y, t) ≥
C1

2
t2 + C2, ∀t > 0.

From (4.30), it follows that

ψ(tυ1) ≤
t2

2
ν1 −

b

2
t2‖υ1‖

2
2 − C|Ω|, ∀t > 0.

Then

ψ(tυ1) ≤ t2
ν1 − b

2
< 0, ∀t > 0.

So, Lemma 4.2 follows. �

Lemma 4.3. Assume that (V 5) holds and let {vn} be a sequence in χ sat-
isfying

< ψ′(vn), vn >→ 0.

Then, up to a subsequence, we have

ψ(tvn) ≤
1 + t2

2n
+ ψ(vn), ∀t > 0. (4.32)

Proof of Theorem 1.2 We suppose (V 1) − (V 5) hold and α = ∞.
From Lemmas 4.1 and 4.2, we have to prove that the functional ψ satisfies
the compactness condition.
Let {vn} be a (PS)d sequence in χ at a fixed level d ∈ R. That is, the
sequence satisfies (3.12) and (3.13). If we prove that the sequence {vn} is
bounded in χ, then it will be relatively compact as in step 1 of the proof of
Theorem 1.1 (ii).
Suppose that {vn} is not bounded and then, up to a subsequence, ‖vn‖ → ∞.
Consider the two sequences

zn =
vn

c‖vn‖
and sn = c‖vn‖, (4.33)
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where c > 0.
The sequence {zn} is bounded in χ. Thus there exists z ∈ χ such that, up to
a subsequence,

zn ⇀ z in χ as n→ ∞,

zn → z in L2(Ω) as n→ ∞,

zn(y) → z(y) for a.e y in Ω.

We have

z+n (y) → z+(y) a.e. in Ω, (4.34)

and

z+n → z+ in L2(Ω). (4.35)

The convergence in (4.35) follows from the fact that, for all v ∈ L2(Ω), we

can write v+ = sup(v, 0) or v+ =
v + |v|

2
·

Let

Ω+ = {y ∈ Ω;w+(y) > 0}.

As zn(y) = c‖vn‖zn(y) and c > 0, we get v+n (y) → ∞ a.e.in Ω+. From (4.34)
and since α = ∞, we obtain that for all M > 0, there exists n0 such that for
all n ≥ n0

h(y, v+n (y))

v+n (y)
(z+n (y))

2 ≥M(z+(y))2. (4.36)

Since

〈ψ′(vn), vn〉 = ‖vn‖
2 −

∫

Ω

h(y, vn)vn dy → 0,

multiplying it by 1
c2‖v‖2

we get

1

c2
−

∫

Ω

h(y, vn)

vn
(zn)

2 dy → 0. (4.37)

But

lim
n→∞

∫

Ω

h(y, vn)

vn
(zn)

2 dy ≥ lim
n→∞

∫

Ω+

h(y, vn)

vn
(zn)

2 dy

≥ lim
n→∞

∫

Ω+

h(y, v+n )

v+n
(z+n )

2 dy

≥

∫

Ω+

lim
n→∞

h(y, v+n )

v+n
(z+n )

2 dy.
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From (4.36) and (4.37), it follows that

1

c2
≥M

∫

Ω+

(z+)2 dy,

for all M > 0 and so |Ω+| = 0. Then

z+ ≡ 0 in Ω.

So

lim
n→∞

∫

Ω

H(y, z+n (y))dy = 0.

As

ψ(zn) =
1

2c2
−

∫

Ω

H(y, zn) dy,

we get

ψ(zn) →
1

2c2
as n→ ∞. (4.38)

From Lemma 4.3 we have, up to subsequence,

J(wn) ≤
1

2n
(1 + t2n) + J(un), (4.39)

where tn =
1

sn
. From (4.39), (4.38) and (3.12) we obtain

1

2c2
≤ d, for all

c > 0. This is impossible and so the proof of Theorem 1.2 is complete. �
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