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Abstract

We study a variation of the Kaprekar operator F (x) for all non-
negative integers x and show that the range of F consists of 0, 99,
1089, and the integers of the form 1099 . . . 98900 . . . 0, where 99 . . . 9
and 00 . . . 0 may be long, short, or disappear.

1 Introduction and Statement of the Main

Result

Throughout this article, if y ∈ R, then ⌊y⌋ is the largest integer less than or
equal to y and ⌈y⌉ is the smallest integer larger than or equal to y. Unless
stated otherwise, all other variables are nonnegative integers. For any x ∈
N ∪ {0}, we write the decimal expansion of x as

x = (akak−1 . . . a1a0)10 =
∑

0≤j≤k

ak−j10
k−j,

where 0 ≤ ai ≤ 9 for all i = 0, 1, 2, . . ., k.
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The Kaprekar operator K is defined by the following operation: take any
positive integer x having four decimal digits which are not all equal and the
leading digit is not zero, say x = (a3a2a1a0)10, a3 6= 0, and ai 6= aj for some
i, j, then rearrange a3, a2, a1, a0 as c3, c2, c1, c0 so that c3 ≥ c2 ≥ c1 ≥ c0.
Then

K(x) = (c3c2c1c0)10 − (c0c1c2c3)10. (1.1)

Observe that the second number on the right-hand side of (1.1) is obtained
by reversing the decimal digits of the first. It is well known that no matter
what x we start with, after repeating this process at most 7 steps, we always
obtain the number 6174. For example, suppose x = 1000. Then

K(x) = 1000− 1 = 999,

K2(x) = K(K(x)) = K(999) = K(0999) = 9990− 0999 = 8991,

K3(x) = K(8991) = 9981− 1899 = 8082,

K4(x) = 8820− 0288 = 8532,

K5(x) = 8532− 2358 = 6174,

and Km(x) = 6174 for all m ≥ 6. Here, it is important to keep in mind that
the Kaprekar operator operates on the positive integers having four digits
not all equal. So the decimal representation of K(x) with nonzero leading
digit may have only 3 digits but, to calculate K(K(x)), we must first write
K(x) as 4 digits number by adding 0 as the leading digit, as shown above
in K(999) = K(0999). We can generalize K to operate on any nonnegative
integers as follows:

Definition 1.1 (Kaprekar operator on nonnegative integers). Let g :
N∪{0} → N∪{0} be given by g(0) = .0 If x = (akak−1 . . . a0)10, ak 6= 0, and
ck, ck−1, . . ., c0 is the permutation of ak, ak−1, . . ., a0 such that ck ≥ ck−1 ≥
· · · ≥ c0, then

g(x) = (ckck−1 . . . c1c0)10 − (c0c1 . . . ck−1ck)10.

In addition, for the purpose of this article, if x is as above, then we always

write the decimal representation of g(x) as k + 1 digits number, say g(x) =
(bkbk−1 . . . b0)10.

Another trick is as follows: take any positive integer having three digits,
say x = (a2a1a0)10, where a2 6= 0, 0 ≤ aj ≤ 9 for all j, and ai 6= aj for
some i, j. Then calculate g(x), say g(x) = b = (b2b1b0)10. Then compute
f(b) = b + reverse(b) = (b2b1b0)10 + (b0b1b2)10. No matter what x we start
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with, we always obtain f(b) = 1089. We generalize this to the following
operator:

Definition 1.2. Let f be the reverse and add an operator. Let F : N∪{0} →
N ∪ {0} be defined by F = f ◦ g. In addition, to calculate F (x) = f(g(x)),
we always keep the same convention in Definition 1.1, where the number of

decimal digits of x and g(x) are equal.

For example, suppose x = 100. Then g(x) = 99 = 099 and so F (x) =
f(099) = 990 + 099 = 1089. By using a computer or a straightforward
calculation, it is not difficult to notice the following pattern:

if 10 ≤ x < 102, then F (x) = 0 or 99;

if 102 ≤ x < 103, then F (x) = 0 or 1089;

if 103 ≤ x < 104, then F (x) = 0, 10890, or 10989;

if 104 ≤ x < 105, then F (x) = 0, 109890, or 109989.

In general, we have the following result.

Theorem 1.3. Let F = f ◦ g, k ≥ 2, and 10k ≤ x < 10k+1. Let x =
(akak−1 . . . a0)10, ak 6= 0, and 0 ≤ ai ≤ 9 for all i = 0, 1, . . ., k. If k = 2,
then F (x) = 0 or 1089. Suppose that k ≥ 3 and ck, ck−1, . . ., c0 is the

permutation of ak, ak−1, . . ., a0 such that ck ≥ ck−1 ≥ · · · ≥ c0. Let m = z(x)
be the largest element of the set {j ∈ {0, 1, . . . , k} | ck−j > cj}. If ai = aj for

all i, j, then F (x) = 0. If ai 6= aj for some i, j, then

F (x) = 10 99 . . .9
︸ ︷︷ ︸

y(x)

89 00 . . . 0
︸ ︷︷ ︸

z(x)

,

where y(x) = k − 2− z(x).

Although the result is easy to observe for k = 2, 3, 4, it is more difficult
when k is large. As far as we know, there is no proof for a general k. We
hope that this article will help explain something related to 6174, 1089, and
other similar magic numbers. Finally, it is an interesting open problem to
determine whether or not a given number in the range of F is a Lychrel num-
ber. We leave this problem for the interested reader. For more information
on 6174 and the Kaprekar operator, see for instance in [5], [6], and [7]. For
related articles on 1089 and 2178, see for example [1], [2], [3], [4], [8], [9], and
[10].
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2 Proof of the Main Result

Proof. We first consider the case k = 2. Since 102 ≤ x < 103, it can be
written in the decimal representation as x = (a2a1a0)10, where a2 6= 0 and
0 ≤ ai ≤ 9 for i = 0, 1, 2. If a2 = a1 = a0, then F (x) = 0. So suppose that
a2, a1, a0 are not all the same and let c2, c1, c0 be the permutation of a2, a1,
a0 such that c2 ≥ c1 ≥ c0. Then c2 > c0 and

g(x) = (c2c1c0)10 − (c0c1c2)10

= (102c2 + 10c1 + c0)− (102c0 + 10c1 + c2)

= 102(c2 − c0 − 1) + 10(9) + 10− (c2 − c0)

= (d2d1d0)10,

where d2 = c2 − c0 − 1, d1 = 9, and d0 = 10 − (c2 − c0). Then it is easy to
see that

F (x) = (d2d1d0)10 + (d0d1d2)10 = 1089.

Next, let k ≥ 3, 10k ≤ x < 10k, and write x = (akak−1 . . . a0)10, where ak 6= 0
and 0 ≤ ai ≤ 9 for all i = 0, 1, . . ., k. If ai = aj for all i, j, then F (x) = 0
and we are done. So suppose that ai 6= aj for some i, j. Let ck, ck−1, . . ., c0
be the permutation of ak, ak−1, . . ., a0 such that ck ≥ ck−1 ≥ · · · ≥ c0. Then

g(x) = (ckck−1 . . . c0)− (c0c1 . . . ck)10

=
k∑

j=0

ck−j10
k−j −

k∑

j=0

cj10
k−j

=
k∑

j=0

(ck−j − cj)10
k−j. (2.2)

Let A = {j ∈ {0, 1, . . . , k} | ck−j > cj}. Since ck > c0, we see that 0 ∈ A,
and so A 6= ∅. Let m be the largest element of A. If m ≥ ⌈k

2
⌉, then

k−m ≤ k−⌈k
2
⌉ = ⌊k

2
⌋ ≤ m, which implies ck−m ≤ cm which contradicts the

fact that m ∈ A. Therefore, 0 ≤ m < ⌈k
2
⌉. Since m is the largest element of
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A and ck ≥ ck−1 ≥ · · · ≥ c0, we assert that the following relations hold:

ck−j > cj for 0 ≤ j ≤ m, (2.3)

ck−j ≤ cj for j > m, (2.4)

ck−j = cj for m < j ≤

⌊
k

2

⌋

, (2.5)

ck−j = cj for

⌈
k

2

⌉

≤ j < k −m, (2.6)

ck−j < cj for k −m ≤ j ≤ k. (2.7)

For (2.3), we know that ck−m > cm and if 0 ≤ j < m, then ck−j ≥ ck−m >

cm ≥ cj . So (2.3) is verified. By the choice of m, (2.4) follows immediately.
If j ≤ ⌊k

2
⌋, then k− j ≥ k−⌊k

2
⌋ = ⌈k

2
⌉ ≥ j, and so ck−j ≥ cj. This and (2.4)

imply (2.5). Replacing j by k − j in (2.5), we obtain (2.6). Changing j to
k − j in (2.3), we obtain (2.7).

Next, we divide the sum in (2.2) into 3 parts: 0 ≤ j ≤ m, m < j < k−m,
and k −m ≤ j ≤ k. By (2.5) and (2.6), the second part is zero. Therefore,
(2.2) becomes

g(x) =
∑

0≤j≤m

(ck−j − cj)10
k−j +

∑

k−m≤j≤k

(ck−j − cj)10
k−j. (2.8)

The terms ck−j − cj in (2.8) are positive in the first sum and negative in the
second. Then we write

10k−m =

(
∑

m+1≤j≤k−1

9 · 10k−j

)

+ 10

=

(
∑

m+1≤j≤k−m−1

9 · 10k−j

)

+

(
∑

k−m≤j≤k−1

9 · 10k−j

)

+ 10.

Let dk−m = ck−m − cm − 1 and d0 = 10 + c0 − ck. Then

(ck−m − cm)10
k−m +

∑

k−m≤j≤k

(ck−j − cj)10
k−j

= dk−m10
k−m + 10k−m +

∑

k−m≤j≤k

(ck−j − cj)10
k−j

= dk−m10
k−m +

(
∑

m+1≤j≤k−m−1

9 · 10k−j

)

+
∑

k−m≤j≤k−1

(9 + ck−j − cj) 10
k−j + d0, (2.9)
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where dk−m, d0, and the coefficients of 10k−j in the above equation are non-
negative and are less than 10. Therefore, (2.8) and (2.9) imply that we can
write g(x) in the decimal expansion as:

g(x) = (dkdk−1 . . . d0)10 =
∑

0≤j≤k

dk−j10
k−j,

where 0 ≤ di ≤ 9 for all i = 0, 1, 2, . . ., k, and dk−j satisfies the following
relations:

dk−j = ck−j − cj for 0 ≤ j < m, (2.10)

dk−m = ck−m − cm − 1, (2.11)

dk−j = 9 for m+ 1 ≤ j ≤ k −m− 1, (2.12)

dk−j = 9 + ck−j − cj for k −m ≤ j ≤ k − 1, (2.13)

d0 = 10 + c0 − ck. (2.14)

Since the decimal expansion of g(x) has k + 1 digits, that of f(g(x)) has at
most k + 2 digits. Then

F (x) = f(g(x)) = (dkdk−1 . . . d0)10 + (d0d1 . . . dk)10 = (ek+1ek . . . e0)10,

where 0 ≤ ei ≤ 9 for all i = 0, 1, . . ., k + 1. From elementary arithmetic,
recall the fact that e0 = d0 + dk − 10ε0, where ε0 = 0 if d0 + dk < 10, and
ε0 = 1 if d0+dk ≥ 10. In addition, ej = dj+dk−j+εj−1−10εj for 1 ≤ j ≤ k,
where εj−1 = 0 if there is no carry in the addition in the (j − 1)th position
and εj−1 = 1 otherwise; while εj = 0 if dj + dk−j + εj−1 < 10, and εj = 1 if
dj + dk−j + εj−1 ≥ 10. Moreover, ek+1 = 0 if there is no carry in the addition
in the kth position and ek+1 = 1 otherwise. We now calculate e0, e1, . . ., ek,
ek+1 by using this fact and the relations in (2.10) to (2.14). We obtain

e0 = d0 + dk − 10ε0 = (10 + c0 − ck) + (ck − c0)− 10ε0 = 10− 10ε0,

which implies ε0 = 1 and e0 = 0. Then

e1 = d1+dk−1+1−10ε1 = (9+c1−ck−1)+(ck−1−c1)+1−10ε1 = 10−10ε1,

which implies ε1 = 1 and e1 = 0. In general, we replace j by k − j in (2.13)
to get dj = 9 + cj − ck−j for 1 ≤ j ≤ m; and if εj−1 = 1 and 2 ≤ j ≤ m− 1,
then

ej = dj+dk−j+1−10εj = (9+ cj − ck−j)+(ck−j− cj)+1−10εj = 10−10εj,
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which implies εj = 1 and ej = 0. Applying this observation for j = 2, 3, . . .,
m− 1, respectively, we obtain

ε2 = 1, e2 = 0, ε3 = 1, e3 = 0, . . . , εm−1 = 1, em−1 = 0.

Then

em = dm + dk−m + 1− 10εm

= (9 + cm − ck−m) + (ck−m − cm − 1) + 1− 10εm = 9− 10εm,

which implies εm = 0 and em = 9. Then em+1 = dm+1 + dk−m−1 − 10εm+1 =
9+9−10εm+1, which implies εm+1 = 1 and em+1 = 8. In general, we replace
j by k − j in (2.12) to obtain dj = 9 for m + 1 ≤ j ≤ k − m − 1; and if
εj−1 = 1 and m+ 2 ≤ j ≤ k −m− 1, then

ej = dj + dk−j + εj−1 − 10εj = 9 + 9 + 1− 10εj = 19− 10εj,

which implies εj = 1 and ej = 9. Applying this observation for j = m + 2,
m+ 3, . . ., k −m− 1, respectively, we obtain

εm+2 = 1, em+2 = 9, εm+3 = 1, em+3 = 9, . . . , εk−m−1 = 1, ek−m−1 = 9.

Then

ek−m = dk−m + dm + 1− 10εk−m

= (ck−m − cm − 1) + (9 + cm − ck−m) + 1− 10εk−m = 9− 10εk−m,

which implies εk−m = 0 and ek−m = 9. Then

ek−m+1 = dk−m+1 + dm−1 − 10εk−m+1

= (ck−m+1 − cm−1) + (9 + cm−1 − ck−m+1)− 10εk−m+1

= 9− 10εk−m+1,

which implies εk−m+1 = 0 and ek−m+1 = 9. In general, we replace j by k − j

in (2.13) to obtain dj = 9 + cj − ck−j for 1 ≤ j ≤ m; and if εk−j−1 = 0 and
1 ≤ j < m, then

ek−j = dk−j+dj−10εk−j = (ck−j−cj)+(9+cj−ck−j)−10εk−j = 9−10εk−j,

which implies εk−j = 0 and ek−j = 9. Applying this observation for j = m−2,
m− 3, . . ., 1, respectively, we obtain

εk−m+2 = 0, ek−m+2 = 9, εk−m+3 = 0, ek−m+3 = 9, . . . , εk−1 = 0, ek−1 = 9.
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Then

ek = dk + d0 − 10εk = (ck − c0) + (10 + c0 − ck)− 10εk = 10− 10εk,

which implies εk = 1 and ek = 0. Then ek+1 = 1. To conclude, we obtain
ej = 0 for 0 ≤ j < m, em = 9, em+1 = 8, ej = 9 for m + 2 ≤ j ≤ k − 1,
ek = 0, and ek+1 = 1. This completes the proof.
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