Notes on 1089 and a Variation of the Kaprekar Operator

Niphawan Phoopha, Prapanpong Pongsriiam
Department of Mathematics
Faculty of Science
Silpakorn University
Nakhon Pathom, 73000, Thailand
email: phoopha.miw@gmail.com, prapanpong@gmail.com, pongsriiam_p@silpakorn.edu

(Received April 27, 2021, Accepted May 24, 2021)

Abstract

We study a variation of the Kaprekar operator $F(x)$ for all nonnegative integers x and show that the range of F consists of 0,99 , 1089, and the integers of the form $1099 \ldots 98900 \ldots 0$, where $99 \ldots 9$ and $00 \ldots 0$ may be long, short, or disappear.

1 Introduction and Statement of the Main Result

Throughout this article, if $y \in \mathbb{R}$, then $\lfloor y\rfloor$ is the largest integer less than or equal to y and $\lceil y\rceil$ is the smallest integer larger than or equal to y. Unless stated otherwise, all other variables are nonnegative integers. For any $x \in$ $\mathbb{N} \cup\{0\}$, we write the decimal expansion of x as

$$
x=\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{10}=\sum_{0 \leq j \leq k} a_{k-j} 10^{k-j}
$$

where $0 \leq a_{i} \leq 9$ for all $i=0,1,2, \ldots, k$.
Key words and phrases: digital problem, Kaprekar operator, Reverse and add operator, Lychrel number.
AMS (MOS) Subject Classifications: 11A63, 11B83.
Prapanpong Pongsriiam is the corresponding author of this manuscript. ISSN 1814-0432, 2021, http://ijmcs.future-in-tech.net

The Kaprekar operator K is defined by the following operation: take any positive integer x having four decimal digits which are not all equal and the leading digit is not zero, say $x=\left(a_{3} a_{2} a_{1} a_{0}\right)_{10}, a_{3} \neq 0$, and $a_{i} \neq a_{j}$ for some i, j, then rearrange $a_{3}, a_{2}, a_{1}, a_{0}$ as $c_{3}, c_{2}, c_{1}, c_{0}$ so that $c_{3} \geq c_{2} \geq c_{1} \geq c_{0}$. Then

$$
\begin{equation*}
K(x)=\left(c_{3} c_{2} c_{1} c_{0}\right)_{10}-\left(c_{0} c_{1} c_{2} c_{3}\right)_{10} \tag{1.1}
\end{equation*}
$$

Observe that the second number on the right-hand side of (1.1) is obtained by reversing the decimal digits of the first. It is well known that no matter what x we start with, after repeating this process at most 7 steps, we always obtain the number 6174. For example, suppose $x=1000$. Then

$$
\begin{aligned}
& K(x)=1000-1=999 \\
& K^{2}(x)=K(K(x))=K(999)=K(0999)=9990-0999=8991, \\
& K^{3}(x)=K(8991)=9981-1899=8082, \\
& K^{4}(x)=8820-0288=8532, \\
& K^{5}(x)=8532-2358=6174,
\end{aligned}
$$

and $K^{m}(x)=6174$ for all $m \geq 6$. Here, it is important to keep in mind that the Kaprekar operator operates on the positive integers having four digits not all equal. So the decimal representation of $K(x)$ with nonzero leading digit may have only 3 digits but, to calculate $K(K(x))$, we must first write $K(x)$ as 4 digits number by adding 0 as the leading digit, as shown above in $K(999)=K(0999)$. We can generalize K to operate on any nonnegative integers as follows:

Definition 1.1 (Kaprekar operator on nonnegative integers). Let g : $\mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ be given by $g(0)=.0$ If $x=\left(a_{k} a_{k-1} \ldots a_{0}\right)_{10}, a_{k} \neq 0$, and $c_{k}, c_{k-1}, \ldots, c_{0}$ is the permutation of $a_{k}, a_{k-1}, \ldots, a_{0}$ such that $c_{k} \geq c_{k-1} \geq$ $\cdots \geq c_{0}$, then

$$
g(x)=\left(c_{k} c_{k-1} \ldots c_{1} c_{0}\right)_{10}-\left(c_{0} c_{1} \ldots c_{k-1} c_{k}\right)_{10} .
$$

In addition, for the purpose of this article, if x is as above, then we always write the decimal representation of $g(x)$ as $k+1$ digits number, say $g(x)=$ $\left(b_{k} b_{k-1} \ldots b_{0}\right)_{10}$.

Another trick is as follows: take any positive integer having three digits, say $x=\left(a_{2} a_{1} a_{0}\right)_{10}$, where $a_{2} \neq 0,0 \leq a_{j} \leq 9$ for all j, and $a_{i} \neq a_{j}$ for some i, j. Then calculate $g(x)$, say $g(x)=b=\left(b_{2} b_{1} b_{0}\right)_{10}$. Then compute $f(b)=b+\operatorname{reverse}(b)=\left(b_{2} b_{1} b_{0}\right)_{10}+\left(b_{0} b_{1} b_{2}\right)_{10}$. No matter what x we start
with, we always obtain $f(b)=1089$. We generalize this to the following operator:

Definition 1.2. Let f be the reverse and add an operator. Let $F: \mathbb{N} \cup\{0\} \rightarrow$ $\mathbb{N} \cup\{0\}$ be defined by $F=f \circ g$. In addition, to calculate $F(x)=f(g(x))$, we always keep the same convention in Definition 1.1, where the number of decimal digits of x and $g(x)$ are equal.

For example, suppose $x=100$. Then $g(x)=99=099$ and so $F(x)=$ $f(099)=990+099=1089$. By using a computer or a straightforward calculation, it is not difficult to notice the following pattern:

$$
\begin{aligned}
& \text { if } 10 \leq x<10^{2} \text {, then } F(x)=0 \text { or } 99 \\
& \text { if } 10^{2} \leq x<10^{3} \text {, then } F(x)=0 \text { or } 1089 \text {; } \\
& \text { if } 10^{3} \leq x<10^{4} \text {, then } F(x)=0,10890 \text {, or } 10989 \\
& \text { if } 10^{4} \leq x<10^{5} \text {, then } F(x)=0,109890 \text {, or } 109989 .
\end{aligned}
$$

In general, we have the following result.
Theorem 1.3. Let $F=f \circ g, k \geq 2$, and $10^{k} \leq x<10^{k+1}$. Let $x=$ $\left(a_{k} a_{k-1} \ldots a_{0}\right)_{10}, a_{k} \neq 0$, and $0 \leq a_{i} \leq 9$ for all $i=0,1, \ldots, k$. If $k=2$, then $F(x)=0$ or 1089. Suppose that $k \geq 3$ and $c_{k}, c_{k-1}, \ldots, c_{0}$ is the permutation of $a_{k}, a_{k-1}, \ldots, a_{0}$ such that $c_{k} \geq c_{k-1} \geq \cdots \geq c_{0}$. Let $m=z(x)$ be the largest element of the set $\left\{j \in\{0,1, \ldots, k\} \mid c_{k-j}>c_{j}\right\}$. If $a_{i}=a_{j}$ for all i, j, then $F(x)=0$. If $a_{i} \neq a_{j}$ for some i, j, then

$$
F(x)=10 \underbrace{99 \ldots 9}_{y(x)} 89 \underbrace{00 \ldots 0}_{z(x)},
$$

where $y(x)=k-2-z(x)$.
Although the result is easy to observe for $k=2,3,4$, it is more difficult when k is large. As far as we know, there is no proof for a general k. We hope that this article will help explain something related to 6174,1089 , and other similar magic numbers. Finally, it is an interesting open problem to determine whether or not a given number in the range of F is a Lychrel number. We leave this problem for the interested reader. For more information on 6174 and the Kaprekar operator, see for instance in [5], [6], and [7]. For related articles on 1089 and 2178, see for example [1], [2], [3], [4], [8], [9], and [10].

2 Proof of the Main Result

Proof. We first consider the case $k=2$. Since $10^{2} \leq x<10^{3}$, it can be written in the decimal representation as $x=\left(a_{2} a_{1} a_{0}\right)_{10}$, where $a_{2} \neq 0$ and $0 \leq a_{i} \leq 9$ for $i=0,1,2$. If $a_{2}=a_{1}=a_{0}$, then $F(x)=0$. So suppose that a_{2}, a_{1}, a_{0} are not all the same and let c_{2}, c_{1}, c_{0} be the permutation of a_{2}, a_{1}, a_{0} such that $c_{2} \geq c_{1} \geq c_{0}$. Then $c_{2}>c_{0}$ and

$$
\begin{aligned}
g(x) & =\left(c_{2} c_{1} c_{0}\right)_{10}-\left(c_{0} c_{1} c_{2}\right)_{10} \\
& =\left(10^{2} c_{2}+10 c_{1}+c_{0}\right)-\left(10^{2} c_{0}+10 c_{1}+c_{2}\right) \\
& =10^{2}\left(c_{2}-c_{0}-1\right)+10(9)+10-\left(c_{2}-c_{0}\right) \\
& =\left(d_{2} d_{1} d_{0}\right)_{10},
\end{aligned}
$$

where $d_{2}=c_{2}-c_{0}-1, d_{1}=9$, and $d_{0}=10-\left(c_{2}-c_{0}\right)$. Then it is easy to see that

$$
F(x)=\left(d_{2} d_{1} d_{0}\right)_{10}+\left(d_{0} d_{1} d_{2}\right)_{10}=1089
$$

Next, let $k \geq 3,10^{k} \leq x<10^{k}$, and write $x=\left(a_{k} a_{k-1} \ldots a_{0}\right)_{10}$, where $a_{k} \neq 0$ and $0 \leq a_{i} \leq 9$ for all $i=0,1, \ldots, k$. If $a_{i}=a_{j}$ for all i, j, then $F(x)=0$ and we are done. So suppose that $a_{i} \neq a_{j}$ for some i, j. Let $c_{k}, c_{k-1}, \ldots, c_{0}$ be the permutation of $a_{k}, a_{k-1}, \ldots, a_{0}$ such that $c_{k} \geq c_{k-1} \geq \cdots \geq c_{0}$. Then

$$
\begin{align*}
g(x) & =\left(c_{k} c_{k-1} \ldots c_{0}\right)-\left(c_{0} c_{1} \ldots c_{k}\right)_{10} \\
& =\sum_{j=0}^{k} c_{k-j} 10^{k-j}-\sum_{j=0}^{k} c_{j} 10^{k-j} \\
& =\sum_{j=0}^{k}\left(c_{k-j}-c_{j}\right) 10^{k-j} \tag{2.2}
\end{align*}
$$

Let $A=\left\{j \in\{0,1, \ldots, k\} \mid c_{k-j}>c_{j}\right\}$. Since $c_{k}>c_{0}$, we see that $0 \in A$, and so $A \neq \varnothing$. Let m be the largest element of A. If $m \geq\left\lceil\frac{k}{2}\right\rceil$, then $k-m \leq k-\left\lceil\frac{k}{2}\right\rceil=\left\lfloor\frac{k}{2}\right\rfloor \leq m$, which implies $c_{k-m} \leq c_{m}$ which contradicts the fact that $m \in A$. Therefore, $0 \leq m<\left\lceil\frac{k}{2}\right\rceil$. Since m is the largest element of
A and $c_{k} \geq c_{k-1} \geq \cdots \geq c_{0}$, we assert that the following relations hold:

$$
\begin{array}{ll}
c_{k-j}>c_{j} & \text { for } \quad 0 \leq j \leq m, \\
c_{k-j} \leq c_{j} & \text { for } \quad j>m, \\
c_{k-j}=c_{j} & \text { for } \quad m<j \leq\left\lfloor\frac{k}{2}\right\rfloor, \\
c_{k-j}=c_{j} & \text { for } \quad\left\lceil\frac{k}{2}\right\rceil \leq j<k-m, \\
c_{k-j}<c_{j} & \text { for } \quad k-m \leq j \leq k . \tag{2.7}
\end{array}
$$

For (2.3), we know that $c_{k-m}>c_{m}$ and if $0 \leq j<m$, then $c_{k-j} \geq c_{k-m}>$ $c_{m} \geq c_{j}$. So (2.3) is verified. By the choice of m, (2.4) follows immediately. If $j \leq\left\lfloor\frac{k}{2}\right\rfloor$, then $k-j \geq k-\left\lfloor\frac{k}{2}\right\rfloor=\left\lceil\frac{k}{2}\right\rceil \geq j$, and so $c_{k-j} \geq c_{j}$. This and (2.4) imply (2.5). Replacing j by $k-j$ in (2.5), we obtain (2.6). Changing j to $k-j$ in (2.3), we obtain (2.7).

Next, we divide the sum in (2.2) into 3 parts: $0 \leq j \leq m, m<j<k-m$, and $k-m \leq j \leq k$. By (2.5) and (2.6), the second part is zero. Therefore, (2.2) becomes

$$
\begin{equation*}
g(x)=\sum_{0 \leq j \leq m}\left(c_{k-j}-c_{j}\right) 10^{k-j}+\sum_{k-m \leq j \leq k}\left(c_{k-j}-c_{j}\right) 10^{k-j} . \tag{2.8}
\end{equation*}
$$

The terms $c_{k-j}-c_{j}$ in (2.8) are positive in the first sum and negative in the second. Then we write

$$
\begin{aligned}
10^{k-m} & =\left(\sum_{m+1 \leq j \leq k-1} 9 \cdot 10^{k-j}\right)+10 \\
& =\left(\sum_{m+1 \leq j \leq k-m-1} 9 \cdot 10^{k-j}\right)+\left(\sum_{k-m \leq j \leq k-1} 9 \cdot 10^{k-j}\right)+10 .
\end{aligned}
$$

Let $d_{k-m}=c_{k-m}-c_{m}-1$ and $d_{0}=10+c_{0}-c_{k}$. Then

$$
\begin{align*}
\left(c_{k-m}-c_{m}\right) 10^{k-m}+ & \sum_{k-m \leq j \leq k}\left(c_{k-j}-c_{j}\right) 10^{k-j} \\
= & d_{k-m} 10^{k-m}+10^{k-m}+\sum_{k-m \leq j \leq k}\left(c_{k-j}-c_{j}\right) 10^{k-j} \\
= & d_{k-m} 10^{k-m}+\left(\sum_{m+1 \leq j \leq k-m-1} 9 \cdot 10^{k-j}\right) \\
& +\sum_{k-m \leq j \leq k-1}\left(9+c_{k-j}-c_{j}\right) 10^{k-j}+d_{0} \tag{2.9}
\end{align*}
$$

where d_{k-m}, d_{0}, and the coefficients of 10^{k-j} in the above equation are nonnegative and are less than 10. Therefore, (2.8) and (2.9) imply that we can write $g(x)$ in the decimal expansion as:

$$
g(x)=\left(d_{k} d_{k-1} \ldots d_{0}\right)_{10}=\sum_{0 \leq j \leq k} d_{k-j} 10^{k-j}
$$

where $0 \leq d_{i} \leq 9$ for all $i=0,1,2, \ldots, k$, and d_{k-j} satisfies the following relations:

$$
\begin{align*}
& d_{k-j}=c_{k-j}-c_{j} \text { for } 0 \leq j<m, \tag{2.10}\\
& d_{k-m}=c_{k-m}-c_{m}-1, \tag{2.11}\\
& d_{k-j}=9 \text { for } m+1 \leq j \leq k-m-1, \tag{2.12}\\
& d_{k-j}=9+c_{k-j}-c_{j} \text { for } k-m \leq j \leq k-1, \tag{2.13}\\
& d_{0}=10+c_{0}-c_{k} . \tag{2.14}
\end{align*}
$$

Since the decimal expansion of $g(x)$ has $k+1$ digits, that of $f(g(x))$ has at most $k+2$ digits. Then

$$
F(x)=f(g(x))=\left(d_{k} d_{k-1} \ldots d_{0}\right)_{10}+\left(d_{0} d_{1} \ldots d_{k}\right)_{10}=\left(e_{k+1} e_{k} \ldots e_{0}\right)_{10}
$$

where $0 \leq e_{i} \leq 9$ for all $i=0,1, \ldots, k+1$. From elementary arithmetic, recall the fact that $e_{0}=d_{0}+d_{k}-10 \varepsilon_{0}$, where $\varepsilon_{0}=0$ if $d_{0}+d_{k}<10$, and $\varepsilon_{0}=1$ if $d_{0}+d_{k} \geq 10$. In addition, $e_{j}=d_{j}+d_{k-j}+\varepsilon_{j-1}-10 \varepsilon_{j}$ for $1 \leq j \leq k$, where $\varepsilon_{j-1}=0$ if there is no carry in the addition in the $(j-1)$ th position and $\varepsilon_{j-1}=1$ otherwise; while $\varepsilon_{j}=0$ if $d_{j}+d_{k-j}+\varepsilon_{j-1}<10$, and $\varepsilon_{j}=1$ if $d_{j}+d_{k-j}+\varepsilon_{j-1} \geq 10$. Moreover, $e_{k+1}=0$ if there is no carry in the addition in the k th position and $e_{k+1}=1$ otherwise. We now calculate $e_{0}, e_{1}, \ldots, e_{k}$, e_{k+1} by using this fact and the relations in (2.10) to (2.14). We obtain

$$
e_{0}=d_{0}+d_{k}-10 \varepsilon_{0}=\left(10+c_{0}-c_{k}\right)+\left(c_{k}-c_{0}\right)-10 \varepsilon_{0}=10-10 \varepsilon_{0},
$$

which implies $\varepsilon_{0}=1$ and $e_{0}=0$. Then
$e_{1}=d_{1}+d_{k-1}+1-10 \varepsilon_{1}=\left(9+c_{1}-c_{k-1}\right)+\left(c_{k-1}-c_{1}\right)+1-10 \varepsilon_{1}=10-10 \varepsilon_{1}$,
which implies $\varepsilon_{1}=1$ and $e_{1}=0$. In general, we replace j by $k-j$ in (2.13) to get $d_{j}=9+c_{j}-c_{k-j}$ for $1 \leq j \leq m$; and if $\varepsilon_{j-1}=1$ and $2 \leq j \leq m-1$, then
$e_{j}=d_{j}+d_{k-j}+1-10 \varepsilon_{j}=\left(9+c_{j}-c_{k-j}\right)+\left(c_{k-j}-c_{j}\right)+1-10 \varepsilon_{j}=10-10 \varepsilon_{j}$,
which implies $\varepsilon_{j}=1$ and $e_{j}=0$. Applying this observation for $j=2,3, \ldots$, $m-1$, respectively, we obtain

$$
\varepsilon_{2}=1, e_{2}=0, \varepsilon_{3}=1, e_{3}=0, \ldots, \varepsilon_{m-1}=1, e_{m-1}=0
$$

Then

$$
\begin{aligned}
e_{m} & =d_{m}+d_{k-m}+1-10 \varepsilon_{m} \\
& =\left(9+c_{m}-c_{k-m}\right)+\left(c_{k-m}-c_{m}-1\right)+1-10 \varepsilon_{m}=9-10 \varepsilon_{m}
\end{aligned}
$$

which implies $\varepsilon_{m}=0$ and $e_{m}=9$. Then $e_{m+1}=d_{m+1}+d_{k-m-1}-10 \varepsilon_{m+1}=$ $9+9-10 \varepsilon_{m+1}$, which implies $\varepsilon_{m+1}=1$ and $e_{m+1}=8$. In general, we replace j by $k-j$ in (2.12) to obtain $d_{j}=9$ for $m+1 \leq j \leq k-m-1$; and if $\varepsilon_{j-1}=1$ and $m+2 \leq j \leq k-m-1$, then

$$
e_{j}=d_{j}+d_{k-j}+\varepsilon_{j-1}-10 \varepsilon_{j}=9+9+1-10 \varepsilon_{j}=19-10 \varepsilon_{j}
$$

which implies $\varepsilon_{j}=1$ and $e_{j}=9$. Applying this observation for $j=m+2$, $m+3, \ldots, k-m-1$, respectively, we obtain

$$
\varepsilon_{m+2}=1, e_{m+2}=9, \varepsilon_{m+3}=1, e_{m+3}=9, \ldots, \varepsilon_{k-m-1}=1, e_{k-m-1}=9
$$

Then

$$
\begin{aligned}
e_{k-m} & =d_{k-m}+d_{m}+1-10 \varepsilon_{k-m} \\
& =\left(c_{k-m}-c_{m}-1\right)+\left(9+c_{m}-c_{k-m}\right)+1-10 \varepsilon_{k-m}=9-10 \varepsilon_{k-m}
\end{aligned}
$$

which implies $\varepsilon_{k-m}=0$ and $e_{k-m}=9$. Then

$$
\begin{aligned}
e_{k-m+1} & =d_{k-m+1}+d_{m-1}-10 \varepsilon_{k-m+1} \\
& =\left(c_{k-m+1}-c_{m-1}\right)+\left(9+c_{m-1}-c_{k-m+1}\right)-10 \varepsilon_{k-m+1} \\
& =9-10 \varepsilon_{k-m+1}
\end{aligned}
$$

which implies $\varepsilon_{k-m+1}=0$ and $e_{k-m+1}=9$. In general, we replace j by $k-j$ in (2.13) to obtain $d_{j}=9+c_{j}-c_{k-j}$ for $1 \leq j \leq m$; and if $\varepsilon_{k-j-1}=0$ and $1 \leq j<m$, then
$e_{k-j}=d_{k-j}+d_{j}-10 \varepsilon_{k-j}=\left(c_{k-j}-c_{j}\right)+\left(9+c_{j}-c_{k-j}\right)-10 \varepsilon_{k-j}=9-10 \varepsilon_{k-j}$,
which implies $\varepsilon_{k-j}=0$ and $e_{k-j}=9$. Applying this observation for $j=m-2$, $m-3, \ldots, 1$, respectively, we obtain

$$
\varepsilon_{k-m+2}=0, e_{k-m+2}=9, \varepsilon_{k-m+3}=0, e_{k-m+3}=9, \ldots, \varepsilon_{k-1}=0, e_{k-1}=9
$$

Then

$$
e_{k}=d_{k}+d_{0}-10 \varepsilon_{k}=\left(c_{k}-c_{0}\right)+\left(10+c_{0}-c_{k}\right)-10 \varepsilon_{k}=10-10 \varepsilon_{k}
$$

which implies $\varepsilon_{k}=1$ and $e_{k}=0$. Then $e_{k+1}=1$. To conclude, we obtain $e_{j}=0$ for $0 \leq j<m, e_{m}=9, e_{m+1}=8, e_{j}=9$ for $m+2 \leq j \leq k-1$, $e_{k}=0$, and $e_{k+1}=1$. This completes the proof.

Acknowledgment. Prapanpong Pongsriiam's research project is funded jointly by the Faculty of Science Silpakorn University and the National Research Council of Thailand (NRCT), Grant Number, NRCT5-RSA63021-02.

References

[1] D. Acheson, 1089 and all that, available at
https://plus.maths.org/content/1089-and-all
[2] D. Acheson, 1089 and All That: A Journey into Mathematics, Oxford University Press, 2002.
[3] E. Behrends, The mystery of the number 1089 - how Fibonacci numbers come into play, Elemente der Mathematik, 70, no. ,) (2015), 144-152.
[4] A. Bogomolny, 1089 and a Property of 3-digit Numbers, available at https://www.cut-the-knot.org/Curriculum/Arithmetic/S1089.shtml
[5] K. E. Eldridge, S. Sagong, The determination of Kaprekar convergence and loop convergence of all three-digits numbers, The American Mathematical Monthly, 95, no. 2, (1988), 105-112.
[6] D. R. Kaprekar, An interesting property of the number 6174, Scripta Mathematica, 21, (1955), 304.
[7] T. Prince, Kaprekar constant revisited, International Journal of Mathematical Archive, 4, no. 5, (2013), 52-58.
[8] N. J. A. Sloane, 2178 and all that, The Fibonacci Quarterly, 52, no. 2, (2014), 99-120.
[9] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, available at https://oeis.org/A023108
[10] R. Webster, G. Williams, On the trail of reverse divisors: 1089 and all that follow, Mathematical Spectrum, 45, no. 3, (2013), 96-102.

