

Extension of Polarity in a Signed Transformation Semigroup

K. Rauf, I. A. Ogunleke

Department of Mathematics University of Ilorin Ilorin, Nigeria

email: krauf@unilorin.edu.ng, isaacadekunle1234@gmail.com

(Received December 20, 2020, Accepted February 25, 2021)

Abstract

Let $X_n = \{1, 2, 3, \dots, n\}$. Let P_n and T_n denote the partial and full transformation semigroups on X_n . For n = 1, 2, 3, 4, we obtain the polarity in a signed order-preserving, order-decreasing and reversing partial transformation semigroups by the order $(n+1)^n$ of P_n .

1 Introduction

Let $X_n = \{1, 2, 3, \dots, n\}$ and $X \subseteq N$. Let $\mathbb{Z}^* = \{\pm 1, \pm 2, \pm 3, \dots, \pm n\}$. Suppose α is a transformation from X_n into \mathbb{Z} . Then, the signed (partial) transformation semigroup is defined as $\alpha : dom(\alpha) \subseteq X_n \to Im(\alpha) \subseteq Z^*$. If $dom(\alpha) = X_n$, then transformation said to full. In addition, let $Im(\alpha^-)$ represent the negative image and let $Im(\alpha^*)$ represent the non-zero image. A transformation is said to be order-preserving partial (SPO_n) if $i \leq j$, $|i\alpha| \leq |j\alpha|$ for all $i, j \in dom(\alpha)$; otherwise, it is called order-reversing if $|i\alpha| \geq |j\alpha|$ for all $i, j \in Dom(\alpha)$. Moreover, it is said to be order-decreasing partial (SPD_n) if $|i\alpha| \leq i$ or $i \geq |i\alpha| \forall i \in Dom(\alpha)$. The subsemigroup of all maps that are signed order-preserving or signed order-reversing can be represented by $SPOD_n$ for a partial signed transformation semigroup.

Key words and phrases: Signed, Partial transformation, Polarity, Semigroup.

AMS (MOS) Subject Classifications: 54H15, 20M20. ISSN 1814-0432, 2021, http://ijmcs.future-in-tech.net

Various subsemigroups of P_n and T_n were studied in [1], [3] and [4]. In [2], the semigroups of order-preserving or order-reversing partial transformation of X_n denoted by POD_n were established and $ORCP_n = OCP_n \cup RCP_n$ was defined as the semigroup of order-preserving or order-reversing contraction partial transformation of X_n . In [7], the study of signed symmetric group was initiated. In [5] and [6], SD_n , SO_n and SC_n the signed transformation order-decreasing were studied.

2 Main results

2.1 Extension of Signed order in a partial transformation

Let PSO_n, PSD_n and PSC_n be the polarity of signed order-preserving and signed order-decreasing full transformation semigroups defined on $\alpha: X_n \to X_n^*$. Let $PSPO_n, PSPD_n$ and $PSPOD_n$ be the polarities of signed order-preserving, signed order-decreasing and signed order-preserving or order-reversing partial transformation semigroups defined on $\alpha: X_n \to X_n^*$. The following theorem is very useful for our work:

Theorem 2.1. [6] Let $S = PSC_n$. Then

$$|S| = \frac{1}{n} \begin{pmatrix} 2n \\ n-1 \end{pmatrix} \left(\sum_{k=0}^{n} \binom{n}{k} - 1 \right)$$
 (2.1)

The semigroup of order-preserving or order-reversing partial transformation of X_n will be denoted by POD_n .

2.2 Signed order-preserving partial transformation semigroup $(PSPO_n)$

The following are the results obtained for polarity of elements in the signed order-preserving partial transformation semigroup $(PSPO_n)$.

When n = 1, PO_1 (order-preserving partial transformation) has the following two elements:

$$\left(\begin{array}{c}1\\1\end{array}\right),\left(\begin{array}{c}1\\\phi\end{array}\right),\tag{2.2}$$

where ϕ is the empty element in $PSPO_1 = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$

$$Im(\alpha^{-}) = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}, Im(\alpha^{*}) = \phi$$

When n = 2, PO_2 has the following eight elements:

$$\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & \phi \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & \phi \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & \phi \end{pmatrix}$$

Thus,

$$PSPO_{2} = \left\{ \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & \phi \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & -2 \end{pmatrix} \right\}$$

$$(2.3)$$

$$Im(\alpha^{-}) = \left\{ \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & \phi \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & \phi \end{pmatrix} \right\}$$

$$\begin{pmatrix} 1 & 2 \\ \phi & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & -2 \end{pmatrix} \right\}$$

$$(2.4)$$

$$Im(\alpha^*) = \left\{ \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & \phi \end{pmatrix} \right\}$$

$$(2.5)$$

When n = 3, PO_3 has 37 elements for with

$$|PSPO_3| = 133, |Im(\alpha^-)| = 37, |Im(\alpha^*)| = 96.$$

When $n = 4 PO_4$ has 191 elements with

$$|PSPO_4| = 1281, |Im(\alpha^-)| = 191, |Im(\alpha^*)| = 1090.$$

2.2 Polarity of elements in the signed orderdecreasing partial transformation semigroup $(PSPD_n)$

When n = 1, the order-decreasing partial transformation PD_1 has one element

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \tag{2.6}$$

with
$$PSPD_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $Im(\alpha^-) = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$, $Im(\alpha^*) = \phi$.

When n = 2, PD_2 has 6 elements:

$$\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & \phi \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & \phi \end{pmatrix}$$
 with

$$PSPD_2 = \left\{ \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix}, \right.$$

$$\begin{pmatrix} 1 & 2 \\ -1 & \phi \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} \right\}$$
(2.7)

$$Im(\alpha^{-}) = \left\{ \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & \phi \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & -2 \end{pmatrix} \right\}$$

$$(2.8)$$

$$Im(\alpha^*) = \left\{ \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix} \right\}$$
 (2.9)

When n = 3, PD_3 has 23 elements:

$$|PSPD_3| = 81, |Im(\alpha^-)| = 23, |Im(\alpha^*)| = 58.$$

When n = 4, PD_3 has 119 elements:

$$|PSPD_4| = 819, |Im(\alpha^-)| = 119, |Im(\alpha^*)| = 700.$$

2.3 Polarity of elements in signed order-preserving or order-reversing partial transformation semi-group $(PSPOD_n)$

When n = 1, POD_1 has 1 element: $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ with:

$$PSPOD_1 = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}, \ Im(\alpha^-) = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}, \ Im(\alpha^*) = \phi.$$

When n = 2, POD_2 has 8 elements with:

$$PSPOD_{2} = \left\{ \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & \phi \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & -2 \end{pmatrix} \right\}$$
(2.10)

$$Im(\alpha^{-}) = \left\{ \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2$$

$$\begin{pmatrix} 1 & 2 \\ -1 & \phi \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & \phi \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ \phi & -2 \end{pmatrix},$$
 (2.11)

$$Im(\alpha^*) = \left\{ \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}, \right.$$

$$\begin{pmatrix}
1 & 2 \\
-2 & -2
\end{pmatrix}, \begin{pmatrix}
1 & 2 \\
2 & -1
\end{pmatrix}, \begin{pmatrix}
1 & 2 \\
-1 & 2
\end{pmatrix}, \begin{pmatrix}
1 & 2 \\
1 & -2
\end{pmatrix},$$
(2.12)

When n = 3, POD_3 has 53 elements with $|PSPOD_3| = 209$, $|Im(\alpha^-)| = 53$, $|Im(\alpha^*)| = 156$.

When n = 4, POD_4 has 322 elements with $|PSPOD_4| = 2302$, $|Im(\alpha^-)| = 322$, $|Im(\alpha^*)| = 1980$.

In addition, the following tables summarize the values of elements obtained for $PSPO_n$, $PSPO_n$ and $PSPOD_n$, respectively.

n	$ Im(\alpha^-) $	$ Im(\alpha^*) $	$ PSPO_n $
1	1	0	1
2	7	6	13
3	37	96	133
4	191	1090	1281

Table 1: The Values of Elements in ${\cal PSPO}_n$

n	$ Im(\alpha^-) $	$ Im(\alpha^*) $	$ PSPD_n $
1	1	0	1
2	5	4	9
3	23	58	81
4	191	700	819

Table 2: The Values of Elements in $PSPD_n$

n	$ Im(\alpha^-) $	$ Im(\alpha^*) $	$ PSPOD_n $
1	1	0	1
2	8	8	16
3	53	156	209
4	322	1980	2302

Table 3: The Values of Elements in ${\cal PSPOD}_n$

3 Conclusion

The formula for the sequence of $PSPO_n$, $PSPD_n$ and $PSPOD_n$ signed partial transformation semigroups are yet to be obtained. For future research, it is required alongside with signed contraction mapping full and partial transformations with subsemigroups of transformation.

References

- [1] A. Bashir, Combinatorial properties of the alternating and dihedral and homomorphic images of Fibonacci groups, Ph.D Thesis, University of Jos, Nigeria, 2010.
- [2] V. H. Fernandes, The monoid of all injective order preserving partial transformation on a finite chain, Semigroup Forum, **62**, no. 2, (2001), 178–204.
- [3] J. M. Howie, Semigroups, past, present and future, Combinatorial results for semigroups of order-preserving partial transformation, (2002), 6–21.
- [4] A. Laradji, A. Umar, Combinatorial results for semigroups of order-preserving partial transformation, Journal of Algebra, 278, (2004), 342–359.
- [5] M. M. Mogbonju, A. A. and Adeniji, Decomposition in signed difference semigroup. In: Proceedings of the 50th anniversary conference of Science Association of Nigeria, (2016), page 81 (Addendum).
- [6] M. M. Mogbonju, I. A. and Ogunleke, Polarity in signed order preserving and order decreasing semigroup, International Journal of Pure Algebra, 9, no. 6, (2019), 1–4.
- [7] F. P. Richard, Transformation semigroups over groups, Ph.D Thesis, North Carolina State University, Raleigh, USA, 2008.