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Abstract

In the present work, we obtain the exact solution of a non-linear

oscillator by means of elementary functions. We study the third order

Duffing oscillator and find an analytical solution which we apply in

the study of a non-linear electrical circuit. We compare our obtained

solution with the solution obtained by means of elliptical functions of

Jacobi and the numerical solution.

1 Introduction

This work aims to introduce the reader in a didactic way to the study of
non-linear oscillators and their applications to physics and engineering. Non-
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linear oscillators are a model that arises in various branches of physics and
engineering and has been used to study various problems such as the oscilla-
tions of a large-amplitude physical pendulum, non-linear electrical circuits,
image processing, open states of DNA, the movement of satellites, Bose-
Einstein condensates, among others [1, 2, 3, 4, 5, 6]. Oscillations and nonlin-
ear effects are of great importance. In basic physics textbooks [15, 16] and
articles like [17] the analysis of harmonic oscillations gives it great relevance.
This is done for simplicity of the model and because this is the theoretical
foundation to analyze more complicated situations such as propagation of
electromagnetic waves [18], the model harmonic oscillator quantum [19] and
the quantization of the electromagnetic field [20].

It is well known that to treat nonlinear problems, one must resort to the
study of elliptic functions. Jacobi elliptic functions were named in honor
of Carl Gustav Jacob Jacobi (1804–1851) who published a classic treatise
on elliptic functions [7] almost two centuries ago. However, the study of
elliptical functions disappeared from the mathematical literature of science
and even though they were important decades ago as evidenced in 1937 by
the publication of Whittaker’s physics text on the study of the dynamics of
the particle and the solid body [8]. It should be noted that in the classical
texts on analytical mechanics, for example in Landau’s [9] or Goldstein’s [10],
various solutions of nonlinear oscillator problems were obtained by means of
elliptic functions. However, in these texts and in most of the modern texts
that deal with the subject, analytical solutions allowing a better analysis and
understanding of the problem were not obtained.

Motivated by the applications of the non-linear oscillator and the search
for analytical solutions is the objective of this work.

The work is organized as follows:
In the first part, we treat the third order nonlinear Duffing oscillator and we
find a good analytical approximation by means of the elementary functions.
In the second part, we give an application to a non-linear electrical circuit.
In the third part, we solve the Duffing equation by means of the Jacobi’s
elliptical functions with the objective of comparing our obtained solution
with the solution obtained by means of the elliptical functions.
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2 Solution of the third order Duffing differen-

tial equation by means of elementary func-

tions

We describe the Duffing nonlinear oscillator by means of the following third
order nonlinear differential equation:

d2q

dt2
+ αq + βq3 = 0, (2.1)

where α and β are constants and q = q(t) represents a generalized coor-
dinate.

The Duffing Chaotic Oscillator was designed by the German electrical
engineer Georg Duffing (1864-1944) in the beginning of the 20th century
in order to study the buckling motion of a beam. It is a classic model
that arises in many branches of physics and engineering and has been used
to study everything from the oscillations of a physical pendulum of great
amplitude to image processing and many more. It has provided us with
a useful paradigm to study non-linear oscillations and chaotic systems and
it led to the development of new approximate analytical methods based on
ideas such as perturbative methods and to the development of new numerical
methods for the quantitative analysis of chaotic systems.

There are a variety of works in which equation (2.1) has been solved. An-
alytical solutions by means of the elliptical functions of Jacobi or Weierstrass
can be found for example in [6],[11].

Moving away from the traditional procedure, let’s look for the solution of
(2.1) those with the initial conditions q(t = 0) = qo ,

dq

dt
|t=0= q′(0) = q′o = 0.

The main objective of this work is to find the solution with the help of the
following equation:

q(t) =
qo cos(kt)

√

1 + λ sin2(kt)
, (2.2)

where k and λ are indeterminate constants.
Expanding (2.2) in Taylor series up to a fourth order polynomial in t, we

have

q(t) = qo −
1

2
(qo(λk

2 + k2))t2 +
1

24
q0(9λ

2k4 + 10λk4 + k4)t4 + o(t5). (2.3)

Substituting (2.3) into ( 2.1), we get
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qo(α+βq2o−k2(1+λ))t0+
1

2
(qok

2(1+λ)(−α−3q2oβ+k2(1+9λ))t2 = 0. (2.4)

Since the coefficients of the polynomial (2.4) must be equal to zero, we
obtain the following system of algebraic equations for k and λ.

{ qo(α + βq2o − k2(1 + λ)) = 0
1
2
(qok

2(1 + λ)(−α− 3q2oβ + k2(1 + 9λ)) = 0
(2.5)

Solving (2.5), we have

k =
1

2

√

4α + 3βq2o , λ =
βq2o

4α+ 3βq2o
(2.6)

Therefore, the solution of (2.1) is given by

q(t) =
qo cos(

1
2

√

4α+ 3βq2ot)
√

1 + βq2
o

4α+3βq2
o

sin2(1
2

√

4α+ 3βq2ot)
(2.7)

3 An application: A non-linear electrical cir-

cuit

Let us consider a capacitor of two terminals as a dipole in which a functional
relationship between the electric charge , the voltage, and the time has the
following form:

f(q, u, t) = 0 (3.8)

A nonlinear capacitor is said to be controlled by charge when is possible to
express the tension as a function of charge

u = u(q). (3.9)

As an example of a nonlinear electrical circuit, let us consider the circuit
shown in Figure 1.
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Figure 1. LC circuit

This circuit consists of a linear inductor in series with a nonlinear capac-
itor. The relationship between the charge of the nonlinear capacitor and the
voltage drop across it may be approximated by the following cubic equations
[12, 13, 14]:

uc = sq + aq3, (3.10)

where uc is the potential across the plates of the nonlinear capacitor q is
the charge and s and a are constants.
The equation of the circuit may be written as

L
di

dt
+ sq + aq3 = 0, (3.11)

where L is the inductance of the inductor. Dividing by L and taking into
account that i = dq

dt
, we obtain the cubic Duffing equation in the form:

d2q

dt2
+ αq + βq3 = 0, (3.12)

where α = s/L = 1/LC and β = a/L = 1/LCq20 are constants.
For L = 2, 81mH , C = 9pF , qo = 10−10C, i0 = 0, we have that α =

1/LC = 4× 1013 and β = 1/LCq20 = 4× 1033 and taking into account (2.7):

q(t) =
cos(106

√
70t)

1010
√

1 + 1
7
sin2(106

√
70t

. (3.13)
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The numerical solution for the Runge-Kutta method and the analytical
solution given by (3.13) are compared graphically in Figure 2. The dashed
red curve corresponds to the Runge-Kutta method and the thin blue curve
to the solution (3.13)

Figure 2. Analytical and numerical solution

4 Solution by means of elliptical functions

We are going to find the analytical solution of the equation (2.1) subject
to initial conditions q(0) = q0 and dq

dt
|t=0= q′0 = 0.

We seek a solution of the form.

q = q(t) = q0 cn(ωt,m), (4.14)

where cn(ωt,m) represents the elliptic Jacobi function cn. Substituting equa-
tion (4.14) into equation (2.1) and taking in account that

d2q

dt2
= q0mω2cn(ωt,m) sn2(ωt,m)− ω2q0cn(ωt,m)dn2(ωt,m),
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we obtain

q0mω2cn(ωt,m) sn2(ωt,m)−ω2q0cn(ωt,m)dn2(ωt,m)+αq0cn(ωt,m)+βq30cn
3(ωt,m) = 0

(4.15)
On the other hand, we know that

sn2(ωt,m) = 1− cn2(ωt,m) y dn2ωt,m) = 1−m sn2(ωt,m) (4.16)

Making use of these relationships ( 4.16), we deduce that

mω2q0x
(

1− x2
)

−ω2q0
(

1−m
(

1− x2
))

x+αq0x+βq30x
3 = 0, where x = cn(ωt,m)

(4.17)
Equation (4.17) can be written as

q0
(

βq20 − 2mω2
)

x3 + q0cn
(

2mω2 + α− ω2
)

x = 0 (4.18)

As q0 6= 0 and the equation (4.18) must be validated for any x, we have

βq20 − 2mω2 = 0 and 2m2ω2 + α− ω2 = 0. (4.19)

The system (4.19) has the following solution

m =
βq20

2(α+ βq20)
, ω =

√

α + βq20 . (4.20)

Therefore, the solution to the problem

d2q

dt2
+ αq + βq3 = 0, q(0) = q0, q′(0) = i0 (4.21)

Is

q(t) = q0 cn(
√

α + βq20t,
βq20

2(α + βq20)
) (4.22)

The behavior of the solution (4.22) depends on the parameters α , β, and
the initial condition q0. This solution is periodic and limited if

ω2 = α + βq20 > 0. (4.23)

If ω2 = α+ βq20 < 0, then the solution (4.22) takes the following form:

q(t) = q0 cn(
√

−(α + βq20)t, 1−
βq20

2(α+ βq20)
) (4.24)
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If m =
βq2

0

2(α+βq2
0
)
= 1, we obtain α = −βq2

0

2
since cn(ωt, 1) =sech(ωt) the

solution (4.22) becomes

q(t) = q0 sech(

√

1

2
βq20t). (4.25)

We observe that (4.25) is bounded but aperiodic. This is a typical situation
for solitons. Some important nonlinear differential equations admit soliton
solutions that can be expressed in terms of sech.

For our non-linear electrical system and taking into account (4.22) α =
1/LC = 4× 1013 and β = 1/LCq20 = 4× 1033, we have

q(t) = 10−10cn(4× 106
√
5t,

1

16
). (4.26)

Graph 3 shows the elliptical solutions, the continuous blue curve and the
elemental solution, the dashed red curve.
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Figure 3. Elliptic solution and elementary solution

Graph 4 shows the numerical solutions, the dashed red curve, the ele-
mentary solution, the continuous blue curve, and the elliptic solution, yellow
curve.
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Figure 4. Numerical, elliptical, and elemental solution

5 Conclusions

The non-linear oscillator model, especially the Duffing Chaotic oscillator, is
a classic model that arises in many branches of physics and engineering and
has been used to study everything from the oscillations of a large-amplitude
physical pendulum to image processing and many more. Solving it analyti-
cally is a difficult task since it involves the elliptical functions of Jacobi and
Weirstrass which are generally not studied in mathematics courses for both
physicists and engineers.

However, there was the possibility of approaching the solution in an ana-
lytical way through elementary functions through equation (2.7) that led us
to a very good analytical solution in a simple and fast way. Of course, this
has its limitations since there is the condition that 4α+ 3βq2o > 0.
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