International Journal of Mathematics and Computer Science, **17**(2022), no. 1, 99–105

On semigroups \mathbb{Z}_n having n-1 and n-2monogenic subsemigroups

Ronnason Chinram¹, Napaporn Sarasit²

¹Division of Computation Science Faculty of Science Prince of Songkla University Hat Yai, Songkhla 90110, Thailand

²Division of Mathematics Faculty of Engineering Rajamangala University of Technology Isan Khon Kaen Campus Khon Kaen 40000, Thailand

 $email:\ ronnason.c@psu.ac.th,\ napaporn.sr@rmuti.ac.th$

(Received June 11, 2021, Accepted July 12, 2021)

Abstract

In this paper, we describe the semigroups \mathbb{Z}_n (under multiplication modulo n) having n-1 and n-2 monogenic subsemigroups.

1 Introduction and Preliminaries

Let G be a group and let C(G) be the poset of cyclic subgroup of G. First, we recall the well-known result in group theory: A finite group G is an elementary Abelian 2-group if and only if |C(G)| = |G|. In 2015, Tărnăuceanu [3] described the finite groups G having |G| - 1 cyclic subgroups. In 2019, Belshoff, Dillstrom and Reid [1] investigated the finite groups G having |G| - rcyclic subgroups for r = 2, 3, 4 and 5. In this paper, we will focus on semigroups. Let S be a semigroup and let C(S) be the poset of monogenic subsemigroup of S. For $a \in S$, the monogenic subsemigroup of S generated

Key words and phrases: Finite semigroups, monogenic subsemigroups, integers modulo n, primitive roots modulo n.

AMS (MOS) Subject Classifications: 20M10.

Corresponding author: Napaporn Sarasit (napaporn.sr@rmuti.ac.th). **ISSN** 1814-0432, 2022, http://ijmcs.future-in-tech.net

by a is denoted by $\langle a \rangle$ and $\langle a \rangle = \{a^n \mid n \in \mathbb{N}\}$. Let $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ be the semigroup of integers modulo n (under multiplication modulo n) and $\mathbb{Z}_n^{\times} = \{x \in \mathbb{Z}_n \mid (x, n) = 1\}$. It is a known fact that \mathbb{Z}_n^{\times} is a group (under multiplication modulo n). For any element a in a group \mathbb{Z}_n^{\times} , o(a) denotes the order of a; that is, the smallest positive integer k such that $a^k = 1$. If o(a) = k, then $\langle a \rangle = \{1, a, a^2, \dots, a^{k-1}\}$. A generator of a group \mathbb{Z}_n^{\times} is called a primitive root modulo n. It is well-known that there is a primitive root modulo n if and only if $n = 2, 4, p^k$ or $2p^k$, where p is a prime number. In [2], the semigroups \mathbb{Z}_n such that $|C(\mathbb{Z}_n)| = n$ were characterized as follows:

Theorem 1.1. ([2]) $|C(\mathbb{Z}_n)| = n$ if and only if n = 2, 3, 4, 6, 8, 12, 24.

The purpose of this paper is to describe the semigroups \mathbb{Z}_n (under multiplication modulo n) having n-1 and n-2 monogenic subsemigroups. Now, we will recall some results from [2] which we will use in this paper.

Theorem 1.2. $([\mathcal{Z}]) |C(\mathbb{Z}_p)| = p$ if and only if p = 2 or p = 3.

Theorem 1.3. ([2]) Let S_1, S_2, \ldots, S_n be finite semigroups with zero. If $S = S_1 \times S_2 \times \ldots \times S_n$, then |C(S)| = |S| if and only if $|C(S_i)| = |S_i|$ for all $i \in \{1, 2, \ldots, n\}$.

Theorem 1.4. $([2]) |C(\mathbb{Z}_{2^k})| = 2^k$ for k = 1, 2, 3.

Theorem 1.5. $([2]) |C(\mathbb{Z}_{3^k})| = 3^k$ if and only if k = 1.

Theorem 1.6. $([2]) |C(\mathbb{Z}_{p^k})| < p^k$ for all prime numbers p > 3.

2 Main Results

First of all, let us find the number of monogenic subsemigroups of semigroups \mathbb{Z}_n for n = 5, 7, 9, 10, 11, 14, 15, 16.

Example 2.1. We find the number of monogenic subsemigroups of semigroups \mathbb{Z}_n , where n = 5, 7, 9, 10, 11, 14, 15, 16, as follows:

- n = 5 $< 0 >= \{0\}, <1 >= \{1\}, <2 >=<3 >= \{1, 2, 3, 4\}, <4 >= \{1, 4\}.$ So $C(\mathbb{Z}_5) = 4$. In this case, $C(\mathbb{Z}_n) = n - 1$.
- n = 7 $< 0 >= \{0\}, <1 >= \{1\}, <2 >=<4 >= \{1, 2, 4\},$ $< 3 >=<5 >= \{1, 2, 3, 4, 5, 6\}, <6 >= \{1, 6\}.$ Thus $|C(\mathbb{Z}_7)| = 5$. In this case, $|C(\mathbb{Z}_n)| = n - 2$.

• n = 9 $<0>=\{0\}, <1>=\{1\}, <2>=<5>=\{1, 2, 4, 5, 7, 8\},\$ $<3>=\{0,3\}, <4>=<7>=\{1,4,7\},$ $< 6 >= \{0, 6\}, < 8 >= \{1, 8\}.$ So $|C(\mathbb{Z}_9)| = 7$. In this case, $|C(\mathbb{Z}_n)| = n - 2$. • n = 10 $<0>=\{0\}, <1>=\{1\}, <2>=<8>=\{2,4,6,8\},$ $<3>=<7>=\{1,3,7,9\}, <4>=\{4,6\}, <5>=\{5\},$ $< 6 >= \{6\}, < 9 >= \{1, 9\}.$ Therefore $|C(\mathbb{Z}_{10})| = 8$. In this case, $|C(\mathbb{Z}_n)| = n - 2$. • n = 11 $< 0 >= \{0\}, < 1 >= \{1\},$ $<2>=<6>=<7>=<8>=\{1,2,3,4,5,6,7,8,9,10\},\$ $<3>=<4>=<5>=<9>=\{1,3,4,5,9\},<10>=\{1,10\}.$ Therefore $|C(\mathbb{Z}_{11})| = 5$. In this case, $|C(\mathbb{Z}_n)| = n - 6$. • n = 14 $<0>=\{0\}, <1>=\{1\}, <2>=<4>=\{2,4,8\},$ $<3>=<5>=\{1,3,5,9,11,13\}, <6>=\{6,8\}, <7>=\{7\},$ $< 8 >= \{8\}, < 9 >= < 11 >= \{1, 9, 11\},\$ $< 10 > = < 12 > = \{2, 4, 6, 8, 10, 12\}, < 13 > = \{1, 13\}.$ Therefore $|C(\mathbb{Z}_{14})| = 10$. In this case, $|C(\mathbb{Z}_n)| = n - 4$. • n = 15 $<0>=\{0\}, <1>=\{1\}, <2>=<8>=\{1, 2, 4, 8\},\$ $<3>=<12>=\{3,6,9,12\}, <4>=\{1,4\}, <5>=\{5,10\},$ $< 6 >= \{6\}, < 7 >= < 13 >= \{1, 4, 7, 13\}, < 9 >= \{6, 9\},\$ $< 10 >= \{10\}, < 11 >= \{1, 11\}, < 14 >= \{1, 14\}.$ Therefore $|C(\mathbb{Z}_{15})| = 12$. In this case, $|C(\mathbb{Z}_n)| = n - 3$. • n = 16 $< 0 >= \{0\}, < 1 >= \{1\}, < 2 >= \{0, 2, 4, 8\},\$ $<3>=<11>=\{1,3,9,11\}, <4>=\{0,4\},\$ $<5>=<13>=\{1,5,9,13\}, <6>=\{0,4,6,8\},\$ $<7>=\{1,7\}, <8>=\{0,8\}, <9>=\{1,9\},$ $< 10 >= \{0, 4, 8, 10\}, < 12 >= \{0, 12\},\$ $< 14 >= \{0, 4, 8, 14\}, < 15 >= \{1, 15\}.$ Therefore $|C(\mathbb{Z}_{16})| = 14$. In this case, $|C(\mathbb{Z}_n)| = n - 2$.

Lemma 2.1. Let $a \in \mathbb{Z}_n^{\times}$. If $1 \in \langle a \rangle$, then $1 \in \langle b \rangle$ for all $b \in \langle a \rangle$.

Proof. Let k be the order of a. Then $a^k = 1$. Let $b \in \langle a \rangle$. So $b = a^m$ for some $m \in \{1, 2, \ldots, k\}$. Thus $1 = 1^m = (a^k)^m = (a^m)^k = b^k \in \langle b \rangle$. This implies that $1 \in \langle b \rangle$.

Lemma 2.2. Let $a \in \mathbb{Z}_n^{\times}$ and let $b, c \in \langle a \rangle$. If bc = 1, then $\langle b \rangle = \langle c \rangle$.

Proof. Let $b, c \in \langle a \rangle$. Assume that bc = 1. Then $1 \in \langle a \rangle$. By Lemma 2.1, $1 \in \langle c \rangle$. Let $b^m \in \langle b \rangle$ where $m \in \{1, 2, ..., o(b)\}$ and let n be the order of c. We have $(b^m)(c^m) = (bc)^m = (1)^m = 1 = c^n$; that is, $b^m = c^{n-m} = c^t \in \langle c \rangle$ for some $t \in \{1, 2, ..., o(c)\}$. Hence $\langle b \rangle \subseteq \langle c \rangle$. In a similar way, $\langle c \rangle \subseteq \langle b \rangle$. Therefore, $\langle b \rangle = \langle c \rangle$.

The following corollary follows from Lemma 2.2.

Corollary 2.3. Let a be a primitive root modulo p of a group \mathbb{Z}_p^{\times} and let $b, c \in \langle a \rangle$. If bc = 1, then o(b) = o(c).

Theorem 2.4. Let p be a prime number. Then $|C(\mathbb{Z}_p)| = p - 1$ if and only if p = 5.

Proof. Assume that $|C(\mathbb{Z}_p)| = p - 1$. Suppose that $p \neq 5$. If $p \leq 3$, then $|C(\mathbb{Z}_p)| = p$ by Theorem 1.2, a contradiction. If $p \geq 7$, then there is a primitive root modulo p, say a. Thus $\langle a \rangle = \{1, a, a^2, \ldots, a^{p-2}\} = \mathbb{Z}_p^{\times}$; that is, $a^{p-1} = 1$ and $a^i \neq a^j$ for all $i, j \in \{1, 2, p - 3, p - 2\}$. We know that $(a)(a^{p-2}) = a^{p-1} = 1$ and $(a^2)(a^{p-3}) = a^{p-1} = 1$. By Lemma 2.2, we have $\langle a \rangle = \langle a^{p-2} \rangle$ and $\langle a^2 \rangle = \langle a^{p-3} \rangle$. Hence $|C(\mathbb{Z}_p)| \langle p - 1$, a contradiction. This implies that p = 5. The converse was already proved in Example 2.1. □

Theorem 2.5. Let p be a prime number. Then $|C(\mathbb{Z}_{2p})| = 2p - 2$ if and only if p = 5.

Proof. By Example 2.1, the converse is clear. Assume that $|C(\mathbb{Z}_{2p})| = 2p-2$. Suppose that $p \neq 5$. If $p \leq 3$, then, by Theorem 1.1, $|C(\mathbb{Z}_{2p})| = 2p$, a contradiction. If p = 7, then by Example 2.1, which is a contradiction. If $p \geq 11$, then, by Euler phi function, $\phi(2p) = \phi(2)\phi(p) = (1)(p-1) = p-1$. So $|\mathbb{Z}_{2p}^{\times}| = p-1 \geq 10$. Then there is a primitive root of modulo 2p, say a. So $\langle a \rangle = \{1, a, a^2, ..., a^{\phi(2p)-1}\}$ and $a^i \neq a^{\phi(2p)-i}$ for all $i \in \{1, 2, 3\}$. Since $(a^i)(a^{\phi(2p)-i}) = a^{\phi(2p)} = 1$, by Lemma 2.2 we have, $\langle a^i \rangle = \langle a^{\phi(2p)-i} \rangle$ for all $i \in \{1, 2, 3\}$. Thus $|C(\mathbb{Z}_{2p})| \leq 2p-3$ which is a contradiction. Therefore p = 5.

102

On semigroups \mathbb{Z}_n having n-1 and n-2 monogenic subsemigroups 103

Theorem 2.6. Let p be a prime number. Then $|C(\mathbb{Z}_p)| = p - 2$ if and only if p = 7.

Proof. By Example 2.1, the converse is clear. Assume that $|C(\mathbb{Z}_p)| = p - 2$. Suppose that $p \neq 7$. If $p \leq 5$, then by Theorems 1.1 and 2.4, $|C(\mathbb{Z}_p)| \neq p - 2$, which is a contradiction. If $p \geq 11$, then there is a primitive root of modulo p, say a. So $\langle a \rangle = \{1, a, a^2, a^3, \ldots, a^{\phi(p)-1}\}$ and $a^i \neq a^{\phi(p)-i}$ for all $i \in \{1, 2, 3\}$. Since $(a^i)(a^{\phi(p)-i}) = a^{\phi(p)} = 1$, by Lemma 2.2 we have, $\langle a^i \rangle = \langle a^{\phi(p)-i} \rangle$. Thus $|C(\mathbb{Z}_{2p})| \leq p - 3$, which is a contradiction. Hence p = 7.

Theorem 2.7. $|C(\mathbb{Z}_p)| \leq p - \frac{p-3}{2}$ for all prime numbers $p \geq 5$.

Proof. Let p be a prime number such that $p \ge 5$. Then $\phi(p) = p - 1$ and there exists a primitive root modulo p, say a. Thus, for all $i \in \{1, 2, \ldots, \frac{p-3}{2}\}$, $a^i \ne a^{(p-1)-i}$ and $\langle a^i \rangle = \langle a^{(p-1)-i} \rangle$. So $|C(\mathbb{Z}_p)| \le p - \frac{p-3}{2}$.

Theorem 2.8. $|C(\mathbb{Z}_{2^k})| \leq 2^k - 3$ for all integers $k \geq 5$.

Proof. Assume $k \ge 5$. Then $\phi(2^k) = 2^{k-1} \ge 16$. Let $a \in \{3, 5, 7\} \subset \mathbb{Z}_{2^k}^{\times}$. So $o(a)|2^{k-1}$ and $a^2 \ne 1$, which implies $4 \le o(a) \le 2^{k-1}$. By Euler's theorem, $a^{\phi(2^k)} \equiv 1 \pmod{2^k}$; that is, $a^{2^{k-1}} = 1$. This implies that $(a)(a^{(2^{k-1})-1}) = 1 \in < a >$. By Lemma 2.2, $< a > = < a^{(2^{k-1})-1} >$ and $a \ne a^{(2^{k-1})-1}$. Thus $|C(\mathbb{Z}_{2^k})| \le 2^k - 3$. □

Theorem 2.9. $|C(\mathbb{Z}_{p^k})| \leq p^k - \frac{p^{k-1}(p-1)-2}{2}$ for all prime numbers $p \geq 3$ and integers $k \geq 2$.

Proof. Let k be an integer such that $k \ge 2$. Since there is a primitive root modulo p^k , say a, and $o(a) \ge 6$, we have $\mathbb{Z}_{p^k}^{\times} = \langle a \rangle = \{1, a, a^2, ..., a^{\phi(p^k)-1}\}$ and $a^i \ne a^j$ for all $i, j \in \{1, 2, ..., \phi(p^k) - 1\}$. Thus $(a^i)(a^{\phi(p^k)-i}) = 1$, by Lemma 2.2, $\langle a^i \rangle = \langle a^{\phi(p^k)-i} \rangle$ for all $i \in \{1, 2, ..., \frac{\phi(p^k)-2}{2}\}$. Therefore $|C(\mathbb{Z}_{p^k})| \le p^k - \frac{\phi(p^k)-2}{2} = p^k - \frac{p^{k-1}(p-1)-2}{2}$. □

Lemma 2.10. Let S_1, S_2, \ldots, S_n be finite semigroups with zero 0 and identity 1 and assume that $S = S_1 \times S_2 \times \ldots \times S_n$. If $|C(S_i)| < |S_i|$ for some $i \in \{1, 2, \ldots, n\}$, then $|C(S)| \le |S| - 2$.

Proof. Assume $|C(S_i)| < |S_i|$ for some $i \in \{1, 2, ..., n\}$. Then there exist $a, b \in S_i$ such that $a \neq b$ and $\langle a \rangle = \langle b \rangle$. So there are four distinct elements $a' = (a_1, a_2, ..., a_n), b' = (b_1, b_2, ..., b_n), c' = (c_1, c_2, ..., c_n), d' = (d_1, d_2, ..., d_n) \in S$ such that $a_i = a, a_j = 0$ if $i \neq j, b_i = b, b_j = 0$ if $i \neq j$, $c_i = a, c_j = 1$ if $i \neq j$ and $d_i = b, d_j = 1$ if $i \neq j$. This implies that $a' \neq b', \langle a' \rangle = \langle b' \rangle$ and $c' \neq d', \langle c' \rangle = \langle d' \rangle$. Thus $|C(S)| \leq |S| - 2$.

Lemma 2.11. Let S_1, S_2, \ldots, S_n be finite semigroups with zero 0 and identity 1 and assume that $S = S_1 \times S_2 \times \ldots \times S_n$. If $|C(S_i)| < |S_i| - 1$ for some $i \in \{1, 2, \ldots, n\}$, then $|C(S)| \le |S| - 4$.

Proof. Assume $|C(S_i)| < |S_i| - 1$ for some $i \in \{1, 2, \ldots, n\}$. Then there exist 3 distinct elements $a, b, c \in S_i$ such that and $\langle a \rangle = \langle b \rangle = \langle c \rangle$ or $\langle a \rangle = \langle b \rangle, \langle c \rangle = \langle d \rangle$ for some $d \in S_i$. Let $x \in S_i$ and let $x' = (a'_1, a'_2, \ldots, a'_n), x'' = (a''_1, a''_2, \ldots, a''_n) \in S$ be such that $a'_i = x, a'_j = 0$ and $a''_i = x, a''_j = 1$ for all $j \neq i$. By assumption there exist $a', b', c', a'', b'', c'' \in S$ such that $\langle a' \rangle = \langle b' \rangle = \langle c' \rangle$ or $\langle a'' \rangle = \langle b'' \rangle = \langle c'' \rangle$ and $\langle a'' \rangle = \langle b'' \rangle = \langle c'' \rangle$ or $\langle a'' \rangle = \langle b'' \rangle = \langle d'' \rangle$ for some $d', d'' \in S$. Thus $|C(S)| \leq |S| - 4$.

From all the previous theorems, the next theorems hold.

Theorem 2.12. $|C(\mathbb{Z}_n)| = n - 1$ if and only if n = 5.

Proof. Assume that $|C(\mathbb{Z}_n)| = n - 1$. Suppose that $n \neq 5$. If n < 5, then by Example 2.1 in [2], $|C(\mathbb{Z}_n)| = n$, a contradiction. If n > 5 and n is a prime number, by Theorem 2.4, $|C(\mathbb{Z}_n)| \neq n-1$, which is a contradiction. If n > 5and n is not a prime number, we let $n = p_1^{k_1} p_2^{k_2} \dots p_m^{k_m}$ where p_1, p_2, \dots, p_m are distinct primes and $k_i > 0$. By Theorems 1.5, 1.6 and Lemma 2.10, this is only possible if $n = 2^k 3, k = 1, 2, 3$. This implies that $|C(\mathbb{Z}_n)| = n$ by Theorems 1.3, 1.4 and 1.5, a contradiction. Thus n = 5. The converse is clear by Theorem 2.4.

Theorem 2.13. $|C(\mathbb{Z}_n)| = n - 2$ if and only if n = 7, 9, 10, 16.

Proof. Assume that $|C(\mathbb{Z}_n)| = n-2$. By Example 2.1 and Theorems 1.1, 1.4 and 2.8, this is only possible if n = 7, 9, 10, 16 or n > 16. If n > 16 and n is a prime number, then, by Lemma 2.4, $|C(\mathbb{Z}_n)| \leq n - \frac{n-3}{2}$, this implies that $|C(\mathbb{Z}_n)| \leq n - 7 < n - 2$. This is a contradiction. Suppose that n > 16 and n is not prime. Then $n = p_1^{k_1} p_2^{k_2} \dots p_m^{k_m}$ for distinct primes p_1, p_2, \dots, p_m and $k_i > 0$. So $\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{k_1}} \times \mathbb{Z}_{p_2^{k_2}} \times \dots \times \mathbb{Z}_{p_m^{k_m}}$. Consider the case of $p_i \geq 3, k_i \geq 2$ or $p_i > 5, k_i = 1$ for some $i \in \{1, 2, \dots, m\}$. Then by Theorems 2.7 and 2.9, $|C(\mathbb{Z}_{p_i^{k_i}})| < p_i^{k_i} - 1$. Thus, by Lemma 2.11, $|C(\mathbb{Z}_n)| < n - 2$, a contradiction. This implies that it is only possible if (i) $n = (2^k)(3)(5)$ for all k > 0, (ii) $n = (2^k)(3)$ for all k > 3 by Theorem 1.1, (iii) $n = 2^k$ for all k > 4. Consider the case of (i) $n = (2^k)(3)(5)$ for all k > 0. It is clear that there exist $(0,0,2), (0,0,3), (0,1,2), (0,1,3), (1,0,2), (1,0,3) \in \mathbb{Z}_{2^k} \times \mathbb{Z}_3 \times \mathbb{Z}_5$ such that < (0,0,2) > = < (0,0,3) >, < (0,1,2) > = < (0,1,3) > and

104

On semigroups \mathbb{Z}_n having n-1 and n-2 monogenic subsemigroups 105

<(1,0,2) >=<(1,0,3) >. This means that $|C(\mathbb{Z}_n)| \leq n-3 < n-2$, a contradiction. Finally, consider the cases of (ii) $n = (2^k)(3)$ for all k > 3 and (iii) $n = 2^k$ for all k > 4. By Theorem 2.8, Lemma 2.11 and $|C(\mathbb{Z}_{16})| = 14$, we have $|C(\mathbb{Z}_n)| < n-2$. This is a contradiction. Therefore n = 7, 9, 10, 16. The converse is clear by Example 2.1.

Acknowledgments: This paper was supported by the Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kean Campus, Thailand.

References

- R. Belshoff, J. Dillstrom, L. Reid, Finite groups with a prescribed number of cyclic subgroups, Commun. Algebra, 47, no. 3, (2019), 1043–1056.
- [2] S. Pankaew, A. Rattana, R. Chinram, On the number of monogenic subsemigroups of semigroups \mathbb{Z}_n , Int. J. Math. Comput. Sci., **14**, no. 3, (2019), 557–561.
- [3] M. Tărnăuceanu, Finite group with a certain number of cyclic subgroups, Amer. Math. Monthly, **122**, (2015), 275–276.