On semigroups \mathbb{Z}_{n} having $n-1$ and $n-2$ monogenic subsemigroups

Ronnason Chinram ${ }^{1}$, Napaporn Sarasit ${ }^{2}$
${ }^{1}$ Division of Computation Science
Faculty of Science
Prince of Songkla University
Hat Yai, Songkhla 90110, Thailand
${ }^{2}$ Division of Mathematics
Faculty of Engineering
Rajamangala University of Technology Isan Khon Kaen Campus
Khon Kaen 40000, Thailand

email: ronnason.c@psu.ac.th, napaporn.sr@rmuti.ac.th
(Received June 11, 2021, Accepted July 12, 2021)

Abstract

In this paper, we describe the semigroups \mathbb{Z}_{n} (under multiplication modulo n) having $n-1$ and $n-2$ monogenic subsemigroups.

1 Introduction and Preliminaries

Let G be a group and let $C(G)$ be the poset of cyclic subgroup of G. First, we recall the well-known result in group theory: A finite group G is an elementary Abelian 2-group if and only if $|C(G)|=|G|$. In 2015, Tărnăuceanu [3] described the finite groups G having $|G|-1$ cyclic subgroups. In 2019, Belshoff, Dillstrom and Reid [1] investigated the finite groups G having $|G|-$ r cyclic subgroups for $r=2,3,4$ and 5 . In this paper, we will focus on semigroups. Let S be a semigroup and let $C(S)$ be the poset of monogenic subsemigroup of S. For $a \in S$, the monogenic subsemigroup of S generated

Key words and phrases: Finite semigroups, monogenic subsemigroups, integers modulo n, primitive roots modulo n.
AMS (MOS) Subject Classifications: 20M10.
Corresponding author: Napaporn Sarasit (napaporn.sr@rmuti.ac.th).
ISSN 1814-0432, 2022, http://ijmcs.future-in-tech.net
by a is denoted by $\langle a\rangle$ and $\langle a\rangle=\left\{a^{n} \mid n \in \mathbb{N}\right\}$. Let $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ be the semigroup of integers modulo n (under multiplication modulo n) and $\mathbb{Z}_{n}^{\times}=\left\{x \in \mathbb{Z}_{n} \mid(x, n)=1\right\}$. It is a known fact that \mathbb{Z}_{n}^{\times}is a group (under multiplication modulo n). For any element a in a group $\mathbb{Z}_{n}^{\times}, \mathrm{o}(a)$ denotes the order of a; that is, the smallest positive integer k such that $a^{k}=1$. If $\mathrm{o}(a)=k$, then $\langle a\rangle=\left\{1, a, a^{2}, \ldots, a^{k-1}\right\}$. A generator of a group \mathbb{Z}_{n}^{\times}is called a primitive root modulo n. It is well-known that there is a primitive root modulo n if and only if $n=2,4, p^{k}$ or $2 p^{k}$, where p is a prime number. In [2], the semigroups \mathbb{Z}_{n} such that $\left|C\left(\mathbb{Z}_{n}\right)\right|=n$ were characterized as follows:

Theorem 1.1. ([2] $)\left|C\left(\mathbb{Z}_{n}\right)\right|=n$ if and only if $n=2,3,4,6,8,12,24$.
The purpose of this paper is to describe the semigroups \mathbb{Z}_{n} (under multiplication modulo n) having $n-1$ and $n-2$ monogenic subsemigroups. Now, we will recall some results from [2] which we will use in this paper.

Theorem 1.2. ([2]) $\left|C\left(\mathbb{Z}_{p}\right)\right|=p$ if and only if $p=2$ or $p=3$.
Theorem 1.3. ([2]) Let $S_{1}, S_{2}, \ldots, S_{n}$ be finite semigroups with zero. If $S=$ $S_{1} \times S_{2} \times \ldots \times S_{n}$, then $|C(S)|=|S|$ if and only if $\left|C\left(S_{i}\right)\right|=\left|S_{i}\right|$ for all $i \in\{1,2, \ldots, n\}$.
Theorem 1.4. ([2]) $\left|C\left(\mathbb{Z}_{2^{k}}\right)\right|=2^{k}$ for $k=1,2,3$.
Theorem 1.5. ([2]) $\left|C\left(\mathbb{Z}_{3^{k}}\right)\right|=3^{k}$ if and only if $k=1$.
Theorem 1.6. ([2]) $\left|C\left(\mathbb{Z}_{p^{k}}\right)\right|<p^{k}$ for all prime numbers $p>3$.

2 Main Results

First of all, let us find the number of monogenic subsemigroups of semigroups \mathbb{Z}_{n} for $n=5,7,9,10,11,14,15,16$.

Example 2.1. We find the number of monogenic subsemigroups of semigroups \mathbb{Z}_{n}, where $n=5,7,9,10,11,14,15,16$, as follows:

```
- \(n=5\)
    \(<0>=\{0\},<1>=\{1\},<2>=<3>=\{1,2,3,4\},<4>=\{1,4\}\).
    So \(C\left(\mathbb{Z}_{5}\right)=4\). In this case, \(C\left(\mathbb{Z}_{n}\right)=n-1\).
```

- $n=7$
$<0>=\{0\},<1>=\{1\},<2>=<4>=\{1,2,4\}$,
$<3>=<5>=\{1,2,3,4,5,6\},<6>=\{1,6\}$.
Thus $\left|C\left(\mathbb{Z}_{7}\right)\right|=5$. In this case, $\left|C\left(\mathbb{Z}_{n}\right)\right|=n-2$.
- $n=9$
$<0>=\{0\},<1>=\{1\},<2>=<5>=\{1,2,4,5,7,8\}$,
$<3>=\{0,3\},<4>=<7>=\{1,4,7\}$,
$<6>=\{0,6\},<8>=\{1,8\}$.
So $\left|C\left(\mathbb{Z}_{9}\right)\right|=7$. In this case, $\left|C\left(\mathbb{Z}_{n}\right)\right|=n-2$.
- $n=10$
$<0>=\{0\},<1>=\{1\},<2>=<8>=\{2,4,6,8\}$,
$<3>=<7>=\{1,3,7,9\},<4>=\{4,6\},<5>=\{5\}$,
$<6>=\{6\},<9>=\{1,9\}$.
Therefore $\left|C\left(\mathbb{Z}_{10}\right)\right|=8$. In this case, $\left|C\left(\mathbb{Z}_{n}\right)\right|=n-2$.
- $n=11$
$<0>=\{0\},<1>=\{1\}$,
$<2>=<6>=<7>=<8>=\{1,2,3,4,5,6,7,8,9,10\}$,
$<3>=<4>=<5>=<9>=\{1,3,4,5,9\},<10>=\{1,10\}$.
Therefore $\left|C\left(\mathbb{Z}_{11}\right)\right|=5$. In this case, $\left|C\left(\mathbb{Z}_{n}\right)\right|=n-6$.
- $n=14$
$<0>=\{0\},<1>=\{1\},<2>=<4>=\{2,4,8\}$,
$<3>=<5>=\{1,3,5,9,11,13\},<6>=\{6,8\},<7>=\{7\}$,
$<8>=\{8\},<9>=<11>=\{1,9,11\}$,
$<10>=<12>=\{2,4,6,8,10,12\},<13>=\{1,13\}$.
Therefore $\left|C\left(\mathbb{Z}_{14}\right)\right|=10$. In this case, $\left|C\left(\mathbb{Z}_{n}\right)\right|=n-4$.
- $n=15$
$<0>=\{0\},<1>=\{1\},<2>=<8>=\{1,2,4,8\}$,
$<3>=<12>=\{3,6,9,12\},<4>=\{1,4\},<5>=\{5,10\}$,
$<6>=\{6\},<7>=<13>=\{1,4,7,13\},<9>=\{6,9\}$,
$<10>=\{10\},<11>=\{1,11\},<14>=\{1,14\}$.
Therefore $\left|C\left(\mathbb{Z}_{15}\right)\right|=12$. In this case, $\left|C\left(\mathbb{Z}_{n}\right)\right|=n-3$.
- $n=16$
$<0>=\{0\},<1>=\{1\},<2>=\{0,2,4,8\}$,
$<3>=<11>=\{1,3,9,11\},<4>=\{0,4\}$,
$<5>=<13>=\{1,5,9,13\},<6>=\{0,4,6,8\}$,
$<7>=\{1,7\},<8>=\{0,8\},<9>=\{1,9\}$,
$<10>=\{0,4,8,10\},<12>=\{0,12\}$,
$<14>=\{0,4,8,14\},<15>=\{1,15\}$.
Therefore $\left|C\left(\mathbb{Z}_{16}\right)\right|=14$. In this case, $\left|C\left(\mathbb{Z}_{n}\right)\right|=n-2$.
Lemma 2.1. Let $a \in \mathbb{Z}_{n}^{\times}$. If $1 \in<a>$, then $1 \in$ for all $b \in<a>$.

Proof. Let k be the order of a. Then $a^{k}=1$. Let $b \in<a>$. So $b=a^{m}$ for some $m \in\{1,2, \ldots, k\}$. Thus $1=1^{m}=\left(a^{k}\right)^{m}=\left(a^{m}\right)^{k}=b^{k} \in$. This implies that $1 \in$.

Lemma 2.2. Let $a \in \mathbb{Z}_{n}^{\times}$and let $\left.b, c \in<a\right\rangle$. If $b c=1$, then $\langle b\rangle=<c>$.
Proof. Let $b, c \in<a>$. Assume that $b c=1$. Then $1 \in<a>$. By Lemma 2.1, $1 \in\langle c\rangle$. Let $b^{m} \in\langle b\rangle$ where $m \in\{1,2, \ldots, o(b)\}$ and let n be the order of c. We have $\left(b^{m}\right)\left(c^{m}\right)=(b c)^{m}=(1)^{m}=1=c^{n}$; that is, $b^{m}=c^{n-m}=$ $c^{t} \in<c>$ for some $t \in\{1,2, \ldots, o(c)\}$. Hence $\subseteq<c>$. In a similar way, $\langle c\rangle \subseteq<b\rangle$. Therefore, $\langle b\rangle=\langle c\rangle$.

The following corollary follows from Lemma 2.2.
Corollary 2.3. Let a be a primitive root modulo p of a group \mathbb{Z}_{p}^{\times}and let $b, c \in\langle a\rangle$. If $b c=1$, then $o(b)=o(c)$.

Theorem 2.4. Let p be a prime number. Then $\left|C\left(\mathbb{Z}_{p}\right)\right|=p-1$ if and only if $p=5$.

Proof. Assume that $\left|C\left(\mathbb{Z}_{p}\right)\right|=p-1$. Suppose that $p \neq 5$. If $p \leq 3$, then $\left|C\left(\mathbb{Z}_{p}\right)\right|=p$ by Theorem 1.2, a contradiction. If $p \geq 7$, then there is a primitive root modulo p, say a. Thus $<a>=\left\{1, a, a^{2}, \ldots, a^{p-2}\right\}=\mathbb{Z}_{p}^{\times}$; that is, $a^{p-1}=1$ and $a^{i} \neq a^{j}$ for all $i, j \in\{1,2, p-3, p-2\}$. We know that $(a)\left(a^{p-2}\right)=a^{p-1}=1$ and $\left(a^{2}\right)\left(a^{p-3}\right)=a^{p-1}=1$. By Lemma 2.2, we have $<a>=<a^{p-2}>$ and $<a^{2}>=<a^{p-3}>$. Hence $\left|C\left(\mathbb{Z}_{p}\right)\right|<p-1$, a contradiction. This implies that $p=5$. The converse was already proved in Example 2.1.

Theorem 2.5. Let p be a prime number. Then $\left|C\left(\mathbb{Z}_{2 p}\right)\right|=2 p-2$ if and only if $p=5$.

Proof. By Example 2.1, the converse is clear. Assume that $\left|C\left(\mathbb{Z}_{2 p}\right)\right|=2 p-2$. Suppose that $p \neq 5$. If $p \leq 3$, then, by Theorem 1.1, $\left|C\left(\mathbb{Z}_{2 p}\right)\right|=2 p$, a contradiction. If $p=7$, then by Example 2.1, which is a contradiction. If $p \geq 11$, then, by Euler phi function, $\phi(2 p)=\phi(2) \phi(p)=(1)(p-1)=p-1$. So $\left|\mathbb{Z}_{2 p}^{\times}\right|=p-1 \geq 10$. Then there is a primitive root of modulo $2 p$, say a. So $\langle a\rangle=\left\{1, a, a^{2}, \ldots, a^{\phi(2 p)-1}\right\}$ and $a^{i} \neq a^{\phi(2 p)-i}$ for all $i \in\{1,2,3\}$. Since $\left(a^{i}\right)\left(a^{\phi(2 p)-i}\right)=a^{\phi(2 p)}=1$, by Lemma 2.2 we have, $<a^{i}>=<a^{\phi(2 p)-i}>$ for all $i \in\{1,2,3\}$. Thus $\left|C\left(\mathbb{Z}_{2 p}\right)\right| \leq 2 p-3$ which is a contradiction. Therefore $p=5$.

Theorem 2.6. Let p be a prime number. Then $\left|C\left(\mathbb{Z}_{p}\right)\right|=p-2$ if and only if $p=7$.

Proof. By Example 2.1, the converse is clear. Assume that $\left|C\left(\mathbb{Z}_{p}\right)\right|=p-2$. Suppose that $p \neq 7$. If $p \leq 5$, then by Theorems 1.1 and $2.4,\left|C\left(\mathbb{Z}_{p}\right)\right| \neq$ $p-2$, which is a contradiction. If $p \geq 11$, then there is a primitive root of modulo p, say a. So $<a>=\left\{1, a, a^{2}, a^{3}, \ldots, a^{\phi(p)-1}\right\}$ and $a^{i} \neq a^{\phi(p)-i}$ for all $i \in\{1,2,3\}$. Since $\left(a^{i}\right)\left(a^{\phi(p)-i}\right)=a^{\phi(p)}=1$, by Lemma 2.2 we have, $<a^{i}>=<a^{\phi(p)-i}>$. Thus $\left|C\left(\mathbb{Z}_{2 p}\right)\right| \leq p-3$, which is a contradiction. Hence $p=7$.
Theorem 2.7. $\left|C\left(\mathbb{Z}_{p}\right)\right| \leq p-\frac{p-3}{2}$ for all prime numbers $p \geq 5$.
Proof. Let p be a prime number such that $p \geq 5$. Then $\phi(p)=p-1$ and there exists a primitive root modulo p, say a. Thus, for all $i \in\left\{1,2, \ldots, \frac{p-3}{2}\right\}$, $a^{i} \neq a^{(p-1)-i}$ and $<a^{i}>=<a^{(p-1)-i}>$. So $\left|C\left(\mathbb{Z}_{p}\right)\right| \leq p-\frac{p-3}{2}$.
Theorem 2.8. $\left|C\left(\mathbb{Z}_{2^{k}}\right)\right| \leq 2^{k}-3$ for all integers $k \geq 5$.
Proof. Assume $k \geq 5$. Then $\phi\left(2^{k}\right)=2^{k-1} \geq 16$. Let $a \in\{3,5,7\} \subset \mathbb{Z}_{2^{k}}^{\times}$. So $o(a) \mid 2^{k-1}$ and $a^{2} \neq 1$, which implies $4 \leq o(a) \leq 2^{k-1}$. By Euler's theorem, $a^{\phi\left(2^{k}\right)} \equiv 1\left(\bmod 2^{k}\right)$; that is, $a^{2^{k-1}}=1$. This implies that $(a)\left(a^{\left(2^{k-1}\right)-1}\right)=$ $1 \in\langle a\rangle$. By Lemma 2.2, $<a>=<a^{\left(2^{k-1}\right)-1}>$ and $a \neq a^{\left(2^{k-1}\right)-1}$. Thus $\left|C\left(\mathbb{Z}_{2^{k}}\right)\right| \leq 2^{k}-3$.
Theorem 2.9. $\left|C\left(\mathbb{Z}_{p^{k}}\right)\right| \leq p^{k}-\frac{p^{k-1}(p-1)-2}{2}$ for all prime numbers $p \geq 3$ and integers $k \geq 2$.
Proof. Let k be an integer such that $k \geq 2$. Since there is a primitive root modulo p^{k}, say a, and $o(a) \geq 6$, we have $\mathbb{Z}_{p^{k}}^{\times}=<a>=\left\{1, a, a^{2}, \ldots, a^{\phi\left(p^{k}\right)-1}\right\}$ and $a^{i} \neq a^{j}$ for all $i, j \in\left\{1,2, \ldots, \phi\left(p^{k}\right)-1\right\}$. Thus $\left(a^{i}\right)\left(a^{\phi\left(p^{k}\right)-i}\right)=1$, by Lemma 2.2, $<a^{i}>=<a^{\phi\left(p^{k}\right)-i}>$ for all $i \in\left\{1,2, \ldots, \frac{\phi\left(p^{k}\right)-2}{2}\right\}$. Therefore $\left|C\left(\mathbb{Z}_{p^{k}}\right)\right| \leq p^{k}-\frac{\phi\left(p^{k}\right)-2}{2}=p^{k}-\frac{p^{k-1}(p-1)-2}{2}$.
Lemma 2.10. Let $S_{1}, S_{2}, \ldots, S_{n}$ be finite semigroups with zero 0 and identity 1 and assume that $S=S_{1} \times S_{2} \times \ldots \times S_{n}$. If $\left|C\left(S_{i}\right)\right|<\left|S_{i}\right|$ for some $i \in\{1,2, \ldots, n\}$, then $|C(S)| \leq|S|-2$.
Proof. Assume $\left|C\left(S_{i}\right)\right|<\left|S_{i}\right|$ for some $i \in\{1,2, \ldots, n\}$. Then there exist $a, b \in S_{i}$ such that $a \neq b$ and $\langle a\rangle=$. So there are four distinct elements $a^{\prime}=\left(a_{1}, a_{2}, \ldots, a_{n}\right), b^{\prime}=\left(b_{1}, b_{2}, \ldots, b_{n}\right), c^{\prime}=\left(c_{1}, c_{2}, \ldots, c_{n}\right), d^{\prime}=$ $\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in S$ such that $a_{i}=a, a_{j}=0$ if $i \neq j, b_{i}=b, b_{j}=0$ if $i \neq j$, $c_{i}=a, c_{j}=1$ if $i \neq j$ and $d_{i}=b, d_{j}=1$ if $i \neq j$. This implies that $a^{\prime} \neq b^{\prime}$, $<a^{\prime}>=<b^{\prime}>$ and $c^{\prime} \neq d^{\prime},<c^{\prime}>=<d^{\prime}>$. Thus $|C(S)| \leq|S|-2$.

Lemma 2.11. Let $S_{1}, S_{2}, \ldots, S_{n}$ be finite semigroups with zero 0 and identity 1 and assume that $S=S_{1} \times S_{2} \times \ldots \times S_{n}$. If $\left|C\left(S_{i}\right)\right|<\left|S_{i}\right|-1$ for some $i \in\{1,2, \ldots, n\}$, then $|C(S)| \leq|S|-4$.

Proof. Assume $\left|C\left(S_{i}\right)\right|<\left|S_{i}\right|-1$ for some $i \in\{1,2, \ldots, n\}$. Then there exist 3 distinct elements $a, b, c \in S_{i}$ such that and $\langle a\rangle=\langle b\rangle=\langle c\rangle$ or $<a>=,<c>=<d>$ for some $d \in S_{i}$. Let $x \in S_{i}$ and let $x^{\prime}=\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right), x^{\prime \prime}=\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, \ldots, a_{n}^{\prime \prime}\right) \in S$ be such that $a_{i}^{\prime}=x, a_{j}^{\prime}=0$ and $a_{i}^{\prime \prime}=x, a_{j}^{\prime \prime}=1$ for all $j \neq i$. By assumption there exist $a^{\prime}, b^{\prime}, c^{\prime}, a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime} \in S$ such that $<a^{\prime}>=<b^{\prime}>=<c^{\prime}>$ or $<a^{\prime}>=<b^{\prime}>,<c^{\prime}>=<d^{\prime}>$ and $<a^{\prime \prime}>=<b^{\prime \prime}>=<c^{\prime \prime}>$ or $<a^{\prime \prime}>=<b^{\prime \prime}>,<c^{\prime \prime}>=<d^{\prime \prime}>$ for some $d^{\prime}, d^{\prime \prime} \in S$. Thus $|C(S)| \leq|S|-4$.

From all the previous theorems, the next theorems hold.
Theorem 2.12. $\left|C\left(\mathbb{Z}_{n}\right)\right|=n-1$ if and only if $n=5$.
Proof. Assume that $\left|C\left(\mathbb{Z}_{n}\right)\right|=n-1$. Suppose that $n \neq 5$. If $n<5$, then by Example 2.1 in [2], $\left|C\left(\mathbb{Z}_{n}\right)\right|=n$, a contradiction. If $n>5$ and n is a prime number, by Theorem 2.4, $\left|C\left(\mathbb{Z}_{n}\right)\right| \neq n-1$, which is a contradiction. If $n>5$ and n is not a prime number, we let $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ where $p_{1}, p_{2}, \ldots, p_{m}$ are distinct primes and $k_{i}>0$. By Theorems 1.5, 1.6 and Lemma 2.10, this is only possible if $n=2^{k} 3, k=1,2,3$. This implies that $\left|C\left(\mathbb{Z}_{n}\right)\right|=n$ by Theorems 1.3, 1.4 and 1.5, a contradiction. Thus $n=5$. The converse is clear by Theorem 2.4.

Theorem 2.13. $\left|C\left(\mathbb{Z}_{n}\right)\right|=n-2$ if and only if $n=7,9,10,16$.
Proof. Assume that $\left|C\left(\mathbb{Z}_{n}\right)\right|=n-2$. By Example 2.1 and Theorems 1.1, 1.4 and 2.8 , this is only possible if $n=7,9,10,16$ or $n>16$. If $n>16$ and n is a prime number, then, by Lemma 2.4, $\left|C\left(\mathbb{Z}_{n}\right)\right| \leq n-\frac{n-3}{2}$, this implies that $\left|C\left(\mathbb{Z}_{n}\right)\right| \leq n-7<n-2$. This is a contradiction. Suppose that $n>16$ and n is not prime. Then $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ for distinct primes $p_{1}, p_{2}, \ldots, p_{m}$ and $k_{i}>0$. So $\mathbb{Z}_{n} \cong \mathbb{Z}_{p_{1}^{k_{1}}} \times \mathbb{Z}_{p_{2}^{k_{2}}} \times \ldots \times \mathbb{Z}_{p_{m}^{k_{m}}}$. Consider the case of $p_{i} \geq 3, k_{i} \geq 2$ or $p_{i}>5, k_{i}=1$ for some $i \in\{1,2, \ldots, m\}$. Then by Theorems 2.7 and 2.9, $\left|C\left(\mathbb{Z}_{p_{i}^{k_{i}}}\right)\right|<p_{i}^{k_{i}}-1$. Thus, by Lemma 2.11, $\left|C\left(\mathbb{Z}_{n}\right)\right|<n-2$, a contradiction. This implies that it is only possible if (i) $n=\left(2^{k}\right)(3)(5)$ for all $k>0$, (ii) $n=\left(2^{k}\right)(3)$ for all $k>3$ by Theorem 1.1, (iii) $n=2^{k}$ for all $k>4$. Consider the case of (i) $n=\left(2^{k}\right)(3)(5)$ for all $k>0$. It is clear that there exist $(0,0,2),(0,0,3),(0,1,2),(0,1,3),(1,0,2),(1,0,3) \in \mathbb{Z}_{2^{k}} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$ such that $<(0,0,2)>=<(0,0,3)>,<(0,1,2)>=<(0,1,3)>$ and

On semigroups \mathbb{Z}_{n} having $n-1$ and $n-2$ monogenic subsemigroups
$<(1,0,2)>=<(1,0,3)>$. This means that $\left|C\left(\mathbb{Z}_{n}\right)\right| \leq n-3<n-2$, a contradiction. Finally, consider the cases of (ii) $n=\left(2^{k}\right)(3)$ for all $k>3$ and (iii) $n=2^{k}$ for all $k>4$. By Theorem 2.8, Lemma 2.11 and $\left|C\left(\mathbb{Z}_{16}\right)\right|=14$, we have $\left|C\left(\mathbb{Z}_{n}\right)\right|<n-2$. This is a contradiction. Therefore $n=7,9,10,16$. The converse is clear by Example 2.1.

Acknowledgments: This paper was supported by the Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kean Campus, Thailand.

References

[1] R. Belshoff, J. Dillstrom, L. Reid, Finite groups with a prescribed number of cyclic subgroups, Commun. Algebra, 47, no. 3, (2019), 1043-1056.
[2] S. Pankaew, A. Rattana, R. Chinram, On the number of monogenic subsemigroups of semigroups \mathbb{Z}_{n}, Int. J. Math. Comput. Sci., 14, no. 3, (2019), 557-561.
[3] M. Tărnăuceanu, Finite group with a certain number of cyclic subgroups, Amer. Math. Monthly, 122, (2015), 275-276.

