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Abstract

In this paper, we describe the semigroups Zn (under multiplication
modulo n) having n− 1 and n− 2 monogenic subsemigroups.

1 Introduction and Preliminaries

Let G be a group and let C(G) be the poset of cyclic subgroup of G. First,
we recall the well-known result in group theory: A finite group G is an
elementary Abelian 2-group if and only if |C(G)| = |G|. In 2015, Tărnăuceanu
[3] described the finite groups G having |G| − 1 cyclic subgroups. In 2019,
Belshoff, Dillstrom and Reid [1] investigated the finite groups G having |G|−
r cyclic subgroups for r = 2, 3, 4 and 5. In this paper, we will focus on
semigroups. Let S be a semigroup and let C(S) be the poset of monogenic
subsemigroup of S. For a ∈ S, the monogenic subsemigroup of S generated
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by a is denoted by 〈a〉 and 〈a〉 = {an | n ∈ N}. Let Zn = {0, 1, . . . , n − 1}
be the semigroup of integers modulo n (under multiplication modulo n) and
Z
×

n = {x ∈ Zn | (x, n) = 1}. It is a known fact that Z
×

n is a group (under
multiplication modulo n). For any element a in a group Z

×

n , o(a) denotes
the order of a; that is, the smallest positive integer k such that ak = 1. If
o(a) = k, then 〈a〉 = {1, a, a2, . . . , ak−1}. A generator of a group Z

×

n is called
a primitive root modulo n. It is well-known that there is a primitive root
modulo n if and only if n = 2, 4, pk or 2pk, where p is a prime number. In
[2], the semigroups Zn such that |C(Zn)| = n were characterized as follows:

Theorem 1.1. ([2]) |C(Zn)| = n if and only if n = 2, 3, 4, 6, 8, 12, 24.

The purpose of this paper is to describe the semigroups Zn (under multi-
plication modulo n) having n−1 and n−2 monogenic subsemigroups. Now,
we will recall some results from [2] which we will use in this paper.

Theorem 1.2. ([2]) |C(Zp)| = p if and only if p = 2 or p = 3.

Theorem 1.3. ([2]) Let S1, S2, . . . , Sn be finite semigroups with zero. If S =
S1 × S2 × . . . × Sn, then |C(S)| = |S| if and only if |C(Si)| = |Si| for all

i ∈ {1, 2, . . . , n}.

Theorem 1.4. ([2]) |C(Z2k)| = 2k for k = 1, 2, 3.

Theorem 1.5. ([2]) |C(Z3k)| = 3k if and only if k = 1.

Theorem 1.6. ([2]) |C(Zpk)| < pk for all prime numbers p > 3.

2 Main Results

First of all, let us find the number of monogenic subsemigroups of semigroups
Zn for n = 5, 7, 9, 10, 11, 14, 15, 16.

Example 2.1. We find the number of monogenic subsemigroups of semi-
groups Zn, where n = 5, 7, 9, 10, 11, 14, 15, 16, as follows:

• n = 5
< 0 >= {0}, < 1 >= {1}, < 2 >=< 3 >= {1, 2, 3, 4}, < 4 >= {1, 4}.
So C(Z5) = 4. In this case, C(Zn) = n− 1.

• n = 7
< 0 >= {0}, < 1 >= {1}, < 2 >=< 4 >= {1, 2, 4},
< 3 >=< 5 >= {1, 2, 3, 4, 5, 6}, < 6 >= {1, 6}.
Thus |C(Z7)| = 5. In this case, |C(Zn)| = n− 2.
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• n = 9
< 0 >= {0}, < 1 >= {1}, < 2 >=< 5 >= {1, 2, 4, 5, 7, 8},
< 3 >= {0, 3}, < 4 >=< 7 >= {1, 4, 7},
< 6 >= {0, 6}, < 8 >= {1, 8}.
So |C(Z9)| = 7. In this case, |C(Zn)| = n− 2.

• n = 10
< 0 >= {0}, < 1 >= {1}, < 2 >=< 8 >= {2, 4, 6, 8},
< 3 >=< 7 >= {1, 3, 7, 9}, < 4 >= {4, 6}, < 5 >= {5},
< 6 >= {6}, < 9 >= {1, 9}.
Therefore |C(Z10)| = 8. In this case, |C(Zn)| = n− 2.

• n = 11
< 0 >= {0}, < 1 >= {1},
< 2 >=< 6 >=< 7 >=< 8 >= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
< 3 >=< 4 >=< 5 >=< 9 >= {1, 3, 4, 5, 9}, < 10 >= {1, 10}.
Therefore |C(Z11)| = 5. In this case, |C(Zn)| = n− 6.

• n = 14
< 0 >= {0}, < 1 >= {1}, < 2 >=< 4 >= {2, 4, 8},
< 3 >=< 5 >= {1, 3, 5, 9, 11, 13}, < 6 >= {6, 8}, < 7 >= {7},
< 8 >= {8}, < 9 >=< 11 >= {1, 9, 11},
< 10 >=< 12 >= {2, 4, 6, 8, 10, 12}, < 13 >= {1, 13}.
Therefore |C(Z14)| = 10. In this case, |C(Zn)| = n− 4.

• n = 15
< 0 >= {0}, < 1 >= {1}, < 2 >=< 8 >= {1, 2, 4, 8},
< 3 >=< 12 >= {3, 6, 9, 12}, < 4 >= {1, 4}, < 5 >= {5, 10},
< 6 >= {6}, < 7 >=< 13 >= {1, 4, 7, 13}, < 9 >= {6, 9},
< 10 >= {10}, < 11 >= {1, 11}, < 14 >= {1, 14}.
Therefore |C(Z15)| = 12. In this case, |C(Zn)| = n− 3.

• n = 16
< 0 >= {0}, < 1 >= {1}, < 2 >= {0, 2, 4, 8},
< 3 >=< 11 >= {1, 3, 9, 11}, < 4 >= {0, 4},
< 5 >=< 13 >= {1, 5, 9, 13}, < 6 >= {0, 4, 6, 8},
< 7 >= {1, 7}, < 8 >= {0, 8}, < 9 >= {1, 9},
< 10 >= {0, 4, 8, 10}, < 12 >= {0, 12},
< 14 >= {0, 4, 8, 14}, < 15 >= {1, 15}.
Therefore |C(Z16)| = 14. In this case, |C(Zn)| = n− 2.

Lemma 2.1. Let a ∈ Z
×

n . If 1 ∈< a >, then 1 ∈< b > for all b ∈< a >.
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Proof. Let k be the order of a. Then ak = 1. Let b ∈< a >. So b = am for
some m ∈ {1, 2, . . . , k}. Thus 1 = 1m = (ak)m = (am)k = bk ∈< b >. This
implies that 1 ∈< b >.

Lemma 2.2. Let a ∈ Z
×

n and let b, c ∈< a >. If bc = 1, then < b >=< c >.

Proof. Let b, c ∈< a >. Assume that bc = 1. Then 1 ∈< a >. By Lemma
2.1, 1 ∈< c >. Let bm ∈< b > where m ∈ {1, 2, ..., o(b)} and let n be the
order of c. We have (bm)(cm) = (bc)m = (1)m = 1 = cn; that is, bm = cn−m =
ct ∈< c > for some t ∈ {1, 2, . . . , o(c)}. Hence < b >⊆< c >. In a similar
way, < c >⊆< b >. Therefore, < b >=< c >.

The following corollary follows from Lemma 2.2.

Corollary 2.3. Let a be a primitive root modulo p of a group Z
×

p and let

b, c ∈< a >. If bc = 1, then o(b) = o(c).

Theorem 2.4. Let p be a prime number. Then |C(Zp)| = p− 1 if and only

if p = 5.

Proof. Assume that |C(Zp)| = p − 1. Suppose that p 6= 5. If p ≤ 3, then
|C(Zp)| = p by Theorem 1.2, a contradiction. If p ≥ 7, then there is a
primitive root modulo p, say a. Thus < a >= {1, a, a2, . . . , ap−2} = Z

×

p ;
that is, ap−1 = 1 and ai 6= aj for all i, j ∈ {1, 2, p − 3, p − 2}. We know
that (a)(ap−2) = ap−1 = 1 and (a2)(ap−3) = ap−1 = 1. By Lemma 2.2, we
have < a >=< ap−2 > and < a2 >=< ap−3 >. Hence |C(Zp)| < p − 1, a
contradiction. This implies that p = 5. The converse was already proved in
Example 2.1.

Theorem 2.5. Let p be a prime number. Then |C(Z2p)| = 2p − 2 if and

only if p = 5.

Proof. By Example 2.1, the converse is clear. Assume that |C(Z2p)| = 2p−2.
Suppose that p 6= 5. If p ≤ 3, then, by Theorem 1.1, |C(Z2p)| = 2p, a
contradiction. If p = 7, then by Example 2.1, which is a contradiction. If
p ≥ 11, then, by Euler phi function, φ(2p) = φ(2)φ(p) = (1)(p− 1) = p− 1.
So |Z×

2p| = p − 1 ≥ 10. Then there is a primitive root of modulo 2p, say a.

So < a >= {1, a, a2, ..., aφ(2p)−1} and ai 6= aφ(2p)−i for all i ∈ {1, 2, 3}. Since
(ai)(aφ(2p)−i) = aφ(2p) = 1, by Lemma 2.2 we have, < ai >=< aφ(2p)−i > for
all i ∈ {1, 2, 3}. Thus |C(Z2p)| ≤ 2p− 3 which is a contradiction. Therefore
p = 5.
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Theorem 2.6. Let p be a prime number. Then |C(Zp)| = p− 2 if and only

if p = 7.

Proof. By Example 2.1, the converse is clear. Assume that |C(Zp)| = p− 2.
Suppose that p 6= 7. If p ≤ 5, then by Theorems 1.1 and 2.4, |C(Zp)| 6=
p − 2, which is a contradiction. If p ≥ 11, then there is a primitive root
of modulo p, say a. So < a >= {1, a, a2, a3, . . . , aφ(p)−1} and ai 6= aφ(p)−i

for all i ∈ {1, 2, 3}. Since (ai)(aφ(p)−i) = aφ(p) = 1, by Lemma 2.2 we have,
< ai >=< aφ(p)−i >. Thus |C(Z2p)| ≤ p− 3, which is a contradiction. Hence
p = 7.

Theorem 2.7. |C(Zp)| ≤ p− p−3
2

for all prime numbers p ≥ 5.

Proof. Let p be a prime number such that p ≥ 5. Then φ(p) = p − 1 and
there exists a primitive root modulo p, say a. Thus, for all i ∈ {1, 2, . . . , p−3

2
},

ai 6= a(p−1)−i and < ai >=< a(p−1)−i >. So |C(Zp)| ≤ p− p−3
2
.

Theorem 2.8. |C(Z2k)| ≤ 2k − 3 for all integers k ≥ 5.

Proof. Assume k ≥ 5. Then φ(2k) = 2k−1 ≥ 16. Let a ∈ {3, 5, 7} ⊂ Z
×

2k
. So

o(a)|2k−1 and a2 6= 1, which implies 4 ≤ o(a) ≤ 2k−1. By Euler’s theorem,
aφ(2

k) ≡ 1 (mod 2k); that is, a2
k−1

= 1. This implies that (a)(a(2
k−1)−1) =

1 ∈< a >. By Lemma 2.2, < a >=< a(2
k−1)−1 > and a 6= a(2

k−1)−1. Thus
|C(Z2k)| ≤ 2k − 3.

Theorem 2.9. |C(Zpk)| ≤ pk − pk−1(p−1)−2
2

for all prime numbers p ≥ 3 and

integers k ≥ 2.

Proof. Let k be an integer such that k ≥ 2. Since there is a primitive root
modulo pk, say a, and o(a) ≥ 6, we have Z

×

pk
=< a >= {1, a, a2, ..., aφ(p

k)−1}

and ai 6= aj for all i, j ∈ {1, 2, . . . , φ(pk) − 1}. Thus (ai)(aφ(p
k)−i) = 1, by

Lemma 2.2, < ai >=< aφ(p
k)−i > for all i ∈ {1, 2, . . . , φ(p

k)−2
2

}. Therefore

|C(Zpk)| ≤ pk − φ(pk)−2
2

= pk − pk−1(p−1)−2
2

.

Lemma 2.10. Let S1, S2, . . . , Sn be finite semigroups with zero 0 and iden-

tity 1 and assume that S = S1 × S2 × . . . × Sn. If |C(Si)| < |Si| for some

i ∈ {1, 2, . . . , n}, then |C(S)| ≤ |S| − 2.

Proof. Assume |C(Si)| < |Si| for some i ∈ {1, 2, . . . , n}. Then there exist
a, b ∈ Si such that a 6= b and < a >=< b >. So there are four distinct
elements a′ = (a1, a2, . . . , an), b

′ = (b1, b2, . . . , bn), c
′ = (c1, c2, . . . , cn), d

′ =
(d1, d2, . . . , dn) ∈ S such that ai = a, aj = 0 if i 6= j, bi = b, bj = 0 if i 6= j,
ci = a, cj = 1 if i 6= j and di = b, dj = 1 if i 6= j. This implies that a′ 6= b′,
< a′ >=< b′ > and c′ 6= d′, < c′ >=< d′ >. Thus |C(S)| ≤ |S| − 2.
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Lemma 2.11. Let S1, S2, . . . , Sn be finite semigroups with zero 0 and iden-

tity 1 and assume that S = S1×S2 × . . .×Sn. If |C(Si)| < |Si| − 1 for some

i ∈ {1, 2, . . . , n}, then |C(S)| ≤ |S| − 4.

Proof. Assume |C(Si)| < |Si| − 1 for some i ∈ {1, 2, . . . , n}. Then there
exist 3 distinct elements a, b, c ∈ Si such that and < a >=< b >=< c >

or < a >=< b >,< c >=< d > for some d ∈ Si. Let x ∈ Si and let
x′ = (a′1, a

′

2, . . . , a
′

n), x
′′ = (a′′1, a

′′

2, . . . , a
′′

n) ∈ S be such that a′i = x, a′j = 0 and
a′′i = x, a′′j = 1 for all j 6= i. By assumption there exist a′, b′, c′, a′′, b′′, c′′ ∈ S

such that < a′ >=< b′ >=< c′ > or < a′ >=< b′ >,< c′ >=< d′ > and
< a′′ >=< b′′ >=< c′′ > or < a′′ >=< b′′ >,< c′′ >=< d′′ > for some
d′, d′′ ∈ S. Thus |C(S)| ≤ |S| − 4.

From all the previous theorems, the next theorems hold.

Theorem 2.12. |C(Zn)| = n− 1 if and only if n = 5.

Proof. Assume that |C(Zn)| = n− 1. Suppose that n 6= 5. If n < 5, then by
Example 2.1 in [2], |C(Zn)| = n, a contradiction. If n > 5 and n is a prime
number, by Theorem 2.4, |C(Zn)| 6= n−1, which is a contradiction. If n > 5
and n is not a prime number, we let n = pk11 pk22 . . . pkmm where p1, p2, . . . , pm
are distinct primes and ki > 0. By Theorems 1.5, 1.6 and Lemma 2.10, this
is only possible if n = 2k3, k = 1, 2, 3. This implies that |C(Zn)| = n by
Theorems 1.3, 1.4 and 1.5, a contradiction. Thus n = 5. The converse is
clear by Theorem 2.4.

Theorem 2.13. |C(Zn)| = n− 2 if and only if n = 7, 9, 10, 16.

Proof. Assume that |C(Zn)| = n−2. By Example 2.1 and Theorems 1.1, 1.4
and 2.8, this is only possible if n = 7, 9, 10, 16 or n > 16. If n > 16 and n is
a prime number, then, by Lemma 2.4, |C(Zn)| ≤ n − n−3

2
, this implies that

|C(Zn)| ≤ n− 7 < n− 2. This is a contradiction. Suppose that n > 16 and
n is not prime. Then n = pk11 pk22 . . . pkmm for distinct primes p1, p2, . . . , pm and
ki > 0. So Zn

∼= Z
p
k1

1

×Z
p
k2

2

× . . .×Z
p
km
m
. Consider the case of pi ≥ 3, ki ≥ 2

or pi > 5, ki = 1 for some i ∈ {1, 2, . . . , m}. Then by Theorems 2.7 and 2.9,
|C(Z

p
ki

i

)| < pkii − 1. Thus, by Lemma 2.11, |C(Zn)| < n− 2, a contradiction.

This implies that it is only possible if (i) n = (2k)(3)(5) for all k > 0, (ii)
n = (2k)(3) for all k > 3 by Theorem 1.1, (iii) n = 2k for all k > 4. Consider
the case of (i) n = (2k)(3)(5) for all k > 0. It is clear that there exist
(0, 0, 2), (0, 0, 3), (0, 1, 2), (0, 1, 3), (1, 0, 2), (1, 0, 3) ∈ Z2k × Z3 × Z5 such that
< (0, 0, 2) >=< (0, 0, 3) >,< (0, 1, 2) >=< (0, 1, 3) > and
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< (1, 0, 2) >=< (1, 0, 3) >. This means that |C(Zn)| ≤ n − 3 < n − 2, a
contradiction. Finally, consider the cases of (ii) n = (2k)(3) for all k > 3 and
(iii) n = 2k for all k > 4. By Theorem 2.8, Lemma 2.11 and |C(Z16)| = 14,
we have |C(Zn)| < n− 2. This is a contradiction. Therefore n = 7, 9, 10, 16.
The converse is clear by Example 2.1.
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