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Abstract

In this paper, we define bipolar fuzzy almost bi-ideal in semigroups.

We study the basic properties of bipolar fuzzy almost bi-ideal in semi-

groups.

1 Introduction

Fuzzy sets, introduced by Zadeh in 1965 [8], are a kind of useful mathematical
structure to represent a collection of objects whose boundary is vague. In
1994, Zhang [9] extended the concept of a fuzzy set to a bipolar fuzzy set
whose membership degree range is [−1, 0]∪ [0, 1]. In a bipolar fuzzy set, the
membership degree 0 of an element means that the element is irrelevant to
the corresponding property and the membership degree [0, 1] of an element
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indicates that the element somehow satisfies that property. These ideas are
still central concepts in ring theory and the notion of a one-sided ideal of
any algebraic structure is a generalization of the notion of an ideal. In 1980,
Grosek and Satko [1] studied the almost ideal theory in semigroups. In
1981, Bogdanvic [2] defined almost bi-ideals in semigroups and studied their
properties in semigroups. Later, Chinram [7] defined types of alomst ideals
in semigroups such as almost quasi-ideal, almost i-ideal, (m,n)-almost ideal.
In 2018, Krishna and Rao [5] defined the bi-interior ideal in semigroups .

In this paper, we define the bipolar fuzzy almost bi-ideal and bipolar
fuzzy almost qausi-ideal in semigroups and investigate their basic properties.

2 Preliminaries

In this section, we give some concepts and results which will be helpful in
this paper. A subsemigroup of a semigroup E is a non-empty set K of E
such that KK ⊆ K. A left (right) ideal of a semigroup E is a non-empty
set K of E such that EK ⊆ K (KE ⊆ K). By an ideal of a semigroup E,
we mean a non-empty set of E which is both a left and a right ideal of E.
A subsemigroup K of a semigroup E is called a bi-ideal of S if KEK ⊆ K.
An almost ideal K of a semigroup E if tK ∩K 6= ∅ and Kp ∩K 6= ∅ for all
t, p ∈ E. An almost bi-ideal K of a semigroup E if KrK ∩ K 6= ∅ for all
r ∈ E [2].

For any hi ∈ [0, 1], i ∈ F , define

∨
i∈F

hi := sup
i∈F

{hi} and ∧
i∈F

hi := inf
i∈F

{hi}.

For any h, r ∈ [0, 1], we have

h ∨ r = max{h, r} and h ∧ r = min{h, r}.

A fuzzy subset of a non-empty set E is a function ϑ : E → [0, 1].
For any fuzzy sets ϑ and ξ of a non-empty set E, we give the following

definitions and notations:

(1) for all h ∈ E, ϑ ≥ ξ ⇔ ϑ(h) ≥ ξ(h),

(2) ϑ = ξ ⇔ ϑ ≥ ξ and ξ ≥ ϑ,

(3) (ϑ∧ξ)(h) = min{ϑ(h), ξ(h)} = ϑ(h)∧ξ(h) and (ϑ∨ξ)(h) = max{ϑ(h), ξ(h)} =
ϑ(h) ∨ ξ(h) for all h ∈ E,
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(4) ϑ ⊆ ξ if ϑ(h) ≤ ξ(h),

(5) for all h ∈ E(ϑ∪ξ)(h) = max{ϑ(h), ξ(h)} and (ϑ∩ξ)(h) = min{ϑ(h), ξ(h)},

(6) the support of ϑ is supp(ϑ) = {h ∈ E | ϑ(h) 6= 0}.

Definition 2.1. [6] A bipolar fuzzy set (BF set) ϑ on a non-empty set E
is an object having the form

ϑ := {(h, ϑp(h), ϑn(h)) | h ∈ E},

where ϑp : E → [0, 1] and ϑn : E → [−1, 0].

Remark 2.2. For simplicity, we use the symbol ϑ = (E;ϑp, ϑn) for the BF
set ϑ = {(h, ϑp(h), ϑn(h)) | h ∈ E}.

The following is an example of a BF set:

Example 2.3. Let E = {41, 42, 43...}. Define ϑp : S → [0, 1] as

ϑp(u) =

{

0 if h is old number

1 if h is even number

and ϑn : S → [−1, 0] as

ϑn(u) =

{

−1 if h is old number

0 if h is even number.

Then ϑ = (E;ϑp, ϑn) is a BF set.

For h ∈ E, define Fh = {(h1, h2) ∈ E × E | h = h1h2}.
Define products ϑp ◦ ξp and ϑn ◦ ξn as follows:

For h ∈ E

(ϑp ◦ ξp)(h) =







∨

(h1,h2)∈Fh

{ϑp(h1) ∧ ξp(h2)} if h = h1h2

0 otherwise.

and

(ϑn ◦ ξn)(h) =







∧

(h1,h2)∈Fh

{ϑn(h1) ∨ ξn(h2)} if h = h1h2

0 otherwise.
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Definition 2.4. [6] LetK be a non-empty set of a semigroup E. A positive
characteristic function and a negative characteristic function are
defined by

λp
K : E → [0, 1], h 7→ λp

K(h) :=

{

1 h ∈ K,
0 h /∈ K,

and

λn
K : E → [−1, 0], h 7→ λn

K(h) :=

{

−1 h ∈ K,
0 h /∈ K.

respectively.

Remark 2.5. For simplicity, we use the symbol λK = (E;λp
K , λ

n
K) for the

BF set λK := {(h, λp

K(h), λ
n
K(h)) | h ∈ K}.

For h ∈ E and (t, s) ∈ [0, 1]× [−1, 0], a BF point h(t,s) = (E; xp
t , x

n
s ) of a

set E is a bipolar set of E defined by

xp
t (h) =

{

t if h = x

0 if h 6= x

and

xn
s (h) =

{

s if h = x

0 if h 6= x.

Definition 2.6. [4] A BF set ϑ = (E;ϑp, ϑn) on a semigroup E is called a
BF subsemigroup on E if it satisfies the following conditions:
ϑp(hr) ≥ ϑp(h) ∧ ϑp(r) and ϑn(hr) ≤ ϑn(h) ∨ ϑn(r) for all h, r ∈ E.

The following is an example of a BF subsemigroup:

Example 2.7. Let E be a semigroup defined by the following table:

· a b c d e
a a a a a a
a a a a a a
c a a c c e
d a a c d e
e a a c c e

Define a BF set ϑ = (E;ϑp, ϑn) on E as follows:
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S a b c d e
ϑp 0.9 0.8 0.5 0.3 0.3
ϑn −0.8 −0.8 −0.6 −0.5 −0.3

Then ϑ = (E;ϑp, ϑn) is a BF subsemigroup.

Definition 2.8. [4] A BF set ϑ = (E;ϑp, ϑn) on a semigroup E is called a
BF left (right) ideal on E if it satisfies the following conditions: ϑp(hr) ≥
ϑp(r) (ϑp(hr) ≥ ϑp(h)) and ϑn(hr) ≤ ϑn(r) (ϑn(hr) ≤ ϑn(h)) for all h, r ∈ E.

Definition 2.9. [4] A BF subsemigroup ϑ = (E;ϑp, ϑn) on a semigroup E
is called a BF bi-ideal on E if ϑp(hre) ≥ ϑp(h) ∧ ϑp(e) and ϑn(hre) ≤
ϑn(h) ∨ ϑp(e) for all h, r, e ∈ E.

Clearly every BF ideal of a semigroup E is a BF bi-ideal of E.

3 Bipolar fuzzy almost bi-ideal

In this section, we define the bipolar fuzzy almost bi-ideal in semigroups and
we investigate some of their properties.

Definition 3.1. A BF set ϑ = (E;ϑp, ϑn) on a semigroup E is called a BF
almost bi-ideal of E if (ϑp ◦ xp

t ◦ ϑ
p)∧ ϑp 6= ∅ and (ϑn ◦ xn

s ◦ ϑ
n) ∨ ϑn 6= ∅, for

any BF point xp
t , x

n
s ∈ E.

Theorem 3.2. If ϑ is a BF almost bi-ideal of a semigroup E and ξ is a BF
subset of E such that ϑ ⊆ ξ, then ξ is a BF almost bi-ideal of E.

Proof. Suppose that ϑ is a BF almost bi-ideal of a semigroup E and ξ is a BF
subset of E such that ϑ ⊆ ξ. Then, for any BF points xp

t , x
n
s ∈ E, we have

(ϑp ◦ xp
t ◦ ϑ

p)∧ ϑp 6= ∅ and (ϑn ◦ xn
s ◦ ϑ

n)∨ ϑn 6= ∅. Thus (ϑp ◦ xp
t ◦ϑ

p)∧ ϑp ⊆
(ξp ◦ xp

t ◦ ξ
p) ∧ ξp 6= ∅ and (ϑn ◦ xn

s ◦ ϑ
n) ∨ ϑn ⊆ (ξn ◦ xn

s ◦ ξ
n) ∨ ξn 6= ∅.

Hence (ξp ◦ xp
t ◦ ξ

p) ∧ ξp 6= ∅ and (ξn ◦ xn
s ◦ ξ

n) ∨ ξn 6= ∅.
Therefore, ξ is a BF almost bi-ideal of E.

Theorem 3.3. Let ϑ and ξ be BF almost bi-ideals of a semigroup E. Then
ϑ ∨ ξ is also a BF almost bi-ideal of E.

Proof. Since ϑ ⊆ ϑ ∨ ξ, ϑ ∨ ξ is also a BF almost bi-ideal of E by Theorem
3.2.
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Theorem 3.4. Let K be a nonempty subset of a semigroup E. Then K
is an almost bi-ideal of E if and only if λK = (E;λp

K , λ
n
K) is a BF almost

bi-ideal of E.

Proof. Suppose that K is an almost bi-ideal of a semigroup E. The KrK ∧
K 6= ∅ for all r ∈ E; that is, there exists c ∈ KrK with c ∈ K.
Let x ∈ E, t ∈ (0, 1], and s ∈ [−1, 0). Then (λp

K ◦ xp
t ◦ λ

p
K) = 1, λp

K(c) = 1
and (λn

K ◦ xn
s ◦ λn

K) = −1, λn
K(c) = −1. Thus (λp

K ◦ xp
t ◦ λp

K) ∧ λp
K 6= 0,

(λn
K ◦ xn

s ◦ λ
n
K) ∨ λn

K 6= 0. Hence λK = (E;λp
K , λ

n
K) is a BF almost bi-ideal

of E.
Conversely, suppose that λK = (E;λp

K , λ
n
K) is a BF almost bi-ideal of E

and let x ∈ E, t ∈ (0, 1], and s ∈ [−1, 0). Then (λp
K ◦ xp

t ◦ λ
p
K) ∧ λp

K 6= 0 and
(λn

K ◦ xn
s ◦ λ

n
K) ∨ λn

K 6= 0. Thus there exists c ∈ E such that
[(λp

K ◦ xp
t ◦ λ

p
K) ∧ λp

K ](c) = 1 and [(λn
K ◦ xn

s ◦ λ
n
K) ∨ λn

K ](c) = −1.
Hence c ∈ xKy ∧ K. So xKy ∧ K 6= ∅. We conclude that K is an almost
bi-ideal of E.

Theorem 3.5. Let ϑ be a fuzzy subset of a semigroup E. Then ϑ is a BF
almost bi-ideal of E if and only if supp(ϑ) is an almost bi-ideal of E.

Proof. Assume that ϑ is a BF almost bi-ideal of a semigroup E and
let u ∈ E, t ∈ (0, 1], and s ∈ [−1, 0). Then (ϑp ◦ xp

t ◦ ϑ
p) 6= 0,

[(ϑn ◦xn
s ◦ϑ

n)∧ϑn](u) 6= 0. Thus there exists z1, z2 ∈ E such that u = z1uz2,
ϑp(u) 6= 0, ϑp(z1) 6= 0, ϑp(z2) 6= 0 and ϑn(u) 6= 0, ϑn(z1) 6= 0, ϑn(z2) 6= 0. So
u, z1, z2 ∈ supp(ϑ). This implies that (λp

supp(ϑ) ◦ xp
t ◦ λp

supp(ϑ)) ∧ λp

supp(ϑ) 6= 0

and (λn
supp(ϑ) ◦ xn

s ◦ λn
supp(ϑ)) ∨ λn

supp(ϑ) 6= 0. Hence λp

supp(ϑ) is a BF almost

bi-ideal of E. By Theorem 3.4, supp(ϑ) is an almost bi-ideal of E.
Conversely, suppose that supp(ϑ) is an almost bi-ideal of E. By Theorem

3.4, λp

supp(ϑ) is a BF almost bi-ideal of E. Then for any BF points xp
t , x

n
s ∈ E,

we have (λp

supp(ϑ) ◦ x
p
t ◦ λ

p

supp(ϑ)) ∧ λp

supp(ϑ) 6= 0 and

(λn
supp(ϑ) ◦ x

n
s ◦ λ

n
supp(ϑ)) ∨ λn

supp(ϑ) 6= 0. Thus there exists c ∈ E such that

[(λp

supp(ϑ) ◦ x
p
t ◦ λ

p

supp(ϑ)) ∧ λp

supp(ϑ)](c) 6= 0 and

[(λn
supp(ϑ)◦x

n
s ◦λ

n
supp(ϑ))∨λn

supp(ϑ)](c) 6= 0. Hence (λp

supp(ϑ)◦x
p
t ◦λ

p

supp(ϑ))(c) = 0,

λp

supp(ϑ)(c) 6= 0 and (λn
supp(ϑ) ◦ xn

s ◦ λn
supp(ϑ))(c) = 0, λn

supp(ϑ)(c) 6= 0. Then

there exists b ∈ E such that c = xby such that ϑp(c) 6= 0, ϑp(b) 6= 0 and
ϑn(c) 6= 0, ϑn(b) 6= 0. So (ϑp ◦ xp

t ◦ ϑ
p) ∧ ϑp 6= 0 and (ϑn ◦ xn

s ◦ ϑn) ∨ ϑn 6= 0.
Therefore, ϑ is a BF almost bi-ideal of E.

Next, we investigate minimal BF almost bi-ideals in semigroups and study
relationships between minimal almost bi-ideals and minimal BF almost bi-
ideals of semigroups.
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Definition 3.6. An almost bi-ideal K of a semigroup E is called minimal
if for any almost bi-ideal M of E with M ⊆ K, M = K.

Definition 3.7. A BF almost bi-ideal ϑ of a semigroup E is called minimal
if for any BF almost bi-ideal ξ of E with ξ ⊆ ϑ, sup(ξ) =sup(ϑ).

Theorem 3.8. Let K be a nonempty subset of a semigroup E. Then K is a
minimal almost bi-ideal of E if and only if λK = (E;λp

K , λ
n
K) is a minimal

BF almost bi-ideal of E.

Proof. Assume that K is a minimal almost bi-ideal of a semigroup E.
By Theorem 3.4, λK = (E;λp

K , λ
n
K) is a BF almost bi-ideal of E.

Let ξ be a BF almost bi-ideal of E such that ξ ⊆ λK Then
supp(ξ) ⊆ supp(λK) = K. By Theorem 3.5, supp(ξ) is an almost bi-ideal
of E. Since K is minimal we have supp(ξ) = K = supp(λK).
Therefore, λK is minimal.

Conversely, suppose that λK is a minimal BF almost bi-ideal of E. By
Theorem 3.4, K is an almost bi-ideal of E. Let M be an almost bi-ideal of E
such that M ⊆ K. Then λK is a BF almost bi-ideal of E such that λM ⊆ λK .
Hence M = supp(λM ) = supp(λK) = K. Therefore, K is minimal.
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