International Journal of Mathematics and Computer Science, **17**(2022), no. 1, 345–352

$\binom{M}{CS}$

Bipolar fuzzy almost bi-ideal in semigroups

Thiti Gaketem¹, P. Khamrot²

¹Fuzzy Algebras and Decision-Making Problems Research Unit Department of Mathematics School of Science University of Phayao Phayao 56000, Thailand

²Department of Mathematics Faculty of Science and Agricultural Technology Ralamangala University of Technology Lanna of Phitsanulok Phitsanulok 65000, Thailand

email: newtonisaac41@yahoo.com, pannawit.k@gmail.com

(Received July 25, 2021, Accepted September 1, 2021)

Abstract

In this paper, we define bipolar fuzzy almost bi-ideal in semigroups. We study the basic properties of bipolar fuzzy almost bi-ideal in semigroups.

1 Introduction

Fuzzy sets, introduced by Zadeh in 1965 [8], are a kind of useful mathematical structure to represent a collection of objects whose boundary is vague. In 1994, Zhang [9] extended the concept of a fuzzy set to a bipolar fuzzy set whose membership degree range is $[-1, 0] \cup [0, 1]$. In a bipolar fuzzy set, the membership degree 0 of an element means that the element is irrelevant to the corresponding property and the membership degree [0, 1] of an element

Key words and phrases: Bipolar fuzzy almost bi-ideal in semigroups. AMS (MOS) Subject Classifications: 20M12, 06F05. corresponding author email: pannawit.k@gmail.com ISSN 1814-0432, 2022, http://ijmcs.future-in-tech.net indicates that the element somehow satisfies that property. These ideas are still central concepts in ring theory and the notion of a one-sided ideal of any algebraic structure is a generalization of the notion of an ideal. In 1980, Grosek and Satko [1] studied the almost ideal theory in semigroups. In 1981, Bogdanvic [2] defined almost bi-ideals in semigroups and studied their properties in semigroups. Later, Chinram [7] defined types of alomst ideals in semigroups such as almost quasi-ideal, almost i-ideal, (m, n)-almost ideal. In 2018, Krishna and Rao [5] defined the bi-interior ideal in semigroups .

In this paper, we define the bipolar fuzzy almost bi-ideal and bipolar fuzzy almost qausi-ideal in semigroups and investigate their basic properties.

2 Preliminaries

In this section, we give some concepts and results which will be helpful in this paper. A subsemigroup of a semigroup E is a non-empty set K of Esuch that $KK \subseteq K$. A left (right) ideal of a semigroup E is a non-empty set K of E such that $EK \subseteq K$ ($KE \subseteq K$). By an ideal of a semigroup E, we mean a non-empty set of E which is both a left and a right ideal of E. A subsemigroup K of a semigroup E is called a *bi-ideal* of S if $KEK \subseteq K$. An almost ideal K of a semigroup E if $tK \cap K \neq \emptyset$ and $Kp \cap K \neq \emptyset$ for all $t, p \in E$. An almost *bi-ideal* K of a semigroup E if $KrK \cap K \neq \emptyset$ for all $r \in E$ [2].

For any $h_i \in [0, 1], i \in \mathcal{F}$, define

$$\bigvee_{i\in\mathcal{F}} h_i := \sup_{i\in\mathcal{F}} \{h_i\} \text{ and } \bigwedge_{i\in\mathcal{F}} h_i := \inf_{i\in\mathcal{F}} \{h_i\}.$$

For any $h, r \in [0, 1]$, we have

 $h \lor r = \max\{h, r\}$ and $h \land r = \min\{h, r\}.$

A fuzzy subset of a non-empty set E is a function $\vartheta: E \to [0, 1]$.

For any fuzzy sets ϑ and ξ of a non-empty set E, we give the following definitions and notations:

- (1) for all $h \in E$, $\vartheta \ge \xi \Leftrightarrow \vartheta(h) \ge \xi(h)$,
- (2) $\vartheta = \xi \Leftrightarrow \vartheta \ge \xi$ and $\xi \ge \vartheta$,
- (3) $(\vartheta \wedge \xi)(h) = \min\{\vartheta(h), \xi(h)\} = \vartheta(h) \wedge \xi(h) \text{ and } (\vartheta \vee \xi)(h) = \max\{\vartheta(h), \xi(h)\} = \vartheta(h) \vee \xi(h) \text{ for all } h \in E,$

Bipolar fuzzy almost bi-ideal in semigroups

(4) $\vartheta \subseteq \xi$ if $\vartheta(h) \le \xi(h)$,

- (5) for all $h \in E(\vartheta \cup \xi)(h) = \max\{\vartheta(h), \xi(h)\}$ and $(\vartheta \cap \xi)(h) = \min\{\vartheta(h), \xi(h)\},$
- (6) the support of ϑ is $\operatorname{supp}(\vartheta) = \{h \in E \mid \vartheta(h) \neq 0\}.$

Definition 2.1. [6] A **bipolar fuzzy set** (BF set) ϑ on a non-empty set E is an object having the form

$$\vartheta := \{ (h, \vartheta^p(h), \vartheta^n(h)) \mid h \in E \},\$$

where $\vartheta^p : E \to [0, 1]$ and $\vartheta^n : E \to [-1, 0]$.

Remark 2.2. For simplicity, we use the symbol $\vartheta = (E; \vartheta^p, \vartheta^n)$ for the BF set $\vartheta = \{(h, \vartheta^p(h), \vartheta^n(h)) \mid h \in E\}.$

The following is an example of a BF set:

Example 2.3. Let $E = \{41, 42, 43...\}$. Define $\vartheta^p : S \to [0, 1]$ as

$$\vartheta^p(u) = \begin{cases} 0 & \text{if } h \text{ is old number} \\ 1 & \text{if } h \text{ is even number} \end{cases}$$

and $\vartheta^n: S \to [-1, 0]$ as

$$\vartheta^n(u) = \begin{cases} -1 & \text{if } h \text{ is old number} \\ 0 & \text{if } h \text{ is even number.} \end{cases}$$

Then $\vartheta = (E; \vartheta^p, \vartheta^n)$ is a BF set.

For $h \in E$, define $F_h = \{(h_1, h_2) \in E \times E \mid h = h_1 h_2\}$. Define products $\vartheta^p \circ \xi^p$ and $\vartheta^n \circ \xi^n$ as follows:

For $h \in E$

$$(\vartheta^p \circ \xi^p)(h) = \begin{cases} \bigvee_{(h_1,h_2)\in F_h} \{\vartheta^p(h_1) \wedge \xi^p(h_2)\} & \text{if } h = h_1h_2 \\ 0 & \text{otherwise.} \end{cases}$$

and

$$(\vartheta^n \circ \xi^n)(h) = \begin{cases} \bigwedge_{(h_1,h_2)\in F_h} \{\vartheta^n(h_1) \lor \xi^n(h_2)\} & \text{if } h = h_1h_2\\ 0 & \text{otherwise.} \end{cases}$$

Definition 2.4. [6] Let K be a non-empty set of a semigroup E. A positive characteristic function and a negative characteristic function are defined by

$$\lambda_K^p : E \to [0,1], h \mapsto \lambda_K^p(h) := \begin{cases} 1 & h \in K, \\ 0 & h \notin K, \end{cases}$$

and

$$\lambda_K^n : E \to [-1,0], h \mapsto \lambda_K^n(h) := \begin{cases} -1 & h \in K, \\ 0 & h \notin K. \end{cases}$$

respectively.

Remark 2.5. For simplicity, we use the symbol $\lambda_K = (E; \lambda_K^p, \lambda_K^n)$ for the BF set $\lambda_K := \{(h, \lambda_K^p(h), \lambda_K^n(h)) \mid h \in K\}.$

For $h \in E$ and $(t, s) \in [0, 1] \times [-1, 0]$, a BF point $h_{(t,s)} = (E; x_t^p, x_s^n)$ of a set E is a bipolar set of E defined by

$$x_t^p(h) = \begin{cases} t & \text{if } h = x \\ 0 & \text{if } h \neq x \end{cases}$$

and

$$x_s^n(h) = \begin{cases} s & \text{if } h = x \\ 0 & \text{if } h \neq x. \end{cases}$$

Definition 2.6. [4] A BF set $\vartheta = (E; \vartheta^p, \vartheta^n)$ on a semigroup E is called a **BF subsemigroup** on E if it satisfies the following conditions: $\vartheta^p(hr) \ge \vartheta^p(h) \land \vartheta^p(r)$ and $\vartheta^n(hr) \le \vartheta^n(h) \lor \vartheta^n(r)$ for all $h, r \in E$.

The following is an example of a BF subsemigroup:

Example 2.7. Let *E* be a semigroup defined by the following table:

•	a	b	С	d	e
a	a	a	a	a	a
a	a	a	a	a	a
С	a	a	С	c	e
d	a	a	С	d	e
e	a	a	С	С	e

Define a BF set $\vartheta = (E; \vartheta^p, \vartheta^n)$ on E as follows:

348

Bipolar fuzzy almost bi-ideal in semigroups

S	a	b	c	d	e
ϑ^p	0.9	0.8	0.5	0.3	0.3
ϑ^n	-0.8	-0.8	-0.6	-0.5	-0.3

Then $\vartheta = (E; \vartheta^p, \vartheta^n)$ is a BF subsemigroup.

Definition 2.8. [4] A BF set $\vartheta = (E; \vartheta_p, \vartheta_n)$ on a semigroup E is called a **BF left (right) ideal** on E if it satisfies the following conditions: $\vartheta^p(hr) \ge \vartheta^p(r) (\vartheta^p(hr) \ge \vartheta^p(h))$ and $\vartheta^n(hr) \le \vartheta^n(r) (\vartheta^n(hr) \le \vartheta^n(h))$ for all $h, r \in E$.

Definition 2.9. [4] A BF subsemigroup $\vartheta = (E; \vartheta^p, \vartheta^n)$ on a semigroup E is called a **BF bi-ideal** on E if $\vartheta^p(hre) \ge \vartheta^p(h) \land \vartheta^p(e)$ and $\vartheta^n(hre) \le \vartheta^n(h) \lor \vartheta^p(e)$ for all $h, r, e \in E$.

Clearly every BF ideal of a semigroup E is a BF bi-ideal of E.

3 Bipolar fuzzy almost bi-ideal

In this section, we define the bipolar fuzzy almost bi-ideal in semigroups and we investigate some of their properties.

Definition 3.1. A BF set $\vartheta = (E; \vartheta^p, \vartheta^n)$ on a semigroup E is called a BFalmost bi-ideal of E if $(\vartheta^p \circ x_t^p \circ \vartheta^p) \land \vartheta^p \neq \emptyset$ and $(\vartheta^n \circ x_s^n \circ \vartheta^n) \lor \vartheta^n \neq \emptyset$, for any BF point $x_t^p, x_s^n \in E$.

Theorem 3.2. If ϑ is a BF almost bi-ideal of a semigroup E and ξ is a BF subset of E such that $\vartheta \subseteq \xi$, then ξ is a BF almost bi-ideal of E.

Proof. Suppose that ϑ is a BF almost bi-ideal of a semigroup E and ξ is a BF subset of E such that $\vartheta \subseteq \xi$. Then, for any BF points $x_t^p, x_s^n \in E$, we have $(\vartheta^p \circ x_t^p \circ \vartheta^p) \land \vartheta^p \neq \emptyset$ and $(\vartheta^n \circ x_s^n \circ \vartheta^n) \lor \vartheta^n \neq \emptyset$. Thus $(\vartheta^p \circ x_t^p \circ \vartheta^p) \land \vartheta^p \subseteq (\xi^p \circ x_t^p \circ \xi^p) \land \xi^p \neq \emptyset$ and $(\vartheta^n \circ x_s^n \circ \vartheta^n) \lor \vartheta^n \subseteq (\xi^n \circ x_s^n \circ \xi^n) \lor \xi^n \neq \emptyset$. Hence $(\xi^p \circ x_t^p \circ \xi^p) \land \xi^p \neq \emptyset$ and $(\xi^n \circ x_s^n \circ \xi^n) \lor \xi^n \neq \emptyset$. Therefore, ξ is a BF almost bi-ideal of E.

Theorem 3.3. Let ϑ and ξ be BF almost bi-ideals of a semigroup E. Then $\vartheta \lor \xi$ is also a BF almost bi-ideal of E.

Proof. Since $\vartheta \subseteq \vartheta \lor \xi$, $\vartheta \lor \xi$ is also a BF almost bi-ideal of E by Theorem 3.2.

Theorem 3.4. Let K be a nonempty subset of a semigroup E. Then K is an almost bi-ideal of E if and only if $\lambda_K = (E; \lambda_K^p, \lambda_K^n)$ is a BF almost bi-ideal of E.

Proof. Suppose that K is an almost bi-ideal of a semigroup E. The $KrK \wedge K \neq \emptyset$ for all $r \in E$; that is, there exists $c \in KrK$ with $c \in K$. Let $x \in E$, $t \in (0, 1]$, and $s \in [-1, 0)$. Then $(\lambda_K^p \circ x_t^p \circ \lambda_K^p) = 1$, $\lambda_K^p(c) = 1$

Let $x \in E$, $t \in (0, 1]$, and $s \in [-1, 0)$. Then $(\lambda_K^p \circ x_t^p \circ \lambda_K^p) = 1$, $\lambda_K^p(c) = 1$ and $(\lambda_K^n \circ x_s^n \circ \lambda_K^n) = -1$, $\lambda_K^n(c) = -1$. Thus $(\lambda_K^p \circ x_t^p \circ \lambda_K^p) \wedge \lambda_K^p \neq 0$, $(\lambda_K^n \circ x_s^n \circ \lambda_K^n) \vee \lambda_K^n \neq 0$. Hence $\lambda_K = (E; \lambda_K^p, \lambda_K^n)$ is a BF almost bi-ideal of E.

Conversely, suppose that $\lambda_K = (E; \lambda_K^p, \lambda_K^n)$ is a BF almost bi-ideal of Eand let $x \in E$, $t \in (0, 1]$, and $s \in [-1, 0)$. Then $(\lambda_K^p \circ x_t^p \circ \lambda_K^p) \wedge \lambda_K^p \neq 0$ and $(\lambda_K^n \circ x_s^n \circ \lambda_K^n) \vee \lambda_K^n \neq 0$. Thus there exists $c \in E$ such that $[(\lambda_K^p \circ x_t^p \circ \lambda_K^p) \wedge \lambda_K^p](c) = 1$ and $[(\lambda_K^n \circ x_s^n \circ \lambda_K^n) \vee \lambda_K^n](c) = -1$.

Hence $c \in xKy \wedge K$. So $xKy \wedge K \neq \emptyset$. We conclude that K is an almost bi-ideal of E.

Theorem 3.5. Let ϑ be a fuzzy subset of a semigroup E. Then ϑ is a BF almost bi-ideal of E if and only if $supp(\vartheta)$ is an almost bi-ideal of E.

Proof. Assume that ϑ is a BF almost bi-ideal of a semigroup E and let $u \in E$, $t \in (0, 1]$, and $s \in [-1, 0)$. Then $(\vartheta^p \circ x_t^p \circ \vartheta^p) \neq 0$, $[(\vartheta^n \circ x_s^n \circ \vartheta^n) \wedge \vartheta^n](u) \neq 0$. Thus there exists $z_1, z_2 \in E$ such that $u = z_1 u z_2$, $\vartheta^p(u) \neq 0, \, \vartheta^p(z_1) \neq 0, \, \vartheta^p(z_2) \neq 0$ and $\vartheta^n(u) \neq 0, \, \vartheta^n(z_1) \neq 0, \, \vartheta^n(z_2) \neq 0$. So $u, z_1, z_2 \in \text{supp}(\vartheta)$. This implies that $(\lambda_{supp(\vartheta)}^p \circ x_t^p \circ \lambda_{supp(\vartheta)}^p) \wedge \lambda_{supp(\vartheta)}^p \neq 0$ and $(\lambda_{supp(\vartheta)}^n \circ x_s^n \circ \lambda_{supp(\vartheta)}^n) \vee \lambda_{supp(\vartheta)}^n \neq 0$. Hence $\lambda_{supp(\vartheta)}^p$ is a BF almost bi-ideal of E. By Theorem 3.4, $\text{supp}(\vartheta)$ is an almost bi-ideal of E.

Conversely, suppose that $\operatorname{supp}(\vartheta)$ is an almost bi-ideal of E. By Theorem 3.4, $\lambda_{supp(\vartheta)}^p$ is a BF almost bi-ideal of E. Then for any BF points $x_t^p, x_s^n \in E$, we have $(\lambda_{supp(\vartheta)}^p \circ x_t^p \circ \lambda_{supp(\vartheta)}^p) \wedge \lambda_{supp(\vartheta)}^p \neq 0$ and $(\lambda_{supp(\vartheta)}^n \circ x_s^n \circ \lambda_{supp(\vartheta)}^n) \vee \lambda_{supp(\vartheta)}^n \neq 0$. Thus there exists $c \in E$ such that $[(\lambda_{supp(\vartheta)}^p \circ x_t^p \circ \lambda_{supp(\vartheta)}^p) \wedge \lambda_{supp(\vartheta)}^p](c) \neq 0$ and $[(\lambda_{supp(\vartheta)}^n \circ x_s^n \circ \lambda_{supp(\vartheta)}^n) \vee \lambda_{supp(\vartheta)}^n](c) \neq 0$. Hence $(\lambda_{supp(\vartheta)}^p \circ x_t^p \circ \lambda_{supp(\vartheta)}^p)(c) = 0$, $\lambda_{supp(\vartheta)}^n(c) \neq 0$ and $(\lambda_{supp(\vartheta)}^n \circ x_s^n \circ \lambda_{supp(\vartheta)}^n)(c) = 0$, $\lambda_{supp(\vartheta)}^n(c) \neq 0$. Then there exists $b \in E$ such that c = xby such that $\vartheta^p(c) \neq 0, \vartheta^p(b) \neq 0$ and $\vartheta^n(c) \neq 0, \vartheta^n(b) \neq 0$. So $(\vartheta^p \circ x_t^p \circ \vartheta^p) \wedge \vartheta^p \neq 0$ and $(\vartheta^n \circ x_s^n \circ \vartheta^n) \vee \vartheta^n \neq 0$. Therefore, ϑ is a BF almost bi-ideal of E.

Next, we investigate minimal BF almost bi-ideals in semigroups and study relationships between minimal almost bi-ideals and minimal BF almost biideals of semigroups.

350

Definition 3.6. An almost bi-ideal K of a semigroup E is called *minimal* if for any almost bi-ideal M of E with $M \subseteq K$, M = K.

Definition 3.7. A BF almost bi-ideal ϑ of a semigroup E is called *minimal* if for any BF almost bi-ideal ξ of E with $\xi \subseteq \vartheta$, $\sup(\xi) = \sup(\vartheta)$.

Theorem 3.8. Let K be a nonempty subset of a semigroup E. Then K is a minimal almost bi-ideal of E if and only if $\lambda_K = (E; \lambda_K^p, \lambda_K^n)$ is a minimal BF almost bi-ideal of E.

Proof. Assume that K is a minimal almost bi-ideal of a semigroup E. By Theorem 3.4, $\lambda_K = (E; \lambda_K^p, \lambda_K^n)$ is a BF almost bi-ideal of E. Let ξ be a BF almost bi-ideal of E such that $\xi \subseteq \lambda_K$ Then $\operatorname{supp}(\xi) \subseteq \operatorname{supp}(\lambda_K) = K$. By Theorem 3.5, $\operatorname{supp}(\xi)$ is an almost bi-ideal of E. Since K is minimal we have $\operatorname{supp}(\xi) = K = \operatorname{supp}(\lambda_K)$. Therefore, λ_K is minimal.

Conversely, suppose that λ_K is a minimal BF almost bi-ideal of E. By Theorem 3.4, K is an almost bi-ideal of E. Let M be an almost bi-ideal of Esuch that $M \subseteq K$. Then λ_K is a BF almost bi-ideal of E such that $\lambda_M \subseteq \lambda_K$. Hence $M = \operatorname{supp}(\lambda_M) = \operatorname{supp}(\lambda_K) = K$. Therefore, K is minimal. \Box

Acknowledgment. We would like to thank the Fuzzy Algebras and Decision-Making Problems Research Unit in the Department of Mathematics of the University of Phayao, Thailand.

References

- [1] O. Grosek, L. Satko, A new notion in the theory of semigroup, Semigroup Forum, **20**, (1980), 233–240.
- [2] O. Grosek, L. Satko, On minimal A-ideals of semigroups, Semigroup Forum, 23, (1981), 283–295.
- [3] O. Grosek, L. Satko, Smallest A-ideals in semigroups, Semigroup Forum, 23, (1981), 297–309.
- [4] C.S. Kim, J. G. Kang, J. M. Kang, Ideal theory of semigroups based on the bipolar valued fuzzy set theory, Annals of Fuzzy Mathematics and Informatics, 2, no. 2, (2012), 193–206.
- [5] M. Krishna, M. Rao, Bi-interior ideals of semigroups, Discussiones Mathematicae General algebra and applications, 38, (2018), 69–78.

- [6] K. Lee, Bipolar-valued fuzzy sets and their operations. In Proceedings of the International Conference on Intelligent Technologies Bangkok, Thailand, (2000), 307–312.
- [7] S. Suebsung, K. Wattanatripop, R. Chinram, On almost (m, n)- ideals and fuzzy almost (m, n)-ideals in semigroups, J. Taibah Univ. Sci., **13**, (2019), 897–902.
- [8] L. A. Zadeh, Fuzzy sets, Information and Control, 8, (1965), 338–353.
- [9] W. Zhang, Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis. In proceedings of IEEE conference, (1994), 305–309.