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Abstract

We find the non-static solutions of Einstein’s equation in the gen-

eral theory of gravitation. We obtain a numerical solution and a gen-

eralized analytical approximation. In the same way, there is a set of

families of solutions that are of great interest to researchers. From the

solutions, we observe that time in the general theory of gravitation

plays an important role in the curvature of space-time.

1 Introduction

From experimental data, it is well-known that our universe expanded isotrop-
ically, at a very early time, around t = 10−36s. At this time, it is known that
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the general solution of Einstein’s equation in vacuum Tµ,ν = 0 near the sin-
gularity (Big Bang) is isotropic [1, 7, 8].

By chance, the symmetric initial conditions led to isotropy leaving the
singularity and presenting itself as a very small possibility. That is why at
very early times in the evolution of the universe some process must have hap-
pened that led to a rapid isotropy and expansion. In many cases, classical
mechanics is not effective enough to give an explanation of isotropy with re-
spect to the time [2]. One of the possible solutions to this problem occurs in
the field of inflationary cosmological theory where the possibility of isotropy
is analyzed taking into account the effective bonding of space, originating
particles from the vacuum [3].

Consider Einstein’s equations for the free gravitational field [1, 9]:

Rµν −
1

2
gµνR = kTµν , (1.1)

where Rµν is the Ricci tensor, gµν is the metric tensor, R is the curvature
scalar, and Tµν is the energy-impulse tensor of the substance.

2 Non-static solutions

In a space-time, the metric adopts the following structure:

ds2 = a20(t)dt
2 − a2i (t)(dx

i)2, (2.2)

where a(t) is a non-negative and time-dependent function.
From the metric (2.2) when Tµν = 0, we have Rµν = 0. Solving the

Einstein’s equation in the vacuum (1.1), the nonzero components are (sim-
plification of the equations obtained in [5, 6]):
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From the metric ds2 = c2dt2 − tpi(dxi)2 and the solution of equations
(2.3), we obtain the following conditions for the coefficients [9]:

3
∑

i=1

pi = 1

3
∑

i=1

p2i = 1.

If the coefficients p1 = p2 = p3 = 0, then we obtain the Minkowski metric
ds2 = c2dt2 − (dxi)2.

The empty particular solution of equations (2.3) is a generalization of the
Kasner metric [4, 9] according to the relationship:

aα(t) = tpα (2.4)

ds2 = c2tp0dt2 − tpi(dxi)2 (2.5)

with the following conditions for pα from the solution of Einstein’s equation
(1.1) for the vacuum

3
∑

i=1

pi = p0 + 1 and

3
∑

i=1

p2i = (p0 + 1)2 (2.6)

To deduce the Minkowski metric from Kasner’s generalization (2.5), the
coefficients are set to zero p0 = p1 = p2 = p3 = 0, causing a contradiction
in the conditions (2.6) derived from the solution of Einstein’s equation (2.3).
This leads to the deduction that in the early days of the origin of the universe,
time gives rise to a Kasner’s singularity that curves space, establishing that
in this early epoch of the universe space-time was curved.

The system of equations (2.3) is a coupled system of differential equations
that was solved numerically and then particular analytically approximated
solutions were found, expressed as a polynomial of fifth degree in t:

aα(t) = cα0t
0 + cα1t+ cα2t

2 + cα3t
3 + cα4t

4 + cα5t
5 =

5
∑

i=0

cαit
i, (2.7)
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where the coefficient matrix is given as cαi

cαi =

0.99999 0.00523 0.00023 0.00019 0.00001 2.15× 10−6

1 −0.00129 −0.00004 0.00011 −0.00015 0.00008
0.99999 0.00493 −0.00072 0.00210 −0.00292 0.00161
0.99999 0.00178 −0.00010 0.00030 −0.00042 0.00023

(2.8)
The graphs of the numerical solution and the analytical solution given by

(8) are shown below. The solid line corresponds to the numerical solution
and the discrete one to the analytical solution.
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The initial conditions when t → 0 are given by:

g00 = a20(t) → 1
g11 = a21(t) → 1
g22 = a22(t) → 1
g33 = a23(t) → 1

(2.9)

which leads to a flat space-time, with metric ds2 = c2dt2 − (dxi)2.
We also observe that when the exponent of the function t increases the

components of the metric tensor in (2.9) above tends to one leading to a
flat space-time at infinity, since the coefficients cα0 → 1 and the cα∞ → 0,
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which makes us think that in the early and late periods of the universe,
space-time was flat and in an intermediate age, such as the current age of
approximately 14 billion years, it was curved. The equations given in (2.7)
can be generalized as:

aα(t) =
∞
∑

i=0

cαit
i. (2.10)

3 Other non-static solutions

The system of coupled differential equations (2.3) is overdetermined which
leads to ai(t) = f(a3(t), a

′
3(t)), i = 0, 1, 2. The solution of the system (2.3) of

coupled differential equations is given by:

a0(t) =
a3(t)

c2
1

1+c1

a′
3
(0)

a′3(t)

a1(t) = a3(t)
−1+ 1

1+c1

a1(t) = a3(t)
c1

(3.11)

where c1 is an integer.

The solutions found for the metric (2.2) are the following families:
First, polynomial family:

a0 =
((mt+1)p)

n2

n+1
+1

mt+1

a1 = ((mt+ 1)p)
1

n+1
−1

a2 = ((mt + 1)p)n

a3 = (mt + 1)p

(3.12)

where m,n, p are integers.
Secondly, exponential family:

a0 = l1−p(l +mt)p−1eq((l+mt)p−lp)
(

eq(l+mt)p
)

n2

n+1

a1 =
(

eq(l+mt)p
)

1

n+1
−1

a2 =
(

eq(l+mt)p
)n

a3 = eq(l+mt)p

(3.13)

where p, q, l,m are integers.
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Thirdly, harmonic family 1:

a0 =
sec(lp)(m+2nt) cos(p(l+t(m+nt)))

√
q sin(p(l+t(m+nt)))

m

a1=
1√

q sin(p(l+t(m+nt)))

a2 = q sin(p(l + t(m+ nt)))
a3 = q sin(p(l + t(m+ nt)))

(3.14)

where m,n, l, p, q are integers.
Harmonic Family 2:

a0 =
csc(lp)(m+2nt) sin(p(l+t(m+nt)))

√
q cos(p(l+t(m+nt)))

m

a1 =
1√

q cos(p(l+t(m+nt)))

a2 = q cos(p(l + t(m+ nt)))
a3 = q cos(p(l + t(m+ nt)))

(3.15)

where m,n, l, p, q are integers.
Elliptical family:

a0 = cn(qt|m)dn(qt|m)
√

psn(qt|m)
a1 =

1√
psn(qt|m)

a2 = psn(qt|m)
a3 = psn(qt|m)

where p, q are integers and 0 < m < 1.

4 Conclusions

Einstein’s equation for the gravitational field in vacuum was solved. A nu-
merical solution and an analytical approximation were found in polynomial
form, several solutions were found by classifying them into families. From
the solutions, we observed that the gravitational (cosmological) time behaved
like a fluid in a vacuum that generated the deformation of space-time. The
origin of time in the universe suffered a singularity that led to the appearance
of gravitational time, deforming the structure of space-time.

The Minkowski plane space-time appears in the solutions when gravita-
tional time tends to zero or its coefficients to infinity. This methodology can
be of great help to researchers of the general theory of relativity.
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