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Abstract

The notion of α-ideals in semigroups is a generalization of (m,n)-
ideals, wherem and n are nonnegative integers. This notion was intro-
duced by Miccoli and Ponděĺıček in 1989. In this paper, we define the
notion of almost α-ideals in semigroups. Moreover, we provide some
properties of this concept and present a characterization of semigroups
having no proper almost α-ideal.

1 Introduction

The notion of (m,n)-ideals in semigroups, defined by Lajos [4], is a gener-
alized concept of bi-ideals. Later on, this idea was extended to the concept
of α-ideal [5] in semigroups by Miccoli and Ponděĺıček. In 1990, Catino [2]
studied the concept of α-ideals in semigroups and characterized semigroups
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in which any α-ideal is complete.
The concept of ideals in semigroups was generalized to the notion of al-

most ideals [3] in 1980 by Grošek and Satko who described all semigroups
having no proper almost ideals. This result was studied in other algebraic
systems; ternary semigroups and semihypergroups in 2019 and 2020, respec-
tively (see [7, 8]). In 1981, Bogdanović [1] introduced the notion of almost
bi-ideals in semigroups. In 2018, Wattanatripop et al. [9] gave the notion of
quasi-almost-ideal in semigroups and studied some of its properties. Simuen
et al. [6] defined almost quasi-Γ-ideals in Γ-semigroups and provided some
interesting basic properties.

In this paper, we define the notion of almost α-ideals in semigroups. It
turns out that almost α-ideals is a generalization of almost ideals. Moreover,
we present interesting properties of this concept.

2 Preliminaries

Throughout this paper, we denote the set of all nonnegative integers
{0, 1, 2, . . .} and the set of all natural numbers {1, 2, 3, . . .} by N and N

+,
respectively. Let {0, 1}∗ be the free monoid over the set {0, 1}. We denote
the length of α ∈ {0, 1}∗ by |α|.

A semigroup 〈S; ◦〉 is an algebra of type (2) in which the binary operation
◦ satisfies the associative law. For any elements x, y ∈ S, we simply write
x ◦ y as xy. Moreover, we denote a semigroup 〈S; ◦〉 by S.

Let S be a semigroup. For any subsets A and B of S, we define

AB := {ab : a ∈ A and b ∈ B}.

We note that AB := ∅ if A or B is empty. If A = {a} or B = {b}, we write
AB as aB or Ab, respectively.

We now recall some important terminologies about α-ideals in semigroups
(More information about α-ideals in semigroups can be found in [5]).

Let S be a semigroup, and α ∈ {0, 1}∗. We define fS
α : P(S) → P(S) by

fS
α (A) := ∅ if α is the empty word, and if α = a1 · · ·an is not the empty
word, then fS

α (A) := A1 · · ·An, where

Ai :=

{

A if ai 6= 0,

S if ai = 0,

for any A ⊆ S and 1 ≤ i ≤ n.
By the above definitions, we obtain the following useful lemma:
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Lemma 2.1 ([5]). Let S be a semigroup, and A and B be nonempty subsets
of S. Then for any α ∈ {0, 1}∗, we have fS

α (A) ⊆ fS
α (B) whenever A ⊆ B.

Let S be a semigroup. A nonempty subset A of S is said to be a sub-
semigroup of S if AA ⊆ A. A subsemigroup A of S is called an α-ideal of S
if fS

α (A) ⊆ A. It is not difficult to see that:

1. any left ideal of S is a 01-ideal of S;

2. any right ideal of S is a 10-ideal of S;

3. any bi-ideal of S is a 101-ideal of S;

4. any interior ideal of S is a 010-ideal of S;

5. any (m,n)-ideal of S, where m,n ∈ N, is a 1m01n-ideal of S.

To define the concept of almost α-ideals in semigroups, we need to modify
the operator fS

α as follows:
Let α = a1 · · · an ∈ {0, 1}∗ such that |α| = n for some n ∈ N. We define the
set 0(α) := {j ∈ N

+ : aj = 0}. It is clear that if α is the empty word or
α = 1m for all m ∈ N

+, then 0(α) is empty.
Suppose that α = a1 · · ·an ∈ {0, 1}∗ such that |α| = n, for some n ∈ N

+

and 0(α) = {i1, . . . , im}. Let S be a semigroup. For any nonempty subsets

S1, . . . , Sm of S, we define f
(S1,...,Sm)
α : P(S) → P(S) by

f (S1,...,Sm)
α (A) := A1 · · ·An,

for all A ⊆ S, where

Ai :=

{

A if ai = 1,

Sj if ai = 0 and i = ij,

for all 1 ≤ i ≤ n.
For any subset A of S, it is clear that f

(S1,...,Sm)
α (A) ⊆ fS

α (A), for all subsets
S1, . . . , Sm of S. We note that the set 0(α) may be empty. If for any 1 ≤

j ≤ m, Sj = {sj} is a singleton set, then we usually write f
(S1,...,Sm)
α (A) as

f
(s1,...,sm)
α (A).
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3 Almost α-ideals

In what follows, we assume that α ∈ {0, 1}∗r {1}∗ with |α| = n ≥ 2 and the
cardinality of 0(α) is m such that m < n, where m,n ∈ N

+. Now, we are
ready to define our concept.

Definition 3.1. Let S be a semigroup. A nonempty subset A of S is said to
be an almost α-ideal of S if f

(s1,...,sm)
α (A) ∩ A 6= ∅ for any s1, . . . , sm ∈ S.

Remark 3.2. Every almost left (resp., right, bi-, interior, (m,n)-) ideal is
an almost 01- (resp., 10-, 101-, 010-, 1m01n-) ideal, respectively.

Proposition 3.3. Let S be a semigroup. Then any α-ideal of S is an almost
α-ideal of S.

Proof. Suppose that A is an α-ideal of S. Let s1, . . . , sm ∈ S. Since
f
(s1,...,sm)
α (A) ⊆ fS

α (A) ⊆ A, we have f
(s1,...,sm)
α (A) ∩ A 6= ∅. This shows

that A is an almost α-ideal of S.

The converse of Proposition 3.3 does not hold in general as shown in the
following example:

Example 3.4. Consider the semigroup S defined by the following Cayley
table:

◦ a b c

a a b c

b b c a

c c a b

Suppose that A = {b, c}. Then A is an almost 0101-ideal of S since s1As2A∩
A = S ∩ A 6= ∅, for any s1, s2 ∈ S. On the other hand, it is not difficult to
calculate that A is not a 0101-ideal of S since SASA = S 6⊆ A.

The relation between an almost α-ideal and a subset containing such
almost α-ideal is presented as follows:

Theorem 3.5. Let S be a semigroup, and A be an almost α-ideal of S. Then
for any subset B of S containing A is also an almost α-ideal of S.

Proof. For any s1, . . . , sm ∈ S, by Lemma 2.1, we have

∅ 6= f (s1,...,sm)
α (A) ∩ A ⊆ f (s1,...,sm)

α (B) ∩ B

This means that B is an almost α-ideal of S.
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As a consequence, we obtain the following result:

Corollary 3.6. Any union of almost α-ideals in a semigroup S is also an
almost α-ideal of S.

Proof. Let {Ai : i ∈ I} be a collection of almost α-ideals of S. Since Ai ⊆
⋃

i∈I Ai and Ai is an almost α-ideal of S for all i ∈ I, by Theorem 3.5,
⋃

i∈I Ai

is an almost α-ideal of S.

By Example 3.4, we can calculate that A = {a, b} and B = {b, c} are almost
0101-ideal of S. But {b} = A ∩ B is not an almost 0101-ideal of S since
a{b}b{b} ∩ {b} = {a} ∩ {b} = ∅. This shows that the intersection of two
almost α-ideals may not be an almost α-ideal if it is not empty.

The following result provides a characterization of semigroups having no
proper almost α-ideal.

Theorem 3.7. Let S be a semigroup such that |S| > 1 and α ∈ {0, 1}∗ r
{1}∗, where |α| = n ≥ 2 and |0(α)| = m such that m < n, where m,n ∈ N

+.
Then S has no proper almost α-ideal if and only if for any proper subset I
of S there exits a subset {s1, . . . , sm} of S (depending on the set I) such that

f
(s1,...,sm)
α (S r I) = I.

Proof. Assume that S has no proper almost α-ideal. Let I be a proper
subset of S. Then S r I is not an almost α-ideal of S. This implies that
there exist s1, . . . , sm ∈ S with f

(s1,...,sm)
α (S r I) ∩ (S r I) = ∅. This means

that f
(s1,...,sm)
α (S r I) = I.

Conversely, suppose that S contains a proper almost α-ideal J . Let K ⊆
SrJ be a nonempty set. By our assumption, f

(s1,...,sm)
α (SrK) = K, for some

s1, . . . , sm ∈ S. That is, f
(s1,...,sm)
α (SrK)∩ (SrK) = ∅. On the other hand,

by Theorem 3.5, we have SrK is an almost α-ideal of S since SrK contains
an almost α-ideal J of S. This implies that f

(t1,...,tm)
α (S rK) ∩ (S rK) 6= ∅

for any t1, . . . , tm ∈ S. This contradicts the existence of s1, . . . , sm ∈ S.
Therefore, S has no proper almost α-ideal.

4 Conclusions

In this paper, we introduced the notion of almost α-ideals as a generalization
of left almost ideals, right almost ideals, almost bi-ideals, and almost interior
ideals in semigroups. Moreover, We discussed some properties of almost α-
ideals. Furthermore, we characterized semigroups having no proper almost
α-ideal. For future work, we plan to define the notion of almost fuzzy α-ideals
in semigroups and investigate some of their properties.
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