International Journal of Mathematics and Computer Science, **17**(2022), no. 1, 325–330

A note on almost α -ideals in semigroups

Nuchanat Tiprachot¹, Nareupanat Lekkoksung²

¹Department of Mathematics Faculty of Science Khon Kaen University Khon Kaen 40002, Thailand

²Division of Mathematics Faculty of Engineering Rajamangala University of Technology Isan Khon Kaen Campus Khon Kaen 40000, Thailand

email: nuchanatt@kkumail.com, nareupanat.le@gmail.com

(Received July 31, 2021, Accepted August 27, 2021)

Abstract

The notion of α -ideals in semigroups is a generalization of (m, n)ideals, where m and n are nonnegative integers. This notion was introduced by Miccoli and Pondělíček in 1989. In this paper, we define the notion of almost α -ideals in semigroups. Moreover, we provide some properties of this concept and present a characterization of semigroups having no proper almost α -ideal.

1 Introduction

The notion of (m, n)-ideals in semigroups, defined by Lajos [4], is a generalized concept of bi-ideals. Later on, this idea was extended to the concept of α -ideal [5] in semigroups by Miccoli and Pondělíček. In 1990, Catino [2] studied the concept of α -ideals in semigroups and characterized semigroups in which any α -ideal is complete.

The concept of ideals in semigroups was generalized to the notion of almost ideals [3] in 1980 by Grošek and Satko who described all semigroups having no proper almost ideals. This result was studied in other algebraic systems; ternary semigroups and semihypergroups in 2019 and 2020, respectively (see [7, 8]). In 1981, Bogdanović [1] introduced the notion of almost bi-ideals in semigroups. In 2018, Wattanatripop et al. [9] gave the notion of quasi-almost-ideal in semigroups and studied some of its properties. Simuen et al. [6] defined almost quasi- Γ -ideals in Γ -semigroups and provided some interesting basic properties.

In this paper, we define the notion of almost α -ideals in semigroups. It turns out that almost α -ideals is a generalization of almost ideals. Moreover, we present interesting properties of this concept.

2 Preliminaries

Throughout this paper, we denote the set of all nonnegative integers $\{0, 1, 2, \ldots\}$ and the set of all natural numbers $\{1, 2, 3, \ldots\}$ by \mathbb{N} and \mathbb{N}^+ , respectively. Let $\{0, 1\}^*$ be the free monoid over the set $\{0, 1\}$. We denote

the length of $\alpha \in \{0, 1\}^*$ by $|\alpha|$. A semigroup $\langle S; \circ \rangle$ is an algebra of type (2) in which the binary operation

• satisfies the associative law. For any elements $x, y \in S$, we simply write $x \circ y$ as xy. Moreover, we denote a semigroup $\langle S; \circ \rangle$ by **S**.

Let **S** be a semigroup. For any subsets A and B of S, we define

 $AB := \{ab : a \in A \text{ and } b \in B\}.$

We note that $AB := \emptyset$ if A or B is empty. If $A = \{a\}$ or $B = \{b\}$, we write AB as aB or Ab, respectively.

We now recall some important terminologies about α -ideals in semigroups (More information about α -ideals in semigroups can be found in [5]).

Let **S** be a semigroup, and $\alpha \in \{0, 1\}^*$. We define $f_{\alpha}^S \colon \mathcal{P}(S) \to \mathcal{P}(S)$ by $f_{\alpha}^S(A) := \emptyset$ if α is the empty word, and if $\alpha = a_1 \cdots a_n$ is not the empty word, then $f_{\alpha}^S(A) := A_1 \cdots A_n$, where

$$A_i := \begin{cases} A & \text{if } a_i \neq 0, \\ S & \text{if } a_i = 0, \end{cases}$$

for any $A \subseteq S$ and $1 \leq i \leq n$.

By the above definitions, we obtain the following useful lemma:

326

Lemma 2.1 ([5]). Let **S** be a semigroup, and A and B be nonempty subsets of S. Then for any $\alpha \in \{0, 1\}^*$, we have $f_{\alpha}^S(A) \subseteq f_{\alpha}^S(B)$ whenever $A \subseteq B$.

Let **S** be a semigroup. A nonempty subset A of S is said to be a subsemigroup of **S** if $AA \subseteq A$. A subsemigroup A of **S** is called an α -ideal of **S** if $f^{S}_{\alpha}(A) \subseteq A$. It is not difficult to see that:

- 1. any left ideal of \mathbf{S} is a 01-ideal of \mathbf{S} ;
- 2. any right ideal of \mathbf{S} is a 10-ideal of \mathbf{S} ;
- 3. any bi-ideal of \mathbf{S} is a 101-ideal of \mathbf{S} ;
- 4. any interior ideal of \mathbf{S} is a 010-ideal of \mathbf{S} ;
- 5. any (m, n)-ideal of **S**, where $m, n \in \mathbb{N}$, is a $1^m 01^n$ -ideal of **S**.

To define the concept of almost α -ideals in semigroups, we need to modify the operator f_{α}^{S} as follows:

Let $\alpha = a_1 \cdots a_n \in \{0, 1\}^*$ such that $|\alpha| = n$ for some $n \in \mathbb{N}$. We define the set $0(\alpha) := \{j \in \mathbb{N}^+ : a_j = 0\}$. It is clear that if α is the empty word or $\alpha = 1^m$ for all $m \in \mathbb{N}^+$, then $0(\alpha)$ is empty.

Suppose that $\alpha = a_1 \cdots a_n \in \{0, 1\}^*$ such that $|\alpha| = n$, for some $n \in \mathbb{N}^+$ and $0(\alpha) = \{i_1, \ldots, i_m\}$. Let **S** be a semigroup. For any nonempty subsets S_1, \ldots, S_m of S, we define $f_{\alpha}^{(S_1, \ldots, S_m)} : \mathcal{P}(S) \to \mathcal{P}(S)$ by

$$f_{\alpha}^{(S_1,\ldots,S_m)}(A) := A_1 \cdots A_n,$$

for all $A \subseteq S$, where

$$A_i := \begin{cases} A & \text{if } a_i = 1, \\ S_j & \text{if } a_i = 0 \text{ and } i = i_j, \end{cases}$$

for all $1 \leq i \leq n$.

For any subset A of S, it is clear that $f_{\alpha}^{(S_1,\ldots,S_m)}(A) \subseteq f_{\alpha}^S(A)$, for all subsets S_1,\ldots,S_m of S. We note that the set $0(\alpha)$ may be empty. If for any $1 \leq j \leq m, S_j = \{s_j\}$ is a singleton set, then we usually write $f_{\alpha}^{(S_1,\ldots,S_m)}(A)$ as $f_{\alpha}^{(s_1,\ldots,s_m)}(A)$.

3 Almost α -ideals

In what follows, we assume that $\alpha \in \{0,1\}^* \setminus \{1\}^*$ with $|\alpha| = n \ge 2$ and the cardinality of $0(\alpha)$ is m such that m < n, where $m, n \in \mathbb{N}^+$. Now, we are ready to define our concept.

Definition 3.1. Let **S** be a semigroup. A nonempty subset A of S is said to be an almost α -ideal of **S** if $f_{\alpha}^{(s_1,\ldots,s_m)}(A) \cap A \neq \emptyset$ for any $s_1,\ldots,s_m \in S$.

Remark 3.2. Every almost left (resp., right, bi-, interior, (m, n)-) ideal is an almost 01- (resp., 10-, 101-, 010-, $1^m 01^n$ -) ideal, respectively.

Proposition 3.3. Let **S** be a semigroup. Then any α -ideal of **S** is an almost α -ideal of **S**.

Proof. Suppose that A is an α -ideal of **S**. Let $s_1, \ldots, s_m \in S$. Since $f_{\alpha}^{(s_1,\ldots,s_m)}(A) \subseteq f_{\alpha}^S(A) \subseteq A$, we have $f_{\alpha}^{(s_1,\ldots,s_m)}(A) \cap A \neq \emptyset$. This shows that A is an almost α -ideal of **S**.

The converse of Proposition 3.3 does not hold in general as shown in the following example:

Example 3.4. Consider the semigroup **S** defined by the following Cayley table:

0	a	b	c
a	a	b	c
b	b	С	a
c	c	a	b

Suppose that $A = \{b, c\}$. Then A is an almost 0101-ideal of **S** since $s_1As_2A \cap A = S \cap A \neq \emptyset$, for any $s_1, s_2 \in S$. On the other hand, it is not difficult to calculate that A is not a 0101-ideal of **S** since $SASA = S \not\subseteq A$.

The relation between an almost α -ideal and a subset containing such almost α -ideal is presented as follows:

Theorem 3.5. Let \mathbf{S} be a semigroup, and A be an almost α -ideal of \mathbf{S} . Then for any subset B of S containing A is also an almost α -ideal of \mathbf{S} .

Proof. For any $s_1, \ldots, s_m \in S$, by Lemma 2.1, we have

$$\emptyset \neq f_{\alpha}^{(s_1,\ldots,s_m)}(A) \cap A \subseteq f_{\alpha}^{(s_1,\ldots,s_m)}(B) \cap B$$

This means that B is an almost α -ideal of **S**.

328

As a consequence, we obtain the following result:

Corollary 3.6. Any union of almost α -ideals in a semigroup **S** is also an almost α -ideal of **S**.

Proof. Let $\{A_i : i \in I\}$ be a collection of almost α -ideals of **S**. Since $A_i \subseteq \bigcup_{i \in I} A_i$ and A_i is an almost α -ideal of **S** for all $i \in I$, by Theorem 3.5, $\bigcup_{i \in I} A_i$ is an almost α -ideal of **S**.

By Example 3.4, we can calculate that $A = \{a, b\}$ and $B = \{b, c\}$ are almost 0101-ideal of **S**. But $\{b\} = A \cap B$ is not an almost 0101-ideal of **S** since $a\{b\}b\{b\} \cap \{b\} = \{a\} \cap \{b\} = \emptyset$. This shows that the intersection of two almost α -ideals may not be an almost α -ideal if it is not empty.

The following result provides a characterization of semigroups having no proper almost α -ideal.

Theorem 3.7. Let **S** be a semigroup such that |S| > 1 and $\alpha \in \{0,1\}^* \setminus \{1\}^*$, where $|\alpha| = n \ge 2$ and $|0(\alpha)| = m$ such that m < n, where $m, n \in \mathbb{N}^+$. Then **S** has no proper almost α -ideal if and only if for any proper subset I of S there exits a subset $\{s_1, \ldots, s_m\}$ of S (depending on the set I) such that $f_{\alpha}^{(s_1,\ldots,s_m)}(S \setminus I) = I$.

Proof. Assume that **S** has no proper almost α -ideal. Let I be a proper subset of S. Then $S \setminus I$ is not an almost α -ideal of **S**. This implies that there exist $s_1, \ldots, s_m \in S$ with $f_{\alpha}^{(s_1,\ldots,s_m)}(S \setminus I) \cap (S \setminus I) = \emptyset$. This means that $f_{\alpha}^{(s_1,\ldots,s_m)}(S \setminus I) = I$.

Conversely, suppose that **S** contains a proper almost α -ideal J. Let $K \subseteq S \smallsetminus J$ be a nonempty set. By our assumption, $f_{\alpha}^{(s_1,\ldots,s_m)}(S \smallsetminus K) = K$, for some $s_1,\ldots,s_m \in S$. That is, $f_{\alpha}^{(s_1,\ldots,s_m)}(S \smallsetminus K) \cap (S \smallsetminus K) = \emptyset$. On the other hand, by Theorem 3.5, we have $S \smallsetminus K$ is an almost α -ideal of **S** since $S \smallsetminus K$ contains an almost α -ideal J of **S**. This implies that $f_{\alpha}^{(t_1,\ldots,t_m)}(S \smallsetminus K) \cap (S \smallsetminus K) \neq \emptyset$ for any $t_1,\ldots,t_m \in S$. This contradicts the existence of $s_1,\ldots,s_m \in S$. Therefore, **S** has no proper almost α -ideal.

4 Conclusions

In this paper, we introduced the notion of almost α -ideals as a generalization of left almost ideals, right almost ideals, almost bi-ideals, and almost interior ideals in semigroups. Moreover, We discussed some properties of almost α ideals. Furthermore, we characterized semigroups having no proper almost α -ideal. For future work, we plan to define the notion of almost fuzzy α -ideals in semigroups and investigate some of their properties.

References

- S. Bogdanović, Semigroups in which some bi-ideal is a group, Review of Research Faculty of Science-University of Novi Sad, 11, (1981), 261–266.
- [2] F. Catino, On complete α -ideals in semigroups, Czechoslovak Math. J., **40**, no. 1, (1990), 155–158.
- [3] O. Grošek, L. Satko, A new notion in the theory of semigroup, Semigroup Forum, 20, (1980), 233–240.
- [4] S. Lajos, Generalized ideals in semigroups, Acta Sci. Math. (Szeged), 22, (1961), 217–222.
- [5] M. M. Miccoli, B. Pondělíček, On α-ideals and generalized α-ideals in semigroups, Czechoslovak Math. J., 39, no. 3, (1989), 522–527.
- [6] A. Simuen, K. Wattanatripop, R. Chinram, Characterizing Almost Quasi-Γ-ideals and Fuzzy Almost Quasi-Γ-ideals of Γ-semigroups, Comm. Math. App., **11**, no. 2, (2020), 233–240.
- [7] S. Suebsung, T. Kaewnoi, R. Chinram, A note on almost hyperideals in semihypergroups, Int. J. Math. Comput. Sci., 15, no. 1, (2020), 127–133.
- [8] S. Suebsung, K. Wattanatripop, R. Chinram, A-ideals and fuzzy Aideals of ternary semigroups, Songklanakarin J. Sci. Tech., 41, no. 2, (2019), 299–304.
- [9] K. Wattanatripop, R. Chinram, T. Changphas, Quasi-A-ideals and fuzzy A-ideals in semigroups, J. Discrete Math. Sci. Cryptography, 21, no. 5, (2018), 1131–1138.