Non-uniform bound on normal approximation for call function of locally dependent random variables

Suporn Jongpreechaharn1, Kritsana Neammanee1,2

1Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Bangkok, Thailand

2Centre of Excellence in Mathematics
Commission on Higher Education
Bangkok, Thailand

email: suporn.jon@student.chula.ac.th, kritsana.n@chula.ac.th

(Received July 2, 2021, Accepted August 8, 2021)

Abstract

In this paper, we concentrate on a mean for call function of random variables which is useful and important, especially in finance. We propose a non-uniform bound from a normal approximation under local dependence by using the Stein’s method. Finally, we illustrate an application on a collateralized debt obligation.

1 Introduction and main results

A call function, defined by $(x-k)^+ = \max\{x-k,0\}$, where x and k are real numbers, is useful and important, especially in finance. In 2009, Karoui and Jiao [8] and Karoui, Jiao and Kurtz [9] approximated a loss on each tranche of a collateralized debt obligation (CDO) in the form of $E(W-k)^+$, where W is a sum of independent random variables and k is a real number.

\textbf{Key words and phrases}: non-uniform bound, Stein’s method, local dependence, call function, normal approximation.

\textbf{AMS (MOS) Subject Classifications}: 60F05.

\textbf{ISSN} 1814-0432, 2022, http://ijmcs.future-in-tech.net
They used the Stein’s method to obtain error bounds from approximating $E(W - k)^+$ by a mean for call function of Poisson and normal random variables. The refined bounds are proposed by Yonghint and Neammanee [10] for Poisson approximation and Jongpreechaharn and Neammanee [7] for normal approximation under the same assumption. For a normal approximation, Jongpreechaharn and Neammanee [6] extended the assumption to a local dependence motivated by Chen and Shao [4].

Let X_1, X_2, \ldots, X_n be random variables with zero means and finite variances. For $A \subseteq \{1, 2, \ldots, n\}$, let X_A denote $\{X_i : i \in A\}$ and $A^c = \{i \in \{1, 2, \ldots, n\} : i \notin A\}$. We say that X_1, X_2, \ldots, X_n satisfy the local dependence condition if there exists a partition $\{A_i\}_{i=1}^{l_n}$ of $\{1, 2, \ldots, n\}$ such that for each $i \in \{1, 2, \ldots, l_n\}$, X_{A_i} and $X_{A_i^c}$ are independent.

Let Z be a standard normal random variable and let k be a positive real number. Denote $W = \sum_{i=1}^{n} X_i$ and assume that W has a unit variance.

Suppose that X_1, X_2, \ldots, X_n satisfy the local dependence condition. Jongpreechaharn and Neammanee [6] approximated $E(W - k)^+$ by $E(Z - k)^+$ and proposed a uniform bound in the following theorem.

Theorem 1.1 ([6]). For each $i = 1, 2, \ldots, l_n$, let $Y_i = \sum_{j \in A_i} X_j$. Under the local dependence condition, we have

$$
\sup_{k > 0} |E(W - k)^+ - E(Z - k)^+| \\
\leq 24.97 \sum_{i=1}^{l_n} E|Y_i|^3 + 0.80 \left(\sum_{i=1}^{l_n} EY_i^4 \right)^{1/2} + \left(l_n EW^4 \sum_{i=1}^{l_n} EY_i^6 \right)^{1/2},
$$

where $EW^4 \leq \sum_{i=1}^{l_n} EY_i^4 + 3$.

In this work, we use Stein’s method introduced in Section 2 to obtain a non-uniform bound as follows.

Theorem 1.2. For each $i = 1, 2, \ldots, l_n$, let $Y_i = \sum_{j \in A_i} X_j$. Under the local dependence condition and $k \geq 2$, we have

$$
|E(W - k)^+ - E(Z - k)^+| \\
\leq C_1(k) \sum_{i=1}^{l_n} E|Y_i|^3 + C_2(k) \left(\sum_{i=1}^{l_n} EY_i^4 \right)^{1/2} + C_3(k) \left(l_n \sum_{i=1}^{l_n} EY_i^6 \right)^{1/2},
$$

where

$$
C_1(k) = \frac{5.5e^{-k^2/2}}{\sqrt{2\pi k^2}} + \frac{5.5}{k} + \frac{1}{2k^2}, \quad C_2(k) = \frac{e^{-k^2/2}}{\sqrt{2\pi k^2}} + \frac{1}{k},
$$
Non-uniform bound on normal... 209

\[C_3(k) = \frac{3}{k} \sqrt{EW^6} + \frac{15.69}{k} \sqrt{EW^4} + \frac{18.24}{k^2}, \quad EW^4 \leq \sum_{i=1}^{l_n} EY_i^4 + 3 \]

and

\[EW^6 \leq \sum_{i=1}^{l_n} EY_i^6 + 15 \sum_{i=1}^{l_n} EY_i^4 + 10 \left(\sum_{i=1}^{l_n} EY_i^3 \right)^2 + 15. \]

In addition, applying Theorem 1.2 with independent and identically distributed random variables gives a convergence rate of the non-uniform bound. Let \(X_1, X_2, \ldots, X_n\) be independent and identically distributed random variables with \(\Pr(X_1 = 1/\sqrt{n}) = \Pr(X_1 = -1/\sqrt{n}) = 1/2\) and \(W = \sum_{i=1}^{n} X_i\). Thus, by choosing \(A_i = \{i\}\) for \(i = 1, 2, \ldots, n\) in Theorem 1.2, we obtain the following corollary.

Corollary 1.3. Adopting the notations in Theorem 1.2, we have for \(k \geq 2\) that

\[\left| E(W - k)^+ - E(Z - k)^+ \right| \leq \frac{a_k}{\sqrt{n}}, \]

where

\[a_k = \frac{6.5 e^{1-k^2/2}}{\sqrt{2\pi k^2}} + \frac{1}{2k^2} + \frac{24.74}{k} + \frac{3}{k} \left(\frac{1}{n^2} + \frac{25}{n} + 15 \right)^{1/2} + \frac{15.69}{k} \left(\frac{1}{n} + 3 \right)^{1/2}. \]

Observe that, a non-uniform bound steadily declines as \(k\) gets larger.

2 Stein’s method on normal approximation for call function

In 1972, Stein [11] discovered a powerful method for finding a bound from approximation (see also [1] and [3]). The foundation of Stein’s method is the differential equation called the Stein equation. Let \(Z\) be a standard normal random variable. The Stein equation on normal approximation for a given function \(h\) is

\[xf(x) - f'(x) = h(x) - Eh(Z). \quad (2.1) \]

In this work, we let \(h(x) = (x - k)^+\) for a fixed positive real number \(k\). Thus, (2.1) becomes

\[xf(x) - f'(x) = (x - k)^+ - E(Z - k)^+. \quad (2.2) \]

From (2.2), we substituting \(x\) by any random variable \(W\) and taking an expectation on both sides of the equation, we obtain

\[EWf_k(W) - Ef'_k(W) = E(W - k)^+ - E(Z - k)^+, \quad (2.3) \]
where f_k is the Stein solution of (2.2). From (2.3), a targeted bound for $|E(W - k)^+ - E(Z - k)^+|$ can be verified from $|EF_k(W) - Ef_k'(W)|$ instead. This is a procedure of the Stein’s method on normal approximation. In order to verify a bound for $|EF_k(W) - Ef_k'(W)|$, the properties of the Stein solution f_k and its derivative f'_k are essential. Notice that

$$f_k(x) = \begin{cases} \sqrt{2\pi e^{x^2/2}}E(Z - k)^+\Phi(x), & \text{if } x \leq k, \\ 1 - \sqrt{2\pi e^{x^2/2}}[k + E(Z - k)^+]\Phi(-x), & \text{if } x > k \end{cases}$$

and

$$f'_k(x) = \begin{cases} E(Z - k)^+ \left(1 + \sqrt{2\pi x\Phi(x)e^{x^2/2}}\right), & \text{if } x \leq k, \\ [k + E(Z - k)^+] \left(1 - \sqrt{2\pi x\Phi(-x)e^{x^2/2}}\right), & \text{if } x > k, \end{cases}$$

(see also [6] and [7]), where Φ is the cumulative distribution function of Z.

Next, we propose some properties of them in Propositions 2.1 and 2.2 which are used to prove the main theorem.

Proposition 2.1. For $x \leq k$ and $k \geq 1$, we have $|f_k(x)| \leq \frac{1}{k^2}$.

Proof. Let $x \leq k$ and $k \geq 1$. Note that $f_k(x) \geq 0$. If $|x| \leq k$, then by the fact that

$$E(Z - k)^+ \leq \frac{e^{-k^2/2}}{\sqrt{2\pi k^2}} \text{ for } k \geq 1, \quad (2.4)$$

(see [7], p.3502), we have $f_k(x) \leq \frac{1}{k^2}$. Suppose that $x < -k$. By the fact that

$$\Phi(-a) \leq \frac{e^{-a^2/2}}{\sqrt{2\pi a}} \text{ for } a > 0, \quad (2.5)$$

(see [11], p.23) and (2.4), we have $f_k(x) \leq \frac{E(Z - k)^+}{-x} < \frac{e^{-k^2/2}}{\sqrt{2\pi k^2}}$. Hence $|f_k(x)| \leq \frac{1}{k^2}$ for $x \leq k$.

Let $\|g\| = \sup_{x \in \mathbb{R}} |g(x)|$ for every real-valued function g on \mathbb{R}.

Proposition 2.2. For $k \geq 1$, we have $\|f'_k\| \leq \frac{e^{-k^2/2}}{\sqrt{2\pi k^2}} + \frac{1}{k}$.

Proof. Let $x \leq k$. If $x < 0$, by (2.5), we have $0 \leq 1 + \sqrt{2\pi x\Phi(x)e^{x^2/2}}$. Hence, $0 \leq 1 + \sqrt{2\pi x\Phi(x)e^{x^2/2}} \leq 1$. By this inequality and (2.4), we have $0 \leq f'_k(x) \leq \frac{e^{-k^2/2}}{\sqrt{2\pi k^2}}$ for $x < 0$. Suppose that $x \geq 0$. Then $f'_k(x) \geq 0$. By (2.4),
we have $f'_k(x) \leq E(Z - k)^+ \left(1 + \sqrt{2\pi} e^{k^2/2} \right) \leq \frac{e^{-k^2/2}}{\sqrt{2\pi} k^2} + \frac{1}{k}$. Thus, for $x \geq 0$, we have $0 \leq f'_k(x) \leq \frac{e^{-k^2/2}}{\sqrt{2\pi} k^2} + \frac{1}{k}$. Therefore,

$$0 \leq f'_k(x) \leq \frac{e^{-k^2/2}}{\sqrt{2\pi} k^2} + \frac{1}{k} \quad \text{for } x \leq k.$$

Assume that $x > k$. By (2.5), we obtain $\sqrt{2\pi} \Phi(-x)e^{x^2/2} \leq 1$. Then $f'_k(x) \geq 0$. On the other hand, note that $\Phi(-a) \geq e^{-a^2/2 - \frac{1}{2k^2}}$ for $a > 0$, (see [7], p.3502). Thus $\sqrt{2\pi} \Phi(-x)e^{x^2/2} \geq 1 - \frac{1}{x^2} > 1 - \frac{1}{k^2}$. From this fact and (2.4), we obtain $f'_k(x) \leq \frac{k + E(Z-k)^+}{k^2} \leq \frac{1}{k} + \frac{e^{-x^2/2}}{\sqrt{2\pi} k^2}$. Hence

$$0 \leq f'_k(x) \leq \frac{e^{-k^2/2}}{\sqrt{2\pi} k^4} + \frac{1}{k} \quad \text{for } x > k.$$

Combining these two cases, we obtain $\|f'_k\| \leq \frac{e^{-k^2/2}}{\sqrt{2\pi} k^2} + \frac{1}{k}$ for $k \geq 1$. \hfill \Box

Next, we use the Stein’s method and properties of the Stein solution in Propositions 2.1 and 2.2 to provide a non-uniform bound for $|E(W - k)^+ - E(Z - k)^+|$.

3 Proof of the results

Proof of Theorem 1.2. By the proof of Theorem 1.1, we have

$$EW f_k(W) - Ef'_k(W) = R_1 + R_2 + R_3,$$ \hspace{1cm} (3.6)

where

$$|R_1| \leq \|f'_k\| \left[\left(\sum_{i=1}^{l_n} EY_i^4 \right)^{1/2} + 2 \sum_{i=1}^{l_n} E|Y_i|^3 \right],$$

$$|R_2| \leq 2\|f'_k\| \sum_{i=1}^{l_n} E|Y_i|^3,$$

$$|R_3| \leq E \int_{|t| \leq 1} |f'_k(W + t) - f'_k(W)| \tilde{K}(t) dt$$

and

$$\tilde{K}(t) = \sum_{i=1}^{l_n} Y_i \left[\mathbb{I}(-Y_i \leq t < 0) - \mathbb{I}(0 \leq t \leq -Y_i) \right].$$
From Proposition 2.2, we obtain

$$|R_1| \leq \left(\frac{e^{-k^2/2}}{\sqrt{2\pi k^2}} + \frac{1}{k} \right) \left[\left(\sum_{i=1}^{l_n} EY_i^4 \right)^{1/2} + 2 \sum_{i=1}^{l_n} E|Y_i|^3 \right]$$ \hspace{1cm} (3.7)$$

and

$$|R_2| \leq 2 \left(\frac{e^{-k^2/2}}{\sqrt{2\pi k^2}} + \frac{1}{k} \right) \sum_{i=1}^{l_n} E|Y_i|^3.$$ \hspace{1cm} (3.8)$$

For R_3, we use the truncation technique to rewrite R_3 by

$$|R_3| \leq R_{3,1} + R_{3,2} + R_{3,3},$$ \hspace{1cm} (3.9)$$

where

$$R_{3,1} = E \int_{|t| \leq 1} |f'_k(W + t) - f'_k(W)| \mathbb{I}(W > k) \hat{K}(t) dt,$$

$$R_{3,2} = E \int_{|t| \leq 1} |f'_k(W + t) - f'_k(W)| \mathbb{I}(W > k, W \leq k) \hat{K}(t) dt$$

and

$$R_{3,3} = E \int_{|t| \leq 1} |f'_k(W + t) - f'_k(W)| \mathbb{I}(W \leq k, W \leq k) \hat{K}(t) dt.$$

By Proposition 1 of [6], we have $|f'_k(x + t) - f'_k(x)| \leq 2x^2|t| + 10.46|x||t| + 12.16|t|$ for $|t| \leq 1$ and $x \in \mathbb{R}$. This implies that

$$R_{3,1} \leq E \left(2W^2 + 10.46|W| + 12.16 \right) \mathbb{I}(W > k) \int_{|t| \leq 1} |t| \hat{K}(t) dt$$

and

$$R_{3,2} \leq E \left(2W^2 + 10.46|W| + 12.16 \right) \mathbb{I}(W > k - 1) \int_{|t| \leq 1} |t| \hat{K}(t) dt.$$

By the Hölder’s inequality, the Markov’s inequality and the fact in [6] that $E \left(\int_{|t| \leq 1} |t| \hat{K}(t) dt \right)^2 \leq \frac{l_n}{4} \sum_{i=1}^{l_n} EY_i^6$, we obtain

$$R_{3,1} \leq \left[2 \left(EW^4 \mathbb{I}(W > k) \right)^{1/2} + 10.46 \left(EW^2 \mathbb{I}(W > k) \right)^{1/2} \right.$$

$$+ 12.16 \left(\Pr(W > k) \right)^{1/2} \left[E \left(\int_{|t| \leq 1} |t| \hat{K}(t) dt \right)^2 \right]^{1/2} \left[l_n \sum_{i=1}^{l_n} EY_i^6 \right]^{1/2} \right) \frac{1}{k} \left(\sqrt{EW^6} + 5.23\sqrt{EW^4} + 6.08 \right) \left(l_n \sum_{i=1}^{l_n} EY_i^6 \right)^{1/2}. \hspace{1cm} (3.10)$$
Using the same argument for bounding $R_{3,1}$, we obtain

$$R_{3,2} \leq \frac{1}{k-1} \left(\sqrt{E W^6} + 5.23 \sqrt{E W^4} + 6.08 \right) \left(\sum_{i=1}^{n} E Y_i^6 \right)^{1/2}.$$

Since $k \geq 2$, $\frac{1}{k-1} \leq \frac{2}{k}$. From this fact, we have

$$R_{3,2} \leq \frac{2}{k} \left(\sqrt{E W^6} + 5.23 \sqrt{E W^4} + 6.08 \right) \left(\sum_{i=1}^{n} E Y_i^6 \right)^{1/2}. \tag{3.11}$$

Thus, it remains to consider $R_{3,3}$. By the proof of Proposition 1 of [6], we have $|f_k(x + t) - f_k(x)| \leq \|f_k\| |x||t| + |f_k(x + t)||t|$ for $x + t \leq k$ and $x \leq k$. By this inequality and Propositions 2.1 and 2.2, we have

$$|f_k(x + t) - f_k(x)| \leq \left(\frac{e^{-k^2/2}}{\sqrt{2\pi k^2}} + \frac{1}{k} \right) |x||t| + \frac{|t|}{k^2}.$$

This implies that

$$R_{3,3} \leq E \left[\left(\frac{e^{-k^2/2}}{\sqrt{2\pi k^2}} + \frac{1}{k} \right) |W| + \frac{1}{k^2} \right] \int_{|t| \leq 1} |t| \hat{K}(t) dt.$$

By the fact that $\int_{|t| \leq 1} |t| \hat{K}(t) dt \leq \frac{1}{2} \sum_{i=1}^{n} |Y_i|(Y_i^2 \land 1)$, where $a \land b = \min\{a, b\}$ for any real numbers a and b, (see [6]), we obtain

$$R_{3,3} \leq \frac{1}{2} \left(\frac{e^{-k^2/2}}{\sqrt{2\pi k^2}} + \frac{1}{k} \right) \sum_{i=1}^{n} E |W Y_i| (Y_i^2 \land 1) + \frac{1}{2k^2} \sum_{i=1}^{n} E |Y_i|^3.$$

By modification of the proof of r_4 in Theorem 2.2 of [4] on p.2013, we obtain $E |W Y_i|(Y_i^2 \land 1) \leq 3E |Y_i|^3$. This implies that

$$R_{3,3} \leq \left(\frac{3e^{-k^2/2}}{2\sqrt{2\pi k^2}} + \frac{3}{2k} + \frac{1}{2k^2} \right) \sum_{i=1}^{n} E |Y_i|^3. \tag{3.12}$$

Combining (3.6)–(3.12), we obtain

$$|E(W - k)^+ - E(Z - k)^+|$$

$$\leq \left(\frac{5.5e^{-k^2/2}}{\sqrt{2\pi k^2}} + \frac{5.5}{k} + \frac{1}{2k^2} \right) \sum_{i=1}^{n} E |Y_i|^3 + \left(\frac{e^{-k^2/2}}{\sqrt{2\pi k^2}} + \frac{1}{k} \right) \left(\sum_{i=1}^{n} E Y_i^4 \right)^{1/2}$$

$$+ \left(\frac{3}{k} \sqrt{E W^6} + \frac{15.69}{k} \sqrt{E W^4} + \frac{18.24}{k} \right) \left(\sum_{i=1}^{n} E Y_i^6 \right)^{1/2}. \tag{3.13}$$
Next, we find bounds for EW^4 and EW^6. Notice that
\[
EW^4 \leq \sum_{i=1}^{l_n} EY_i^4 + 3, \tag{3.14}
\]
(see [6]). For EW^6, we first notice that Y_i and Y_j are independent for distinct i and j and $EY_i = 0$. Then $\sum_{i=1}^{l_n} EY_i^2 = EW^2 = 1$, (see [6]). This implies that
\[
EW^6 = \sum_{i=1}^{l_n} EY_i^6 + 15 \sum_{i=1}^{l_n} \sum_{j=1, j \neq i}^{l_n} EY_i^4 EY_j^2 + 10 \sum_{i=1}^{l_n} \sum_{j=1, j \neq i}^{l_n} EY_i^3 EY_j^3
\]
\[+ 15 \sum_{i=1}^{l_n} \sum_{j=1, j \neq i}^{l_n} \sum_{l=1, l \neq i, l \neq j}^{l_n} EY_i^2 EY_j^2 EY_l^2
\]
\[
\leq \sum_{i=1}^{l_n} EY_i^6 + 15 \sum_{i=1}^{l_n} EY_i^4 + 10 \left(\sum_{i=1}^{l_n} EY_i^3 \right)^2 + 15. \tag{3.15}
\]
Combining (3.13)–(3.15), the proof is complete. \hfill \Box

Proof of Corollary 1.3. For $r \geq 1$, we have $E|Y_i|^r = E|X_i|^r = \frac{1}{n^{r/2}}$. This implies that $EW^4 \leq \frac{1}{n} + 3$ and $EW^6 \leq \frac{1}{n^2} + \frac{25}{n} + 15$. From these inequalities and Theorem 1.2, we have Corollary 1.3 as required. \hfill \Box

4 Application on collateralized debt obligation

Consider a collateralized debt obligation (CDO) containing n assets. A total loss of a CDO at time T is defined by $L(T) = \frac{1}{n} \sum_{i=1}^{n} (1 - R_i) \mathbb{I}(\tau_i \leq T)$, where $\mathbb{I}(A)$ is an indicator function of A, R_i and τ_i are deterministic recovery rate and stochastic default time for the ith asset, respectively. One is interested in calculation of a loss on each tranche of the CDO given by $(L(T) - AP)^+ - (L(T) - DP)^+$, where AP and DP are attachment and detachment points of the tranche, respectively, (see [2] and [5] for more details). Therefore, we concentrate on $E(L(T) - a)^+$, where a is a positive real number.

Let $X_i = \frac{(1-R_i)\mathbb{I}(\tau_i \leq T) - E\mathbb{I}(\tau_i \leq T)}{n \sqrt{\text{Var} L(T)}}$ and $W = \sum_{i=1}^{n} X_i$. Then W has zero mean.
and unit variance. We classify assets in a CDO by their corresponding workplace. Let l_n be a number of workplaces and let A_i be a group of assets from the same workplace for $i = 1, 2, \ldots, l_n$. Then $\{I(\tau_i \leq T)\}_{i=1}^n$ satisfies the local dependence condition.

To simplify the verification, assume that $\{I(\tau_i \leq T)\}_{i=1}^n$ are identically Bernoulli random variables with $\Pr(I(\tau_i \leq T) = 1) = \Pr(I(\tau_i \leq T) = 0) = 1/2$, $E[I(\tau_i \leq T)I(\tau_j \leq T)] = 1/2$ and $R = R_i$. Suppose that every group A_i contains c assets. Thus $l_n = n/c$.

Theorem 4.1. Adopting notations defined above, we have

1. $\sup_{k>0}|E(W-k)^+ - E(Z-k)^+| \leq b\sqrt{\frac{c}{n}}$, where $b = 25.77 + (\frac{c}{n} + 3)^{1/2}$,

2. for $k \geq 2$, we have $|E(W-k)^+ - E(Z-k)^+| \leq b_k\sqrt{\frac{c}{n}}$,

where $b_k = \frac{6.5e^{-k^2/2}}{\sqrt{2\pi k^2}} + \frac{1}{2k^2} + \frac{24.74}{k} + \frac{3}{k} \left(\frac{c^2}{n^2} + \frac{25}{n} + 15 \right)^{1/2} + \frac{15.69}{k} \left(\frac{c}{n} + 3 \right)^{1/2}$.

Proof. Note that $E[I(\tau_i \leq T)] = 1/2$ and $\text{Var} L(T) = \frac{(1-R)^2}{n^2} \sum_{i=1}^{l_n} \sum_{j \in A_i} \sum_{l \in A_i} \text{Cov}(I(\tau_j \leq T), I(\tau_l \leq T)) = \frac{c(1-R)^2}{4n}$.

Thus $X_i = \frac{2(\tau_i \leq T)^{-1}}{\sqrt{cn}}$ and hence $E[Y_i]^r = E\left[\sum_{j \in A_i} X_j\right]^r = \left(\frac{c}{n} \right)^{r/2}$ for $r \geq 1$.

This implies that $EW^4 \leq \frac{c}{n} + 3$ and $EW^6 \leq \frac{c^2}{n^2} + \frac{25c}{n} + 15$. From these inequalities and Theorems 1.1 and 1.2, we have Theorem 4.1 as required.

Table 1 shows constants b and b_k, where we bound $\frac{1}{n^2} \leq \frac{1}{n} \leq 1$ and vary the values of c as shown. Observe that, when the number of correlated random variables c is increased, we always can find a constant k such that a non-uniform bound is sharper than a uniform bound.

<table>
<thead>
<tr>
<th>c</th>
<th>b</th>
<th>b_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 5</td>
<td>28.5985</td>
<td>28.5985</td>
</tr>
<tr>
<td>≤ 10</td>
<td>29.3756</td>
<td>29.3756</td>
</tr>
<tr>
<td>≤ 50</td>
<td>33.0502</td>
<td>33.0502</td>
</tr>
</tbody>
</table>

Table 1: Comparison of the constant b for uniform bound and b_k for non-uniform bound.
Acknowledgment. The first author appreciates the financial support by Human Resource Development in Science Project (Science Achievement Scholarship of Thailand, SAST).

References

