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Abstract

We study the re-parameterized length-biased inverse Gaussian dis-
tribution based on [1]. We propose an alternative to estimators with
the method of moments and the maximum likelihood method in a
closed-form expression. We compare the effectiveness of estimators
with the method of moments and the maximum likelihood method
using mean squared error (MSE), and Bias. Moreover, we use the R
package “ELBIG” for the parameter estimation for re-parameterized
length-biased inverse Gaussian distribution with two estimation meth-
ods: the maximum likelihood method, and the method of moments.
Furthermore, we illustrate with an example the real data for the pro-
posed estimators. The results show that the parameter estimation
of re-parameterized length-biased inverse Gaussian distribution using
the method of moments and the maximum likelihood method pro-
duces a consistent estimator and the maximum likelihood estimators
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are more precise than the method of moment estimators. In addi-
tion, the proposed estimators are more efficient than the maximum
likelihood estimators via “nlminb” function in the R program.

1 Introduction

The inverse Gaussian distribution first became well-known when it was pre-
sented by Schrodinger [2] as the first passage time distribution of Brownian
motion with positive drift. Also, Tweedie [3], and [4] named this distribution
the Inverse Gaussian Distribution due to the cumulant generating function
of this distribution. It was the inverse with the cumulant generating function
of Gaussian distribution. The length-biased version of the inverse Gaussian
distribution was studied by Khattree [6]. It is actually a special weighted dis-
tribution, proposed by Patil and Rao [5]. The other name of the length-biased
inverse Gaussian distribution is the complementary reciprocal of the inverse
Gaussian distribution. The inverse Gaussian distribution and the length-
biased inverse Gaussian distribution are suitable for the biometric sampling
plans and the survival analysis. The research of Patil and Rao [7], Blumenthal
[8], Scheaffer [9], and Simon [10] demonstrated the use of the length-biased
sampling in various areas. The research of Cnaan [11] described the meaning
of the length-biased distribution in random sampling for studying coronary
artery disease. Sen [12] studied mathematical properties, arithmetic, geomet-
ric and harmonic means, and described the characteristics of length-biased
sampling. Gupta and Kirmani [13] examined the relationship between the
length-biased and the former random variable in an article on experiments
of service life with reliability measurement. Akman and Gupta [14] com-
pared the uniformly minimum variance unbiased estimator (UMVUE) and
the maximum likelihood estimator (MLE) of the parameter µ where the data
have the inverse Gaussian distribution IG(µ, cµ2) and the length-biased in-
verse Gaussian distribution LBIG(µ, cµ2). Gupta and Akman [15] used some
results of Sen [12] for developing the inverse moments, asymptotic tests, and
confidence intervals for the mean and the coefficient of variation of the in-
verse Gaussian distribution based on the length biased data. Phaphan and
Pongsart [16] carried out a study into the Fisher’s information matrix to con-
struct the asymptotic confidence ellipses of parameters for the length-biased
inverse Gaussian distribution in the parameter proposed by Chhikara and
Folk [17]. Other researchers, including Pudprommarat [18] and Simmachan
et al. [19], conducted a study of length-biased distribution. In this paper,
we deal with the study of re-parameterized length-biased inverse Gaussian
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distribution according to Phaphan [1]. The probability density function of
the re-parameterized length-biased inverse Gaussian distribution is given by
the formula:

fLBIG(x;λ, θ) =
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(1.1)

where λ > 0, θ > 0 represent the parameters of the length-biased inverse
Gaussian distribution LBIG(λ, θ).

According to the literature review of the re-parameterized length-biased
inverse Gaussian distribution, the results lead us to conclude that the study
of constructing estimators of re-parameterized length-biased inverse Gaus-
sian distribution based on [1] by employing the method of moments and
the maximum likelihood method in a closed-form expression have not been
carried out in a study. Consequently, we are not only interest in the topic
mentioned above but also in using the R language package for parameter
estimation for practical applications in medical science and engineering.

2 Parameter Estimation

2.1 Method of Moment

Theorem 2.1. Given X ∽ LBIG(λ, θ) and x1, . . . , xn be a positive random

sample of size n. Let x̄ = 1

n

∑n
i=1

xi, s
2 = 1

n

∑n
i=1

(xi − x̄)2. Then the method

of moments estimators of the parameters λ and θ are

λ̃MME =
x̄2 − 2s2 + x̄

√
x̄2 + 4s2

2s2
,

θ̃MME =
−x̄+

√
x̄2 + 4s2

2
. (2.2)

Proof. The characteristic function of the LBIG distribution [21] is

ϕLBIG(t) = (1− 2iθt)−1/2 exp
{

λ[1− (1− 2iθt)1/2]
}

. (2.3)

Then the logarithm of the characteristic function is

lnϕLBIG(t) = −
1

2
ln(1− 2iθt) + λ[1− (1− 2iθt)1/2],

= −
1

2
ln(1− 2iθt)− λ(1− 2iθt)1/2 + λ. (2.4)
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Using MacLaurin’s series expansion, from equation (2.4), we obtain

lnϕLBIG(t) =
it

1!
(1− λ)θ +

(it)2

2!
(2 + λ)θ2 +

(it)3

3!
(8 + 3λ)θ3

+
(it)4

4!
(48 + 15λ)θ4 +O(t5). (2.5)

This expansion (2.5) gives us the central population moments of LBIG dis-
tribution (see Lisawadi [21]).

K1 = µ = θ(1 + λ), K2 = σ2 = θ2(2 + λ),

K3 = µ3 = θ3(8 + 3λ), K4 = µ4 − 3σ4 = θ4(48 + 15λ). (2.6)

We will estimate the equations for two parameters of LBIG distribution when

m1 = x̄,

m2 = µ2 =
1

n

n
∑

i=1

(xi − x̄)2, (2.7)

where m1 is the first central sample moment and m2 is the second central
sample moment. From equations (2.6) and (2.7), we get

x̄ =
1

n

n
∑

i=1

xi = K1 = θ(1 + λ), (2.8)

s2 =
1

n
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(xi − x̄)2 = K2 = θ2(2 + λ). (2.9)

From equation (2.8), we obtain

1

n
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From equation (2.9),
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Substituting (2.10) into (2.11), we obtain

1

n

n
∑

i=1

(xi − x̄)2 = θ2
(

2 +
x̄

θ
− 1

)

,

θ2 + x̄θ − s2 = 0. (2.12)

Solving equation (2.12)

θ̃ =
−x̄±

√
x̄2 + 4s2

2
. (2.13)

Since θ̃ is positive parameter,

θ̃ =
−x̄+

√
x̄2 + 4s2

2
. (2.14)

Next, substitute (2.14) into (2.10).
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Hence, the method of moments estimators for LBIG distribution is

λ̃MME =
x̄2 − 2s2 + x̄

√
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2
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2.2 Maximum Likelihood Method

Theorem 2.2. Let X ∽ LBIG(λ, θ), x1, . . . , xn be a positive random sam-

ple of size n, x̄ = 1

n

∑n
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∑n
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1

xi

. Then the maximum likelihood

estimators of the parameters λ and θ are

λ̂MLE =
n

T x̄− n
,

θ̂MLE =
T x̄− n

T
. (2.16)
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Proof. The LBIG distribution has the density function :
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The likelihood function is
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and the logarithm likelihood function is

g(λ, θ) = lnL(x;λ, θ) = n ln 1−
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From (2.19), taking derivative and setting it equal to zero, we obtain

∂
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Denoting T =
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1

xi

and nx̄ =
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xi, we have

λ2Tθ2 + nθ − nx̄ = 0. (2.21)
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Since θ̂ = −n+
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Checking the property of estimator that is maximum by the Hessian test,
where H(λ, θ) is the Hessian matrix of g.

H(λ, θ) =

(

−θT −λT

−λT n
2θ2

− nx̄
θ3
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. (2.26)

Since the determinant of Hessian matrix is
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Hence,
(

θ̂, λ̂
)

is a local maximum for g and thus for L (since ln is an increas-

ing function). Therefore, the estimators for the two parameters of LBIG
distribution by the maximum likelihood method are

λ̂MLE =
n

T x̄− n
,

θ̂MLE =
T x̄− n

T
.

3 Monte Carlo Simulations

The research generated random numbers of re-parameterized length-biased
inverse Gaussian distribution through the composition method by using the
“twoCrack” package [22] and the simulations were repeated 1,000 times for
each model. Also, determining sample of size n = 5, 30, 50, 500 , parameters
λ = 0.5, 1, 2, 3, 4, 5, 10, and θ = 0.5, 1, 3, 5, 10. All of the experiments were run
on the R program version 4.0.5. Regarding the simulation results in Figures
1 and 2, we observe that the proposed maximum likelihood estimators and
the method of moments estimators worked well. The average estimates of
λ and θ were close to the actual value given, especially the large samples.
Moreover, the estimator of λ by the maximum likelihood method and the
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method of moments had slightly more values than the actual values in every
case, and the bias of parameter estimation λ increased when the value of λ
was increased. In addition, the bias of maximum likelihood estimators was
slightly less than the method of moments estimators for both parameters.

4 A New R Package for Parameter Estima-

tion of the Re-parameterized Length-biased

Inverse Gaussian Distribution

This section presents a new package for R named “ELBIG”. The package EL-
BIG provides functions for parameter estimation for re-parameterized length-
biased inverse Gaussian distribution with two estimation methods: the max-
imum likelihood method, the method of moments. The ELBIG package was
published only on GitHub at https://github.com/wikanda-phaphan/ELBIG
and requires a version of R ≥ 3.6.1. The steps for installing the package
ELBIG on R or RStudio from GitHub are as follows:

install.packages("devtools")

library(devtools)

install_github("wikanda-phaphan/ELBIG")

library(ELBIG)

After installing the ELBIG package, users can use “? ELBIG” command to
get to the user’s manual. This new package includes the three functions: 1.
MME(X) gives the value of parameter estimates by the method of moments
in Eq. (2.2), 2. MLE(X) gives the value of parameter estimates by the
maximum likelihood method in Eq. (2.16). 3. Mill Vibration gives the
vibration of the vertical roller mill in 60 minutes, and contains the time
(a.m.) and values of mill vibration (um), collected on February 10, 2019
from [22]. In the calling sequence for using the functions, X denotes data
with a positive value.

5 Illustrative Examples

To illustrate the use of the proposed estimators with real data, we use the
vibration of the vertical roller mill data set in 60 minutes. This data set
contains the time (a.m.) and values of mill vibration (um), collected on
February 10, 2019 from [22]. As this data was right-skewed, we chose the



116 K. Budsaba, W. Phaphan

5

10

15

0 10 20 30
model

B
ia

s 
of

 L
am

bd
a

Method5

MLE

MOM

Bias of lambda, n=5

0.5

1.0

0 10 20 30
model

B
ia

s 
of

 L
am

bd
a

Method30

MLE

MOM

Bias of lambda, n=30

0.00

0.25

0.50

0.75

1.00

0 10 20 30
model

B
ia

s 
of

 L
am

bd
a

Method50

MLE

MOM

Bias of lambda, n=50

0.000

0.025

0.050

0.075

0 10 20 30
model

B
ia

s 
of

 L
am

bd
a

Method500

MLE

MOM

Bias of lambda, n=500

−3

−2

−1

0

0 10 20 30
model

B
ia

s 
of

 T
he

ta

Method5

MLE

MOM

Bias of theta, n=5

−0.8

−0.6

−0.4

−0.2

0.0

0 10 20 30
model

B
ia

s 
of

 T
he

ta

Method30

MLE

MOM

Bias of theta, n=30

−0.6

−0.4

−0.2

0.0

0 10 20 30
model

B
ia

s 
of

 T
he

ta

Method50

MLE

MOM

Bias of theta, n=50

−0.06

−0.04

−0.02

0.00

0 10 20 30
model

B
ia

s 
of

 T
he

ta

Method500

MLE

MOM

Bias of theta, n=500

Figure 1: Line graph for the bias of estimator λ and θ
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Figure 2: Line graph for the the MSE of estimator λ and θ
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Table 1: The MLE of the model parameters for the mill vibration, and AIC
measure

Fitting Dist. Estimate parameters AIC
λ θ

TCR 19.73067 0.1 7.013233

BS 0.001 0.1 255.989

IG 3 0.01 96.78106

LBIG 130.9168 0.5669015 1.179671

two-parameter crack (TCR), inverse Gaussian (IG), re-parameterized length-
biased inverse Gaussian (LBIG), and Birnbaum-Saunders (BS) distribution
to be a candidate distribution for the mill vibration data [22]. We estimate
the parameters of the re-parameterized length-biased inverse Gaussian dis-
tribution by using the proposed estimators in Eq. (2.16), and estimate the
parameters of other distributions by maximizing the likelihood function using
the “nlminb” function, the result is in Table 1.

Regarding the results in Table 1, we observe that the re-parameterized
length-biased inverse Gaussian distribution has an AIC value less than an-
other distribution and so the re-parameterized length-biased inverse Gaussian
distribution fits the data better than other distributions. Finally, we fitted
the re-parameterized length-biased inverse Gaussian distribution to the mill
vibration data set so the thickness of the machine element was 130.9168 and
the nominal treatment pressure on the machine element was 0.5669015.

6 Conclusion

This paper dealt with the re-parameterized length-biased inverse Gaussian
distribution based on [1]. We introduced an alternative estimator with the
method of moments and the maximum likelihood method in a closed-form ex-
pression. We experimented with an R program using Monte Carlo techniques.
The sample sizes were 5, 30, 50, 500, and repeated 1,000 times in each case.
We compared the effectiveness of estimators with the method of moments
and the maximum likelihood method by considering mean squared error and
Bias. The results showed that the parameter estimation of re-parameterized
length-biased inverse Gaussian distribution through the method of moments
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and the maximum likelihood method produce a consistent estimator. More-
over, the maximum likelihood estimators were more precise than the method
of moment estimators. Furthermore, we provided an R language package
for parameter estimation where the data have the re-parameterized length-
biased inverse Gaussian distribution and showing the example of applying
the proposed estimators with the vertical roller mill vibration data set to 60
minutes [22]. Phaphan’s research [22] shows that the two-parameter crack
distribution fits the vertical roller mill vibration data better than other dis-
tributions by maximizing the likelihood function using the nlminb function.
Our research indicates that the re-parameterized length-biased inverse Gaus-
sian distribution fits the vibration data better than other distributions by
using the maximum likelihood estimators in a closed-form expression which
differs from the result of Phaphan [22]. Hence, we can conclude that the pro-
posed estimators are more efficient than the maximum likelihood estimators
via nlminb function in the R program.
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