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Abstract

In this work, we obtain an approximate analytical solution to a

damped pendulum equation with constant torque. We also compare

this solution both graphically and numerically with Runge-Kutta nu-

merical solution.

1 Introduction

Since the time of Galileo [1], the pendulum has constituted a physical ob-
ject fascinating physicists and becoming one of the paradigms in the study
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of physics and natural phenomena. In the framework of nonlinear dynam-
ics, there is no doubt that the pendulum is one of the objects that have
deserved more attention in modeling all kind of phenomena related to os-
cillations, bifurcations and chaos. The simple pendulum has been used as
a physical model to solve problems such as: non-linear plasma oscillations,
Duffing oscillators, rigid plates that satisfy the Johanessen performance cri-
teria, transverse vibrations nonlinear of a plate carrying a concentrated mass,
a beam supported by a double periodic axial oscillating mount, cracks sub-
jected to concentrated forces, surface waves in a plasma column, coupled
modes of nonlinear bending vibrations of a circular ring, double spin space-
craft, motion of spacecraft over slowly rotating asteroids, nonlinear vibration
of clasped beams, the nonlinear equation of wave, non-linear mathematical
models of DNA, the non-linear Schrodinger equation, among others. In this

work, we give an approximate analytical solution to the damped pendulum
forced with a constant torque

θ̈ + βθ̇ + sin θ = γ, θ(0) = θ0 and θ′(0) = θ̇0. (1.1)

We focus on a mechanical example proposed by Andronow et al. [4] consisting
of a damped pendulum forced with a constant torque. This system has
been studied previously, in particular as a model of the pull-out torques of
synchronous motors 2 or as a model of a single point Josephson Junction [5].
It can be easily built and the physics involved in this device is very simple.
Let us write the equation of motion in the form

θ̈ + βθ̇ = −∂V (θ)

∂θ
with V (θ) = −γθ − cos θ (1.2)

We will describe the motion of a ball in the potential V (θ). The ball is
acted upon by its (normalized) weight and a viscous drag. The ball stays in
contact with the potential. The motion of the ball is different from that of
the pendulum because the kinetic energy has a different form. The kinetic
energy of the falling ball is K = m ṡ2/2, where s is the position of the
ball in curvilinear coordinates along the potential. However, the qualitative
behavior and, in particular, the equilibria are the same [1].
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2 Approximate Analytical solution

In order to solve the i.v.p. (1.1), we first approximate the sine function by
means of a cubic polynomial using Chebyshev technique as follows:

sin θ ≈ θ − 2

13
θ3, − 75◦ ≤ θ ≤ 75◦ (2.3)

Thus, we solve the following i.v.p.

θ̈ + βθ̇ + θ − 2

13
θ3 = γ, θ(0) = θ0 and θ′(0) = θ̇0. (2.4)

Define the residual function

R(t) = θ̈ + βθ̇ + θ − 2

13
θ3 − γ. (2.5)

Let θ(t) = x(t) + d, where d is a root to the cubic θ − 2
13
θ3 − γ = 0.

We may take the value d = arcsin(γ) for |γ| ≤ 1/2. Then

R(t) = x′′(t) + βx′(t) +

(

1− 6d2

13

)

x(t)− 6

13
dx(t)2 − 2

13
x(t)3 (2.6)

Assume the ansatz form

x(t) = exp(−βt/2)y(t), (2.7)

where y = y(t) is the analytical solution to some Duffing-Helmholtz equation

y′′(t) + py(t) + qy2(t) + ry3(t), y(0) = θ0 − d and y′(0) =
1

2
β (θ0 − d) + θ̇0.

(2.8)
We have:

R(t) = − 1
52
e−

βt

2 y(t) (13β2 + 24d2 + 52(p− 1))− 1
13
y(t)2

(

6de−βt + 13qe−
βt

2

)

−
1
13
y(t)3

(

13re−
βt

2 + 2e−
3βt

2

)

.

(2.9)

For |tβ| ≪ 1, we have e−βt ≈ e−
βt

2 ≈ e−
3βt

2 ≈ 1 so that

R(t) ≈ − 1

52
y(t)

(

13β2 + 24d2 + 52p− 52
)

− 1

13
y(t)2 (6d+ 13q)− 1

13
y(t)3 (13r + 2) .

(2.10)



126 A. H. Salas, L. J. Martinez, D. L. Ocampo

The last approximation suggests the choice

p = 1− 6

13
d2 − β2

4
, q = −6d

13
and r = − 2

13
. (2.11)

The solution to the i.v.p.

y′′(t) +
(

1− 6
13
d2 − β2

4

)

y(t)− 6d
13
y2(t)− 2

13
y3(t),

y(0) = y0 := θ0 − d and y′(0) = ẏ0 :=
1
2
β (θ0 − d) + θ̇0

(2.12)

may be written in terms of the Weierstrass ℘ function or the Jacobian cn
function. Using the ℘ function, we have

y(t) = A+
B

1 + C℘(t+D; g2, g3)
, (2.13)

where

B = −6A(A2r+Aq+p)
3A2r+2Aq+p

, C = 12
3A2r+2Aq+p

.

g2 =
1
12
(−3A4r2 − 4A3qr − 6A2pr + p2) , g3 =

1
216

(p3 − A2 (q2 − 3pr) (3A2r + 4Aq + 6p)) .
(2.14)

The values of A and D are determined from the initial conditions. The
number A is found from the quartic

3rA4 + 4qA3 + 6pA2 − (6py20 + 4qy30 + 3ry40 + 6ẏ20) = 0. (2.15)

and

D = ±℘−1

(

y0 − A− B

C (A− y0)
; g2, g3

)

. (2.16)

The solution to (2.12) may also be expressed in terms of the Jacobian elliptic
function cn in the ansatz form

y(t) = Ā+
B̄

1 + c1cn(
√
ωt + c2, m)

, (2.17)

where

B̄ = −3A4r + 4A3q + 6A2p− 6py20 − 4qy30 − 3ry40 − 6ẏ20
3A (A2r + Aq + p)

, c2 = cn−1

(

y0 − A− B

c1(A− y0)
, m

)

.

(2.18)

m = −Ac21(A2r+Aq+p)
2Bω

, ω =
A3c21(−r)+3A3r+3A2Br−A2c21q+3A2q+2ABq−Ac21p+3Ap+Bp

B
.

(2.19)
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The numbers Ā and c1 are solutions to the following equations:

q (2q2 − 9pr) Ā6 − 3 (9p2r − 2pq2 + 18pr2y20 + 12qr2y30 + 9r3y40 + 18r2ẏ20) Ā
5−

15qr (6py20 + 4qy30 + 3ry40 + 6ẏ20) Ā
4−

10q2 (6py20 + 4qy30 + 3ry40 + 6ẏ20) Ā
3 − 15pq (6py20 + 4qy30 + 3ry40 + 6ẏ20) Ā

2−
3 (6py20 + 4qy30 + 3ry40 + 6ẏ20) (3p

2 + 6pry20 + 4qry30 + 3r2y40 + 6rẏ20) Ā−
q (6py20 + 4qy30 + 3ry40 + 6ẏ20)

2 = 0.
(2.20)

27Ā4
(

p+ qĀ+ rĀ2
)4
c41+

18Ā2
(

p+ qĀ+ rĀ2
)2

(−3p2Ā2 − 2pqĀ3 − q2Ā4 + 3prĀ4 − 6p2y20 − 12pqĀy20−
8prĀ2y20 − 4pqy30 − 8q2Āy30 − 12qrĀ2y30 − 3pry40 − 6qrĀy40−
19r2Ā2y40 − 6pẏ20 − 12qĀẏ20 − 18rĀ2ẏ20)c

2
1+

(

3pĀ2 + qĀ3 − 6py20 − 4qy30 − 3ry40 − 6ẏ20
)

(9p3Ā2 + 9p2qĀ3 − 3pq2Ā4 + 27p2rĀ4 − 3q3Ā5 + 15pqrĀ5−
2q2rĀ6 + 9pr2Ā6 + 18p2qĀy20 + 18pq2Ā2y20−
36p2rĀ2y20 + 6pqrĀ3y20 + 12pq2Āy30 + 12q3Ā2y30−
24pqrĀ2y30 + 4q2rĀ3y30 + 36p2ry40 + 9pqrĀy40 + 9q2rĀ2y40−
18pr2Ā2y40 + 3qr2Ā3y40 + 48pqry50 + 16q2ry60+
36pr2y60 + 24qr2y70 + 9r3y80 + 18pqĀẏ20 + 18q2Ā2ẏ20−
36prĀ2ẏ20 + 6qrĀ3ẏ20 + 72pry20ẏ

2
0 + 48qry30ẏ

2
0 + 36r2y40ẏ

2
0 + 36rẏ40) = 0.

(2.21)
On the other hand, the functions ℘ and cn are related by the relations

cn(t|m) = 1− 6

4m+ 1 + 12℘
(

t; 1
12
(16m2 − 16m+ 1) , 1

216
(2m− 1) (32m2 − 32m− 1)

) .

(2.22)

℘(t; g2, g3) = −
√
g2(4m+ 1)

2
√
3
√
16m2 − 16m+ 1

+

√
3g2√

16m2 − 16m+ 1 (1− cn (ωt|m))
,

(2.23)
where

m = 1
2
(1±

√
4z − 3), ω =

√
2 4

√

3g2
16m2−16m+1

.

and
4096 (g32 − 27g23) z

3 − 11520 (g32 − 27g23) z
2 + 972 (11g32 − 300g23) z − 27 (121g32 − 3375g23) = 0.

(2.24)
Letting β → 0 gives an approximate analytical solution to the undamped and
constantly forced pendulum θ̈ + sin θ = γ, θ(0) = θ0 and θ′(0) = θ̇0. Letting
γ → 0 gives an approximate analytical solution to the damped and unforced
pendulum θ̈ + βθ̇ + sin θ = 0, θ(0) = θ0 and θ′(0) = θ̇0.
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In the case when −1 ≤ m ≤ 0.55, we may obtain a good trigonometric
approximant by means of the formula

cn(t,m) ≈ cosm(t) :=

√
κ−m+ 2 cos (w(t))

√

14 + (κ−m− 12) cos2 (w(t))
, where (2.25)

w(t) =

√

κ−m+ 2

14
t and κ =

√
m2 − 144m+ 144. (2.26)

The respective errors are shown in Table 1 (T = 4K(m)).

m max−T/2≤t≤T/2 |cn(t,m)− cosm(t)|
0.1 0.00673646
0.15 0.00032743
0.2 0.000611528
0.25 0.00100518
0.3 0.00152492
0.35 0.00219766
0.4 0.00304477
0.45 0.00410158
0.5 0.00541633
0.55 0.00704757

m max−T/2≤t≤T/2 |cn(t,m)− cosm(t)|
−1. 0.00673646
−0.9 0.00574835
−0.8 0.00478114
−0.7 0.0038748
−0.6 0.0030145
−0.5 0.00222486
−0.4 0.00151738
−0.3 0.000912756
−0.2 0.000434754
−0.1 0.000117442

Table 1.

Thus, the trigonometric approximant reads

θtrigo(t) = d+ exp(−βt/2)
(

A+ B

1−C
√

g2(4m−5−(4m+1)Ψ(t))

2
√

48m2
−48m+3(1−Ψ(t))

)

,

Ψ(t) = cosm

( √
2 4√3g2

4√16m2−16m+1
(t +D)

)

.

(2.27)

Yet we have another formula:

θtrigo(t) = d+ exp(−βt/2)
(

Ā +
B̄

1 + c1 cosm (
√
ωt+ c2)

)

, (2.28)

3 The Moving Boundary Method

The approximate solution won’t be good in some cases. In order to improve
the accuracy, we introduce a moving boundary method as follows:
Given a set X, let χ be its characteristic function: χX(t) = 1 if t ∈ X
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and 0 otherwise. Denote by θ(y0, ẏ0)(t) an approximate analytical solution
satisfying the initial conditions θ(y0, ẏ0)(0) = θ0 and θ(y0, ẏ0)

′(0) = θ̇0. For
our purposes, choose a suitable positive number τ and define a sequence of
analytical approximants in the following way:

θ0(t) = θ(y0, ẏ0)(t) for 0 ≤ t ≤ τ (3.29)

θn(t) = θ(θn−1(nτ), θ
′
n−1(nτ))(t− nτ), τn < t ≤ (n + 1)τ ; n = 1, 2, 3, ...

The analytical approximant is

θ(t) = θ0(t) +
+∞
∑

n=1

χ(nτ,(n+1)τ ](t)θn(t), t ≥ 0. (3.30)

The sequence of successive aproximants is defined as

Θj(t) = θ0(t)+

j−1
∑

n=1

χ(nτ,(n+1)τ ](t)θn(t)+χ(jτ,∞)(t)θj(t), t ≥ 0, τ > 0 and j = 1, 2, 3, ....

(3.31)
Alternatively, we may define the functions θn(t) as follows:
Let ϕ(t) be the Runge-Kutta numerical solution to the i.v.p. (1.1) for 0 ≤
t ≤ T . Suppose that τ1 < τ2 < · · · < τN the points on (0, T ) at which either
ϕ(tj) = d or ϕ′(tj) = 0 (j = 1, 2, 3, ..., N). Define

θ0(t) = θ(y0, ẏ0)(t) for 0 ≤ t ≤ τ1.
θn(t) = θ(ϕ(τn), ϕ

′(τn))(t− τn), τn < t ≤ τn+1; n = 1, 2, 3, ..., N − 1.
θN(t) = θ(ϕ(τN), ϕ

′(τN ))(t− τN), τN < t ≤ T.
(3.32)

4 Analysis and Discussion

We have obtained an approximate analytical solution to a damped and con-
stantly forced pendulum. The solution also applies when either β = 0 or
γ = 0. Let us consider some illustrative examples.
In the case when θ0 = d = arcsin(γ) and θ̇0 = 0, the exact solution is θ(t) = d.
Taking the initial values near the equilibrium point Pe(d, 0) yields a good ap-
proximate analytical solution. If the analytical solution is not good, then we
may apply the Moving Boundary Method.
Example 1. Let β = 0.1, γ = 0.3, θ0 = 30◦, θ̇0 = 0 and 0 ≤ t ≤ 80. See
Figure 1. The picture on the left corresponds to the Runge-Kutta numerical
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solution compared with the analytical approximant (dashed curve). The
picture on the right shows the phase portrait for the given data. The dashed
horizontal line represents the equilibrium point θ = d = 0.304337. The
approximate analytical solution is θapprox(t) =

0.304337+e−0.05t

(

−0.214896 +
1.26865

1 + 12.0748℘(t+ 3.17128; 0.0794131, 0.00345555)

)

(4.33)

The error of the approximant compared with Runge-Kutta numerical solution
is E = 0.00162852. Making use of (2.23)-(2.24) gives

℘(t; 0.0794131, 0.00345555) = −0.0776374+
0.473306

1− cn(0.97294t| − 0.00395178)
.

(4.34)
and so

θapprox(t) = 0.304337+e−0.05t

(

20.0686 − 1853.38

92.374− cn(0.97294t+ 3.17128,−0.00395178)

)

.

(4.35)
We get a good trigonometric solution from (2.25) which is given by

θtrigo(t) = 0.304337+e−0.05t



20.0686 − 1853.38

92.374− 3.74535 cos(0.9739t+3.17441)√
14.0138+0.0138199 cos(1.9478t+6.34882)



 .

(4.36)
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Example 2. Let β = 0.1, γ = 0.6, θ0 = 90◦, θ̇0 = 0 and 0 ≤ t ≤ 80. The
analytical approximant reads

θapprox(t) = 0.640407 + e−0.05t

(

−0.771331 +
4.4179

1 + 12.1263ψ(t)

)

;(4.37)

ψ(t) = ℘(t + 3.34388; 0.0962838,−0.00451338).

Figure 2 shows the approximant as dashed curve. The other curve corre-
sponds to the Runge-Kutta numerical solution. Clearly, the approximate
solution is not good.

Figure 2

Clearly, the analytical approximant is not good. In order to improve
the analytical solution, we apply the Moving Boundary Method by means of
(3.32). The points tj are colored in green and yellow and are presented in
Table 1.
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Figure 3

Figure 4

Figures 3 and 4 show the plots for successive approximants evaluated using
(3.31).
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